Photonic neuromorphic computing using vertical cavity semiconductor lasers
Photonic realizations of neural network computing hardware are a promising approach to enable future scalability of neuromorphic computing. The number of special purpose neuromorphic hardware and neuromorphic photonics has accelerated on such a scale that one can now speak of a Cambrian explosion. W...
Saved in:
Published in | Optical materials express Vol. 12; no. 6; p. 2395 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
Optical Society of America
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photonic realizations of neural network computing hardware are a
promising approach to enable future scalability of neuromorphic
computing. The number of special purpose neuromorphic hardware and
neuromorphic photonics has accelerated on such a scale that one can
now speak of a Cambrian explosion. Work along these lines includes (i)
high performance hardware for artificial neurons, (ii) the efficient
and scalable implementation of a neural network’s connections,
and (iii) strategies to adjust network connections during the learning
phase. In this review we provide an overview on vertical-cavity
surface-emitting lasers (VCSELs) and how these high-performance
electro-optical components either implement or are combined with
additional photonic hardware to demonstrate points (i-iii). In the
neurmorphic photonics context, VCSELs are of exceptional interest as
they are compatible with CMOS fabrication, readily achieve 30%
wall-plug efficiency, >30 GHz modulation bandwidth and multiply and
accumulate operations at sub-fJ energy. They hence are highly energy
efficient and ultra-fast. Crucially, they react nonlinearly to optical
injection as well as to electrical modulation, making them highly
suitable as all-optical as well as electro-optical photonic neurons.
Their optical cavities are wavelength-limited, and standard
semiconductor growth and lithography enables non-classical cavity
configurations and geometries. This enables excitable VCSELs (i.e.
spiking VCSELs) to finely control their temporal and spatial
coherence, to unlock terahertz bandwidths through spin-flip effects,
and even to leverage cavity quantum electrodynamics to further boost
their efficiency. Finally, as VCSEL arrays they are compatible with
standard 2D photonic integration, but their emission vertical to the
substrate makes them ideally suited for scalable integrated networks
leveraging 3D photonic waveguides. Here, we discuss the implementation
of spatially as well as temporally multiplexed VCSEL neural networks
and reservoirs, computation on the basis of excitable VCSELs as
photonic spiking neurons, as well as concepts and advances in the
fabrication of VCSELs and microlasers. Finally, we provide an outlook
and a roadmap identifying future possibilities and some crucial
milestones for the field. |
---|---|
AbstractList | Photonic realizations of neural network computing hardware are a
promising approach to enable future scalability of neuromorphic
computing. The number of special purpose neuromorphic hardware and
neuromorphic photonics has accelerated on such a scale that one can
now speak of a Cambrian explosion. Work along these lines includes (i)
high performance hardware for artificial neurons, (ii) the efficient
and scalable implementation of a neural network’s connections,
and (iii) strategies to adjust network connections during the learning
phase. In this review we provide an overview on vertical-cavity
surface-emitting lasers (VCSELs) and how these high-performance
electro-optical components either implement or are combined with
additional photonic hardware to demonstrate points (i-iii). In the
neurmorphic photonics context, VCSELs are of exceptional interest as
they are compatible with CMOS fabrication, readily achieve 30%
wall-plug efficiency, >30 GHz modulation bandwidth and multiply and
accumulate operations at sub-fJ energy. They hence are highly energy
efficient and ultra-fast. Crucially, they react nonlinearly to optical
injection as well as to electrical modulation, making them highly
suitable as all-optical as well as electro-optical photonic neurons.
Their optical cavities are wavelength-limited, and standard
semiconductor growth and lithography enables non-classical cavity
configurations and geometries. This enables excitable VCSELs (i.e.
