Photonic neuromorphic computing using vertical cavity semiconductor lasers

Photonic realizations of neural network computing hardware are a promising approach to enable future scalability of neuromorphic computing. The number of special purpose neuromorphic hardware and neuromorphic photonics has accelerated on such a scale that one can now speak of a Cambrian explosion. W...

Full description

Saved in:
Bibliographic Details
Published inOptical materials express Vol. 12; no. 6; p. 2395
Main Authors Skalli, Anas, Robertson, Joshua, Owen-Newns, Dafydd, Hejda, Matej, Porte, Xavier, Reitzenstein, Stephan, Hurtado, Antonio, Brunner, Daniel
Format Journal Article
LanguageEnglish
Published Washington Optical Society of America 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photonic realizations of neural network computing hardware are a promising approach to enable future scalability of neuromorphic computing. The number of special purpose neuromorphic hardware and neuromorphic photonics has accelerated on such a scale that one can now speak of a Cambrian explosion. Work along these lines includes (i) high performance hardware for artificial neurons, (ii) the efficient and scalable implementation of a neural network’s connections, and (iii) strategies to adjust network connections during the learning phase. In this review we provide an overview on vertical-cavity surface-emitting lasers (VCSELs) and how these high-performance electro-optical components either implement or are combined with additional photonic hardware to demonstrate points (i-iii). In the neurmorphic photonics context, VCSELs are of exceptional interest as they are compatible with CMOS fabrication, readily achieve 30% wall-plug efficiency, >30 GHz modulation bandwidth and multiply and accumulate operations at sub-fJ energy. They hence are highly energy efficient and ultra-fast. Crucially, they react nonlinearly to optical injection as well as to electrical modulation, making them highly suitable as all-optical as well as electro-optical photonic neurons. Their optical cavities are wavelength-limited, and standard semiconductor growth and lithography enables non-classical cavity configurations and geometries. This enables excitable VCSELs (i.e. spiking VCSELs) to finely control their temporal and spatial coherence, to unlock terahertz bandwidths through spin-flip effects, and even to leverage cavity quantum electrodynamics to further boost their efficiency. Finally, as VCSEL arrays they are compatible with standard 2D photonic integration, but their emission vertical to the substrate makes them ideally suited for scalable integrated networks leveraging 3D photonic waveguides. Here, we discuss the implementation of spatially as well as temporally multiplexed VCSEL neural networks and reservoirs, computation on the basis of excitable VCSELs as photonic spiking neurons, as well as concepts and advances in the fabrication of VCSELs and microlasers. Finally, we provide an outlook and a roadmap identifying future possibilities and some crucial milestones for the field.
AbstractList Photonic realizations of neural network computing hardware are a promising approach to enable future scalability of neuromorphic computing. The number of special purpose neuromorphic hardware and neuromorphic photonics has accelerated on such a scale that one can now speak of a Cambrian explosion. Work along these lines includes (i) high performance hardware for artificial neurons, (ii) the efficient and scalable implementation of a neural network’s connections, and (iii) strategies to adjust network connections during the learning phase. In this review we provide an overview on vertical-cavity surface-emitting lasers (VCSELs) and how these high-performance electro-optical components either implement or are combined with additional photonic hardware to demonstrate points (i-iii). In the neurmorphic photonics context, VCSELs are of exceptional interest as they are compatible with CMOS fabrication, readily achieve 30% wall-plug efficiency, >30 GHz modulation bandwidth and multiply and accumulate operations at sub-fJ energy. They hence are highly energy efficient and ultra-fast. Crucially, they react nonlinearly to optical injection as well as to electrical modulation, making them highly suitable as all-optical as well as electro-optical photonic neurons. Their optical cavities are wavelength-limited, and standard semiconductor growth and lithography enables non-classical cavity configurations and geometries. This enables excitable VCSELs (i.e. spiking VCSELs) to finely control their temporal and spatial coherence, to unlock terahertz bandwidths through spin-flip effects, and even to leverage cavity quantum electrodynamics to further boost their efficiency. Finally, as VCSEL arrays they are compatible with standard 2D photonic integration, but their emission vertical to the substrate makes them ideally suited for scalable integrated networks leveraging 3D photonic waveguides. Here, we discuss the implementation of spatially as well as temporally multiplexed VCSEL neural networks and reservoirs, computation on the basis of excitable VCSELs as photonic spiking neurons, as well as concepts and advances in the fabrication of VCSELs and microlasers. Finally, we provide an outlook and a roadmap identifying future possibilities and some crucial milestones for the field.