spiking VCSELs) to finely control their temporal and spatial
coherence, to unlock terahertz bandwidths through spin-flip effects,
and even to leverage cavity quantum electrodynamics to further boost
their efficiency. Finally, as VCSEL arrays they are compatible with
standard 2D photonic integration, but their emission vertical to the
substrate makes them ideally suited for scalable integrated networks
leveraging 3D photonic waveguides. Here, we discuss the implementation
of spatially as well as temporally multiplexed VCSEL neural networks
and reservoirs, computation on the basis of excitable VCSELs as
photonic spiking neurons, as well as concepts and advances in the
fabrication of VCSELs and microlasers. Finally, we provide an outlook
and a roadmap identifying future possibilities and some crucial
milestones for the field. Photonic realizations of neural network computing hardware are a promising approach to enable future scalability of neuromorphic computing. The number of special purpose neuromorphic hardware and neuromorphic photonics has accelerated on such a scale that one can now speak of a Cambrian explosion. Work along these lines includes (i) high performance hardware for artificial neurons, (ii) the efficient and scalable implementation of a neural network's connections, and (iii) strategies to adjust network connections during the learning phase. In this review we provide an overview on vertical-cavity surface-emitting lasers (VCSELs) and how these high-performance electro-optical components either implement or are combined with additional photonic hardware to demonstrate points (i-iii). In the neurmorphic photonics context, VCSELs are of exceptional interest as they are compatible with CMOS fabrication, readily achieve 30% wall-plug efficiency, >30 GHz modulation bandwidth and multiply and accumulate operations at sub-fJ energy. They hence are highly energy efficient and ultra-fast. Crucially, they react nonlinearly to optical injection as well as to electrical modulation, making them highly suitable as all-optical as well as electro-optical photonic neurons. Their optical cavities are wavelength-limited, and standard semiconductor growth and lithography enables non-classical cavity configurations and geometries. This enables excitable VCSELs (i.e. spiking VCSELs) to finely control their temporal and spatial coherence, to unlock terahertz bandwidths through spin-flip effects, and even to leverage cavity quantum electrodynamics to further boost their efficiency. Finally, as VCSEL arrays they are compatible with standard 2D photonic integration, but their emission vertical to the substrate makes them ideally suited for scalable integrated networks leveraging 3D photonic waveguides. Here, we discuss the implementation of spatially as well as temporally multiplexed VCSEL neural networks and reservoirs, computation on the basis of excitable VCSELs as photonic spiking neurons, as well as concepts and advances in the fabrication of VCSELs and microlasers. Finally, we provide an outlook and a roadmap identifying future possibilities and some crucial milestones for the field. |
Author | Reitzenstein, Stephan Skalli, Anas Robertson, Joshua Brunner, Daniel Owen-Newns, Dafydd Hejda, Matej Porte, Xavier Hurtado, Antonio |
Author_xml | – sequence: 1 givenname: Anas surname: Skalli fullname: Skalli, Anas – sequence: 2 givenname: Joshua orcidid: 0000-0001-6316-5265 surname: Robertson fullname: Robertson, Joshua – sequence: 3 givenname: Dafydd surname: Owen-Newns fullname: Owen-Newns, Dafydd – sequence: 4 givenname: Matej orcidid: 0000-0003-4493-9426 surname: Hejda fullname: Hejda, Matej – sequence: 5 givenname: Xavier orcidid: 0000-0002-9869-7170 surname: Porte fullname: Porte, Xavier – sequence: 6 givenname: Stephan orcidid: 0000-0002-1381-9838 surname: Reitzenstein fullname: Reitzenstein, Stephan – sequence: 7 givenname: Antonio surname: Hurtado fullname: Hurtado, Antonio – sequence: 8 givenname: Daniel orcidid: 0000-0002-4003-3056 surname: Brunner fullname: Brunner, Daniel |
BookMark | eNptkMtKAzEUhoNUsNZufIIBd8LU3KdZSqk3KnWh6yGTZGzKTDImmULf3injQsSzOBfO_58D3yWYOO8MANcILhDh9G77ul5QBgXmZ2CKERM5EQROfvUXYB7jHg7BOF5iPAUvbzufvLMqc6YPvvWh2w2D8m3XJ-s-sz6e8sGEZJVsMiUPNh2zaFqrvNO9Sj5kjYwmxCtwXssmmvlPnYGPh_X76infbB-fV_ebXGHBUq6x5BJxwbjQRoqaMFTQCnMNcWVohVBVDCumhCYVUloaWdOKGlUxAlltNJmBm_FuF_xXb2Iq974PbnhZYl7ggi8RJYMKjioVfIzB1KWySSbrXQrSNiWC5QlaOUArR2iD5faPpQu2leH4n_gbwqZwHA |