Photonic realizations of neural network computing hardware are a promising approach to enable future scalability of neuromorphic computing. The number of special purpose neuromorphic hardware and neuromorphic photonics has accelerated on such a scale that one can now speak of a Cambrian explosion. Work along these lines includes (i) high performance hardware for artificial neurons, (ii) the efficient and scalable implementation of a neural network's connections, and (iii) strategies to adjust network connections during the learning phase. In this review we provide an overview on vertical-cavity surface-emitting lasers (VCSELs) and how these high-performance electro-optical components either implement or are combined with additional photonic hardware to demonstrate points (i-iii). In the neurmorphic photonics context, VCSELs are of exceptional interest as they are compatible with CMOS fabrication, readily achieve 30% wall-plug efficiency, >30 GHz modulation bandwidth and multiply and accumulate operations at sub-fJ energy. They hence are highly energy efficient and ultra-fast. Crucially, they react nonlinearly to optical injection as well as to electrical modulation, making them highly suitable as all-optical as well as electro-optical photonic neurons. Their optical cavities are wavelength-limited, and standard semiconductor growth and lithography enables non-classical cavity configurations and geometries. This enables excitable VCSELs (i.e. spiking VCSELs) to finely control their temporal and spatial coherence, to unlock terahertz bandwidths through spin-flip effects, and even to leverage cavity quantum electrodynamics to further boost their efficiency. Finally, as VCSEL arrays they are compatible with standard 2D photonic integration, but their emission vertical to the substrate makes them ideally suited for scalable integrated networks leveraging 3D photonic waveguides. Here, we discuss the implementation of spatially as well as temporally multiplexed VCSEL neural networks and reservoirs, computation on the basis of excitable VCSELs as photonic spiking neurons, as well as concepts and advances in the fabrication of VCSELs and microlasers. Finally, we provide an outlook and a roadmap identifying future possibilities and some crucial milestones for the field.
Author Reitzenstein, Stephan
Skalli, Anas
Robertson, Joshua
Brunner, Daniel
Owen-Newns, Dafydd
Hejda, Matej
Porte, Xavier
Hurtado, Antonio
Author_xml – sequence: 1
  givenname: Anas
  surname: Skalli
  fullname: Skalli, Anas
– sequence: 2
  givenname: Joshua
  orcidid: 0000-0001-6316-5265
  surname: Robertson
  fullname: Robertson, Joshua
– sequence: 3
  givenname: Dafydd
  surname: Owen-Newns
  fullname: Owen-Newns, Dafydd
– sequence: 4
  givenname: Matej
  orcidid: 0000-0003-4493-9426
  surname: Hejda
  fullname: Hejda, Matej
– sequence: 5
  givenname: Xavier
  orcidid: 0000-0002-9869-7170
  surname: Porte
  fullname: Porte, Xavier
– sequence: 6
  givenname: Stephan
  orcidid: 0000-0002-1381-9838
  surname: Reitzenstein
  fullname: Reitzenstein, Stephan
– sequence: 7
  givenname: Antonio
  surname: Hurtado
  fullname: Hurtado, Antonio
– sequence: 8
  givenname: Daniel
  orcidid: 0000-0002-4003-3056
  surname: Brunner
  fullname: Brunner, Daniel
BookMark eNptkMtKAzEUhoNUsNZufIIBd8LU3KdZSqk3KnWh6yGTZGzKTDImmULf3injQsSzOBfO_58D3yWYOO8MANcILhDh9G77ul5QBgXmZ2CKERM5EQROfvUXYB7jHg7BOF5iPAUvbzufvLMqc6YPvvWh2w2D8m3XJ-s-sz6e8sGEZJVsMiUPNh2zaFqrvNO9Sj5kjYwmxCtwXssmmvlPnYGPh_X76infbB-fV_ebXGHBUq6x5BJxwbjQRoqaMFTQCnMNcWVohVBVDCumhCYVUloaWdOKGlUxAlltNJmBm_FuF_xXb2Iq974PbnhZYl7ggi8RJYMKjioVfIzB1KWySSbrXQrSNiWC5QlaOUArR2iD5faPpQu2leH4n_gbwqZwHA
CitedBy_id crossref_primary_10_1088_2634_4386_ad4b5b
crossref_primary_10_1038_s41467_024_46387_5
crossref_primary_10_1038_s44287_024_00050_9
crossref_primary_10_1088_2634_4386_ad8df8
crossref_primary_10_1002_andp_202400390
crossref_primary_10_1126_sciadv_adg7904
crossref_primary_10_1088_2634_4386_ad575e
crossref_primary_10_1016_j_neunet_2023_06_014
crossref_primary_10_1515_nanoph_2022_0437
crossref_primary_10_1364_OME_477577
crossref_primary_10_1088_1361_6463_aca914
crossref_primary_10_1109_JSTQE_2022_3218950
crossref_primary_10_1051_epjconf_202328713008
crossref_primary_10_1088_2634_4386_ad2d5c
crossref_primary_10_1103_PhysRevApplied_22_014009
crossref_primary_10_3389_fncom_2023_1164472
crossref_primary_10_1021_acsphotonics_4c01199
crossref_primary_10_1063_5_0143236
crossref_primary_10_1021_acsphotonics_4c01236
crossref_primary_10_1002_lpor_202400623
crossref_primary_10_34133_icomputing_0031
crossref_primary_10_1002_lpor_202402227
crossref_primary_10_1088_1742_6596_2931_1_012016
crossref_primary_10_1016_j_revip_2024_100093
crossref_primary_10_1063_5_0187074
crossref_primary_10_1063_5_0177896
crossref_primary_10_1364_OPTICA_519171
crossref_primary_10_1038_s42005_025_02000_9
crossref_primary_10_3389_aot_2024_1471239
crossref_primary_10_1364_OE_529679
crossref_primary_10_1038_s41377_024_01717_6
crossref_primary_10_1088_2634_4386_acf609
crossref_primary_10_1063_5_0127492
crossref_primary_10_1038_s42005_024_01858_5
crossref_primary_10_1038_s41566_024_01493_0
crossref_primary_10_1021_acsphotonics_4c00478
crossref_primary_10_1038_s41377_024_01561_8
Cites_doi 10.1364/AO.24.001469
10.1063/1.3692726
10.1063/5.0048674
10.1088/2515-7647/aba671
10.1364/OE.408747
10.1364/PRJ.412141
10.1364/PRJ.7.000121
10.1002/1521-3951(200009)221:1<133::AID-PSSB133>3.0.CO;2-9
10.1088/2515-7647/aba670
10.1364/OPTICA.5.000756
10.1038/s41586-020-03070-1
10.1038/343325a0
10.1126/science.1091277
10.1364/OL.43.004497
10.1103/PhysRevE.94.042219
10.1063/1.3284514
10.1109/JQE.2006.876713
10.1038/s41586-019-1073-y
10.1364/OE.25.002401
10.1063/1.5045580
10.1364/OL.42.001560
10.1007/s11071-019-05339-1
10.1109/JSTQE.2020.2975564
10.1038/s41598-020-62945-5
10.1364/AOP.8.000228
10.1063/1.2890166
10.1175/JTECH1906.1
10.1109/JLT.2020.3000670
10.1109/JSTQE.2017.2678170
10.1038/srep00287
10.1364/JOSAA.13.000470
10.1103/PhysRevApplied.11.064043
10.1117/2.1201411.005689
10.3390/ma14020397
10.1103/PhysRevA.52.1728
10.1002/lpor.201400219
10.1364/PRJ.422628
10.1364/OE.27.018579
10.1103/PhysRevLett.112.183902
10.3390/app11094232
10.1016/j.optcom.2021.127068
10.1038/ncomms2368
10.1063/1.4939831
10.1063/1.2969397
10.1109/3.100877
10.1515/nanoph-2016-0132
10.1038/s41563-020-0635-6
10.1364/OPTICA.388205
10.1063/1.5050669
10.1364/OE.20.022783
10.1038/ncomms1476
10.1364/OL.383942
10.1021/ac50012a026
10.1364/OL.40.005690
10.1109/3.236146
10.1109/JSTQE.2019.2929187
10.1109/JLT.2018.2818195
10.1109/TNNLS.2020.3006263
10.1364/NLGW.1999.WC4
10.1109/JSTQE.2019.2930454
10.1103/PhysRevE.98.062211
10.1364/OE.18.009423
10.1038/s41566-021-00796-w
10.1109/JSTQE.2019.2932023
10.1103/PhysRevE.88.022923
10.1364/OE.20.003241
10.1063/5.0017574
10.1088/2515-7647/abf6bd
10.1088/1361-6641/ab1551
10.1364/OL.40.003854
10.1109/JSTQE.2019.2899040
10.1364/OL.36.004476
10.1515/nanoph-2020-0171
10.1109/JSTQE.2019.2911565
10.1103/PhysRevX.9.021032
10.1109/JSTQE.2019.2931215
10.1038/s41586-019-1157-8
10.3390/app11041383
10.1109/JSTQE.2019.2925968
10.1109/JSTQE.2017.2685140
10.1364/AO.36.006654
10.1109/LPT.2021.3075095
10.1063/1.4937730
10.1109/JPHOT.2016.2614104
10.1109/JSTQE.2013.2257700
10.35470/2226-4116-2018-7-3-96-101
10.1038/s41566-020-00754-y
10.1364/AO.57.001731
10.1109/JQE.2018.2879484
10.1109/JLT.2017.2647779
10.1109/ACCESS.2018.2878940
ContentType Journal Article
Copyright Copyright Optical Society of America Jun 1, 2022
Copyright_xml – notice: Copyright Optical Society of America Jun 1, 2022
DBID AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1364/OME.450926
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2159-3930
ExternalDocumentID 10_1364_OME_450926
GroupedDBID AAFWJ
AAWJZ
AAYXX
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BCNDV
CITATION
DSZJF
EBS
FRP
GROUPED_DOAJ
KQ8
M~E
OFLFD
OK1
OPJBK
ROL
ROS
TR6
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c295t-d2a6a169569dea9f35174b26d02be4b11b75695c9d3b1cdaeaf4b4ecb5305fed3
ISSN 2159-3930
IngestDate Mon Jun 30 06:31:23 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Tue Jul 01 00:44:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c295t-d2a6a169569dea9f35174b26d02be4b11b75695c9d3b1cdaeaf4b4ecb5305fed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4493-9426
0000-0002-9869-7170
0000-0002-1381-9838
0000-0001-6316-5265
0000-0002-4003-3056
OpenAccessLink https://doi.org/10.1364/ome.450926
PQID 2672768143
PQPubID 2049553
ParticipantIDs proquest_journals_2672768143
crossref_citationtrail_10_1364_OME_450926
crossref_primary_10_1364_OME_450926
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Optical materials express
PublicationYear 2022
Publisher Optical Society of America
Publisher_xml – name: Optical Society of America
References Yamada (ome-12-6-2395-R59) 1993; 29
Guo (ome-12-6-2395-R33) 2019; 26
Feldmann (ome-12-6-2395-R6) 2021; 589
Larger (ome-12-6-2395-R30) 2012; 20
Farhat (ome-12-6-2395-R2) 1985; 24
Psaltis (ome-12-6-2395-R4) 1990; 343
Li (ome-12-6-2395-R25) 2014; 25
Michalzik (ome-12-6-2395-R82) 2012
Liu (ome-12-6-2395-R89) 2019; 7
Ackemann (ome-12-6-2395-R41) 2000; 221
Zhang (ome-12-6-2395-R67) 2020; 99
Tait (ome-12-6-2395-R24) 2019; 11
Bjork (ome-12-6-2395-R84) 1991; 27
Miller (ome-12-6-2395-R5) 2017; 35
Böckler (ome-12-6-2395-R93) 2008; 92
Gies (ome-12-6-2395-R83) 2019; 34
Zhang (ome-12-6-2395-R78) 2021; 9
Turconi (ome-12-6-2395-R51) 2013; 88
Hamerly (ome-12-6-2395-R90) 2019; 9
Haghighi (ome-12-6-2395-R8) 2021; 14
Paquot (ome-12-6-2395-R28) 2012; 2
Parto (ome-12-6-2395-R11) 2020; 19
Garbin (ome-12-6-2395-R53) 2018; 7
Vatin (ome-12-6-2395-R32) 2018; 43
Hurtado (ome-12-6-2395-R45) 2012; 100
Xiang (ome-12-6-2395-R69) 2019; 25
Brunner (ome-12-6-2395-R31) 2013; 4
Jaeger (ome-12-6-2395-R20) 2004; 304
Appeltant (ome-12-6-2395-R21) 2011; 2
Mos (ome-12-6-2395-R19) 1997; 36
Xiang (ome-12-6-2395-R65) 2018; 36
Robertson (ome-12-6-2395-R77) 2020; 28
Dolcemascolo (ome-12-6-2395-R54) 2018; 98
Hejda (ome-12-6-2395-R81) 2021; 6
Liu (ome-12-6-2395-R7) 2015; 9
Chow (ome-12-6-2395-R92) 2018; 5
Van der Sande (ome-12-6-2395-R22) 2017; 6
Lindemann (ome-12-6-2395-R10) 2019; 568
Prucnal (ome-12-6-2395-R23) 2016; 8
Deng (ome-12-6-2395-R48) 2017; 23
Selmi (ome-12-6-2395-R56) 2015; 40
Shastri (ome-12-6-2395-R3) 2021; 15
Vatin (ome-12-6-2395-R34) 2020; 5
Robertson (ome-12-6-2395-R75) 2020; 10
Harkhoe (ome-12-6-2395-R35) 2021; 11
Vatin (ome-12-6-2395-R16) 2019; 27
Xiang (ome-12-6-2395-R73) 2020; 45
Zhang (ome-12-6-2395-R71) 2020; 38
Deng (ome-12-6-2395-R49) 2018; 6
Gao (ome-12-6-2395-R74) 2021; 495
Xiang (ome-12-6-2395-R72) 2021; 32
Selmi (ome-12-6-2395-R55) 2014; 112
Porte (ome-12-6-2395-R15) 2021; 3
Robertson (ome-12-6-2395-R47) 2017; 42
Heindel (ome-12-6-2395-R86) 2010; 96
Zhang (ome-12-6-2395-R66) 2018; 8
Bueno (ome-12-6-2395-R38) 2018; 5
Xiang (ome-12-6-2395-R60) 2016; 8
Bueno (ome-12-6-2395-R29) 2021; 33
Malinowski (ome-12-6-2395-R42) 1977; 49
San Miguel (ome-12-6-2395-R26) 1995; 52
Reitzenstein (ome-12-6-2395-R85) 2008; 93
Zhou (ome-12-6-2395-R97) 2021; 15
Ackemann (ome-12-6-2395-R40) 1999
Heuser (ome-12-6-2395-R95) 2018; 3
Brunner (ome-12-6-2395-R14) 2015; 40
Lohmann (ome-12-6-2395-R1) 1996; 13
Schlehahn (ome-12-6-2395-R87) 2016; 1
Barbay (ome-12-6-2395-R17) 2011; 36
Selmi (ome-12-6-2395-R57) 2016; 94
Mehta (ome-12-6-2395-R88) 2006; 42
Duport (ome-12-6-2395-R36) 2012; 20
Heuser (ome-12-6-2395-R9) 2020; 2
Pammi (ome-12-6-2395-R58) 2019; 26
Robertson (ome-12-6-2395-R52) 2019; 25
Xiang (ome-12-6-2395-R68) 2018; 54
Moughames (ome-12-6-2395-R13) 2020; 7
Zhang (ome-12-6-2395-R64) 2018; 57
Song (ome-12-6-2395-R70) 2020; 26
Feldmann (ome-12-6-2395-R96) 2019; 569
Robertson (ome-12-6-2395-R50) 2020; 26
Skontranis (ome-12-6-2395-R63) 2021; 11
Hurtado (ome-12-6-2395-R18) 2015; 107
Turner (ome-12-6-2395-R43) 2006; 23
Zhang (ome-12-6-2395-R76) 2021; 9
Maktoobi (ome-12-6-2395-R91) 2020; 26
Hejda (ome-12-6-2395-R80) 2020; 2
Hurtado (ome-12-6-2395-R44) 2010; 18
Andreoli (ome-12-6-2395-R39) 2020; 9
Nahmias (ome-12-6-2395-R62) 2013; 19
Heuser (ome-12-6-2395-R94) 2020; 26
Bueno (ome-12-6-2395-R27) 2017; 25
Xiang (ome-12-6-2395-R61) 2017; 23
References_xml – volume: 24
  start-page: 1469
  year: 1985
  ident: ome-12-6-2395-R2
  publication-title: Appl. Opt.
  doi: 10.1364/AO.24.001469
– volume: 100
  start-page: 103703
  year: 2012
  ident: ome-12-6-2395-R45
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3692726
– volume: 6
  start-page: 060802
  year: 2021
  ident: ome-12-6-2395-R81
  publication-title: APL Photonics
  doi: 10.1063/5.0048674
– volume: 2
  start-page: 044002
  year: 2020
  ident: ome-12-6-2395-R9
  publication-title: JPhys Photonics
  doi: 10.1088/2515-7647/aba671
– volume: 28
  start-page: 37526
  year: 2020
  ident: ome-12-6-2395-R77
  publication-title: Opt. Express
  doi: 10.1364/OE.408747
– start-page: 19
  year: 2012
  ident: ome-12-6-2395-R82
  article-title: VCSEL Fundamentals
– volume: 9
  start-page: B201
  year: 2021
  ident: ome-12-6-2395-R78
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.412141
– volume: 7
  start-page: 121
  year: 2019
  ident: ome-12-6-2395-R89
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.7.000121
– volume: 221
  start-page: 133
  year: 2000
  ident: ome-12-6-2395-R41
  publication-title: phys. stat. sol. (b)
  doi: 10.1002/1521-3951(200009)221:1<133::AID-PSSB133>3.0.CO;2-9
– volume: 2
  start-page: 044001
  year: 2020
  ident: ome-12-6-2395-R80
  publication-title: JPhys Photonics
  doi: 10.1088/2515-7647/aba670
– volume: 5
  start-page: 756
  year: 2018
  ident: ome-12-6-2395-R38
  publication-title: Optica
  doi: 10.1364/OPTICA.5.000756
– volume: 589
  start-page: 52
  year: 2021
  ident: ome-12-6-2395-R6
  publication-title: Nature
  doi: 10.1038/s41586-020-03070-1
– volume: 343
  start-page: 325
  year: 1990
  ident: ome-12-6-2395-R4
  publication-title: Nature
  doi: 10.1038/343325a0
– volume: 304
  start-page: 78
  year: 2004
  ident: ome-12-6-2395-R20
  publication-title: Science
  doi: 10.1126/science.1091277
– volume: 43
  start-page: 4497
  year: 2018
  ident: ome-12-6-2395-R32
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.004497
– volume: 94
  start-page: 042219
  year: 2016
  ident: ome-12-6-2395-R57
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.042219
– volume: 96
  start-page: 011107
  year: 2010
  ident: ome-12-6-2395-R86
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3284514
– volume: 42
  start-page: 675
  year: 2006
  ident: ome-12-6-2395-R88
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.2006.876713
– volume: 568
  start-page: 212
  year: 2019
  ident: ome-12-6-2395-R10
  publication-title: Nature
  doi: 10.1038/s41586-019-1073-y
– volume: 25
  start-page: 2401
  year: 2017
  ident: ome-12-6-2395-R27
  publication-title: Opt. Express
  doi: 10.1364/OE.25.002401
– volume: 5
  start-page: 041302
  year: 2018
  ident: ome-12-6-2395-R92
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5045580
– volume: 42
  start-page: 1560
  year: 2017
  ident: ome-12-6-2395-R47
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.001560
– volume: 99
  start-page: 1103
  year: 2020
  ident: ome-12-6-2395-R67
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05339-1
– volume: 26
  start-page: 1
  year: 2020
  ident: ome-12-6-2395-R70
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2020.2975564
– volume: 10
  start-page: 6098
  year: 2020
  ident: ome-12-6-2395-R75
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-62945-5
– volume: 8
  start-page: 228
  year: 2016
  ident: ome-12-6-2395-R23
  publication-title: Adv. Opt. Photonics
  doi: 10.1364/AOP.8.000228
– volume: 92
  start-page: 091107
  year: 2008
  ident: ome-12-6-2395-R93
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2890166
– volume: 8
  start-page: 1
  year: 2018
  ident: ome-12-6-2395-R66
  publication-title: Sci. Rep.
– volume: 23
  start-page: 1223
  year: 2006
  ident: ome-12-6-2395-R43
  publication-title: Journal of Atmospheric and Oceanic Technology
  doi: 10.1175/JTECH1906.1
– volume: 38
  start-page: 5071
  year: 2020
  ident: ome-12-6-2395-R71
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2020.3000670
– volume: 23
  start-page: 1
  year: 2017
  ident: ome-12-6-2395-R61
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2017.2678170
– volume: 2
  start-page: 287
  year: 2012
  ident: ome-12-6-2395-R28
  publication-title: Sci. Rep.
  doi: 10.1038/srep00287
– volume: 13
  start-page: 470
  year: 1996
  ident: ome-12-6-2395-R1
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.13.000470
– volume: 11
  start-page: 064043
  year: 2019
  ident: ome-12-6-2395-R24
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.11.064043
– volume: 25
  start-page: 126103
  year: 2014
  ident: ome-12-6-2395-R25
  publication-title: SPIE Newsroom
  doi: 10.1117/2.1201411.005689
– volume: 14
  start-page: 397
  year: 2021
  ident: ome-12-6-2395-R8
  publication-title: Materials
  doi: 10.3390/ma14020397
– volume: 52
  start-page: 1728
  year: 1995
  ident: ome-12-6-2395-R26
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.52.1728
– volume: 9
  start-page: 172
  year: 2015
  ident: ome-12-6-2395-R7
  publication-title: Laser and Photonics Reviews
  doi: 10.1002/lpor.201400219
– volume: 9
  start-page: 1055
  year: 2021
  ident: ome-12-6-2395-R76
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.422628
– volume: 27
  start-page: 18579
  year: 2019
  ident: ome-12-6-2395-R16
  publication-title: Opt. Express
  doi: 10.1364/OE.27.018579
– volume: 112
  start-page: 183902
  year: 2014
  ident: ome-12-6-2395-R55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.183902
– volume: 11
  start-page: 4232
  year: 2021
  ident: ome-12-6-2395-R35
  publication-title: Appl. Sci.
  doi: 10.3390/app11094232
– volume: 495
  start-page: 127068
  year: 2021
  ident: ome-12-6-2395-R74
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2021.127068
– volume: 4
  start-page: 1364
  year: 2013
  ident: ome-12-6-2395-R31
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2368
– volume: 1
  start-page: 011301
  year: 2016
  ident: ome-12-6-2395-R87
  publication-title: APL Photonics
  doi: 10.1063/1.4939831
– volume: 93
  start-page: 061104
  year: 2008
  ident: ome-12-6-2395-R85
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2969397
– volume: 27
  start-page: 2386
  year: 1991
  ident: ome-12-6-2395-R84
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.100877
– volume: 6
  start-page: 561
  year: 2017
  ident: ome-12-6-2395-R22
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2016-0132
– volume: 19
  start-page: 725
  year: 2020
  ident: ome-12-6-2395-R11
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0635-6
– volume: 7
  start-page: 640
  year: 2020
  ident: ome-12-6-2395-R13
  publication-title: Optica
  doi: 10.1364/OPTICA.388205
– volume: 3
  start-page: 116103
  year: 2018
  ident: ome-12-6-2395-R95
  publication-title: APL Photonics
  doi: 10.1063/1.5050669
– volume: 20
  start-page: 22783
  year: 2012
  ident: ome-12-6-2395-R36
  publication-title: Opt. Express
  doi: 10.1364/OE.20.022783
– volume: 2
  start-page: 468
  year: 2011
  ident: ome-12-6-2395-R21
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1476
– volume: 45
  start-page: 1104
  year: 2020
  ident: ome-12-6-2395-R73
  publication-title: Opt. Lett.
  doi: 10.1364/OL.383942
– volume: 49
  start-page: 606
  year: 1977
  ident: ome-12-6-2395-R42
  publication-title: Anal. Chem.
  doi: 10.1021/ac50012a026
– volume: 40
  start-page: 5690
  year: 2015
  ident: ome-12-6-2395-R56
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.005690
– volume: 29
  start-page: 1330
  year: 1993
  ident: ome-12-6-2395-R59
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.236146
– volume: 26
  start-page: 1
  year: 2019
  ident: ome-12-6-2395-R58
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2019.2929187
– volume: 36
  start-page: 4227
  year: 2018
  ident: ome-12-6-2395-R65
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2818195
– volume: 32
  start-page: 2494
  year: 2021
  ident: ome-12-6-2395-R72
  publication-title: IEEE Trans. Neural Netw. Learning Syst.
  doi: 10.1109/TNNLS.2020.3006263
– year: 1999
  ident: ome-12-6-2395-R40
  article-title: Spatial structures and their control in injection locked broad-area VCSELs
  doi: 10.1364/NLGW.1999.WC4
– volume: 26
  start-page: 1
  year: 2020
  ident: ome-12-6-2395-R91
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2019.2930454
– volume: 98
  start-page: 062211
  year: 2018
  ident: ome-12-6-2395-R54
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.98.062211
– volume: 18
  start-page: 9423
  year: 2010
  ident: ome-12-6-2395-R44
  publication-title: Opt. Express
  doi: 10.1364/OE.18.009423
– volume: 15
  start-page: 367
  year: 2021
  ident: ome-12-6-2395-R97
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-021-00796-w
– volume: 26
  start-page: 1
  year: 2019
  ident: ome-12-6-2395-R33
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2019.2932023
– volume: 88
  start-page: 022923
  year: 2013
  ident: ome-12-6-2395-R51
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.022923
– volume: 20
  start-page: 3241
  year: 2012
  ident: ome-12-6-2395-R30
  publication-title: Opt. Express
  doi: 10.1364/OE.20.003241
– volume: 5
  start-page: 086105
  year: 2020
  ident: ome-12-6-2395-R34
  publication-title: APL Photonics
  doi: 10.1063/5.0017574
– volume: 3
  start-page: 024017
  year: 2021
  ident: ome-12-6-2395-R15
  publication-title: JPhys Photonics
  doi: 10.1088/2515-7647/abf6bd
– volume: 34
  start-page: 073001
  year: 2019
  ident: ome-12-6-2395-R83
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/ab1551
– volume: 40
  start-page: 3854
  year: 2015
  ident: ome-12-6-2395-R14
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.003854
– volume: 25
  start-page: 1
  year: 2019
  ident: ome-12-6-2395-R52
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2019.2899040
– volume: 36
  start-page: 4476
  year: 2011
  ident: ome-12-6-2395-R17
  publication-title: Opt. Lett.
  doi: 10.1364/OL.36.004476
– volume: 9
  start-page: 4139
  year: 2020
  ident: ome-12-6-2395-R39
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2020-0171
– volume: 25
  start-page: 1
  year: 2019
  ident: ome-12-6-2395-R69
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2019.2911565
– volume: 9
  start-page: 021032
  year: 2019
  ident: ome-12-6-2395-R90
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.9.021032
– volume: 26
  start-page: 1
  year: 2020
  ident: ome-12-6-2395-R50
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2019.2931215
– volume: 569
  start-page: 208
  year: 2019
  ident: ome-12-6-2395-R96
  publication-title: Nature
  doi: 10.1038/s41586-019-1157-8
– volume: 11
  start-page: 1383
  year: 2021
  ident: ome-12-6-2395-R63
  publication-title: Appl. Sci.
  doi: 10.3390/app11041383
– volume: 26
  start-page: 1
  year: 2020
  ident: ome-12-6-2395-R94
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2019.2925968
– volume: 23
  start-page: 1
  year: 2017
  ident: ome-12-6-2395-R48
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2017.2685140
– volume: 36
  start-page: 6654
  year: 1997
  ident: ome-12-6-2395-R19
  publication-title: Appl. Opt.
  doi: 10.1364/AO.36.006654
– volume: 33
  start-page: 920
  year: 2021
  ident: ome-12-6-2395-R29
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2021.3075095
– volume: 107
  start-page: 241103
  year: 2015
  ident: ome-12-6-2395-R18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4937730
– volume: 8
  start-page: 1
  year: 2016
  ident: ome-12-6-2395-R60
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2016.2614104
– volume: 19
  start-page: 1
  year: 2013
  ident: ome-12-6-2395-R62
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2013.2257700
– volume: 7
  start-page: 96
  year: 2018
  ident: ome-12-6-2395-R53
  publication-title: Cybernetics and Physics
  doi: 10.35470/2226-4116-2018-7-3-96-101
– volume: 15
  start-page: 102
  year: 2021
  ident: ome-12-6-2395-R3
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-020-00754-y
– volume: 57
  start-page: 1731
  year: 2018
  ident: ome-12-6-2395-R64
  publication-title: Appl. Opt.
  doi: 10.1364/AO.57.001731
– volume: 54
  start-page: 1
  year: 2018
  ident: ome-12-6-2395-R68
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.2018.2879484
– volume: 35
  start-page: 346
  year: 2017
  ident: ome-12-6-2395-R5
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2647779
– volume: 6
  start-page: 67951
  year: 2018
  ident: ome-12-6-2395-R49
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2878940
SSID ssj0000562822
Score 2.5368092
SecondaryResourceType review_article
Snippet Photonic realizations of neural network computing hardware are a promising approach to enable future scalability of neuromorphic computing. The number of...
Photonic realizations of neural network computing hardware are a promising approach to enable future scalability of neuromorphic computing. The number of...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2395
SubjectTerms Hardware
Holes
Microlasers
Modulation
Neural networks
Neuromorphic computing
Neurons
Optical components
Photonics
Quantum electrodynamics
Semiconductor lasers
Spiking
Substrates
Vertical cavity surface emission lasers
Waveguides
Title Photonic neuromorphic computing using vertical cavity semiconductor lasers
URI https://www.proquest.com/docview/2672768143
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbx2Avpfti7boh2F72oC6WZCV6LCWlhLbZQwJ5M_oypXR2mR1G-9fv9GE7YWFsezGJLUSiO59-d_rdHUKfR3qSCdg6iCuZJRwgOFF0LIlSI6oBQRsZMuSursXFks9W-WqgNYfsklafmMedeSX_I1W4B3L1WbL_INl-UrgBn0G-cAUJw_WvZPztpm5DB5tQlfJ7DWsGX0xo1OBDAOsQCAgdl0MdEBUaRTSeD19XvtBr7QOWTSLBdxh1fh-HA5aNf8K3AeiZGqFhl7qLWdWnlRq48oGjnRK4ZnVzs-4t_vynqwiY04TZVflg7RCEvbUqZg217nYzCAH-a0-Wii5r-mEd09SD6HjgFLeZYM8AXEjCZDqG6Ywv3VCyLUvKYvPN30w8ExzkMr-annAAO3RHHe3reXG-vLwsFtPV4il6RsGB2HS2Y9V34fmzqV4tTPl1mHAboWxv0AF1LA7QfnIX8GmU_Uv0xFWv0PNA2zXNazTrNABvagDuNQAHDcCdBuCoAXhLA3DUgDdoeT5dnF2Q1B2DGCrzlliqhMoE-LfSOiVL5muOayosvGSO6yzTY3iUG2mZzoxVTpVcc2d0Dia-dJa9RXtVXbl3CAuqrRvznE7UhGs1VrnSknE9MoJ5I32IvnQrUphUOt53MLkrwnmo4AWsXhFX7xB96sfex4IpO0cddwtbpBeqKahnBYgJIPijPz9-j14MSniM9tofa_cBsGGrPwYx_wKCJ2yV
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photonic+neuromorphic+computing+using+vertical+cavity+semiconductor+lasers&rft.jtitle=Optical+materials+express&rft.au=Skalli%2C+Anas&rft.au=Robertson%2C+Joshua&rft.au=Owen-Newns%2C+Dafydd&rft.au=Hejda%2C+Matej&rft.date=2022-06-01&rft.pub=Optical+Society+of+America&rft.eissn=2159-3930&rft.volume=12&rft.issue=6&rft.spage=2395&rft_id=info:doi/10.1364%2FOME.450926&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2159-3930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2159-3930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2159-3930&client=summon