CitedBy_id | crossref_primary_10_1088_2634_4386_ad4b5b crossref_primary_10_1038_s41467_024_46387_5 crossref_primary_10_1038_s44287_024_00050_9 crossref_primary_10_1088_2634_4386_ad8df8 crossref_primary_10_1002_andp_202400390 crossref_primary_10_1126_sciadv_adg7904 crossref_primary_10_1088_2634_4386_ad575e crossref_primary_10_1016_j_neunet_2023_06_014 crossref_primary_10_1515_nanoph_2022_0437 crossref_primary_10_1364_OME_477577 crossref_primary_10_1088_1361_6463_aca914 crossref_primary_10_1109_JSTQE_2022_3218950 crossref_primary_10_1051_epjconf_202328713008 crossref_primary_10_1088_2634_4386_ad2d5c crossref_primary_10_1103_PhysRevApplied_22_014009 crossref_primary_10_3389_fncom_2023_1164472 crossref_primary_10_1021_acsphotonics_4c01199 crossref_primary_10_1063_5_0143236 crossref_primary_10_1021_acsphotonics_4c01236 crossref_primary_10_1002_lpor_202400623 crossref_primary_10_34133_icomputing_0031 crossref_primary_10_1002_lpor_202402227 crossref_primary_10_1088_1742_6596_2931_1_012016 crossref_primary_10_1016_j_revip_2024_100093 crossref_primary_10_1063_5_0187074 crossref_primary_10_1063_5_0177896 crossref_primary_10_1364_OPTICA_519171 crossref_primary_10_1038_s42005_025_02000_9 crossref_primary_10_3389_aot_2024_1471239 crossref_primary_10_1364_OE_529679 crossref_primary_10_1038_s41377_024_01717_6 crossref_primary_10_1088_2634_4386_acf609 crossref_primary_10_1063_5_0127492 crossref_primary_10_1038_s42005_024_01858_5 crossref_primary_10_1038_s41566_024_01493_0 crossref_primary_10_1021_acsphotonics_4c00478 crossref_primary_10_1038_s41377_024_01561_8 |
Cites_doi | 10.1364/AO.24.001469 10.1063/1.3692726 10.1063/5.0048674 10.1088/2515-7647/aba671 10.1364/OE.408747 10.1364/PRJ.412141 10.1364/PRJ.7.000121 10.1002/1521-3951(200009)221:1<133::AID-PSSB133>3.0.CO;2-9 10.1088/2515-7647/aba670 10.1364/OPTICA.5.000756 10.1038/s41586-020-03070-1 10.1038/343325a0 10.1126/science.1091277 10.1364/OL.43.004497 10.1103/PhysRevE.94.042219 10.1063/1.3284514 10.1109/JQE.2006.876713 10.1038/s41586-019-1073-y 10.1364/OE.25.002401 10.1063/1.5045580 10.1364/OL.42.001560 10.1007/s11071-019-05339-1 10.1109/JSTQE.2020.2975564 10.1038/s41598-020-62945-5 10.1364/AOP.8.000228 10.1063/1.2890166 10.1175/JTECH1906.1 10.1109/JLT.2020.3000670 10.1109/JSTQE.2017.2678170 10.1038/srep00287 10.1364/JOSAA.13.000470 10.1103/PhysRevApplied.11.064043 10.1117/2.1201411.005689 10.3390/ma14020397 10.1103/PhysRevA.52.1728 10.1002/lpor.201400219 10.1364/PRJ.422628 10.1364/OE.27.018579 10.1103/PhysRevLett.112.183902 10.3390/app11094232 10.1016/j.optcom.2021.127068 10.1038/ncomms2368 10.1063/1.4939831 10.1063/1.2969397 10.1109/3.100877 10.1515/nanoph-2016-0132 10.1038/s41563-020-0635-6 10.1364/OPTICA.388205 10.1063/1.5050669 10.1364/OE.20.022783 10.1038/ncomms1476 10.1364/OL.383942 10.1021/ac50012a026 10.1364/OL.40.005690 10.1109/3.236146 10.1109/JSTQE.2019.2929187 10.1109/JLT.2018.2818195 10.1109/TNNLS.2020.3006263 10.1364/NLGW.1999.WC4 10.1109/JSTQE.2019.2930454 10.1103/PhysRevE.98.062211 10.1364/OE.18.009423 10.1038/s41566-021-00796-w 10.1109/JSTQE.2019.2932023 10.1103/PhysRevE.88.022923 10.1364/OE.20.003241 10.1063/5.0017574 10.1088/2515-7647/abf6bd 10.1088/1361-6641/ab1551 10.1364/OL.40.003854 10.1109/JSTQE.2019.2899040 10.1364/OL.36.004476 10.1515/nanoph-2020-0171 10.1109/JSTQE.2019.2911565 10.1103/PhysRevX.9.021032 10.1109/JSTQE.2019.2931215 10.1038/s41586-019-1157-8 10.3390/app11041383 10.1109/JSTQE.2019.2925968 10.1109/JSTQE.2017.2685140 10.1364/AO.36.006654 10.1109/LPT.2021.3075095 10.1063/1.4937730 10.1109/JPHOT.2016.2614104 10.1109/JSTQE.2013.2257700 10.35470/2226-4116-2018-7-3-96-101 10.1038/s41566-020-00754-y 10.1364/AO.57.001731 10.1109/JQE.2018.2879484 10.1109/JLT.2017.2647779 10.1109/ACCESS.2018.2878940 |
ContentType | Journal Article |
Copyright | Copyright Optical Society of America Jun 1, 2022 |
Copyright_xml | – notice: Copyright Optical Society of America Jun 1, 2022 |
DBID | AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1364/OME.450926 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2159-3930 |
ExternalDocumentID | 10_1364_OME_450926 |
GroupedDBID | AAFWJ AAWJZ AAYXX ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BCNDV CITATION DSZJF EBS FRP GROUPED_DOAJ KQ8 M~E OFLFD OK1 OPJBK ROL ROS TR6 7SP 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c295t-d2a6a169569dea9f35174b26d02be4b11b75695c9d3b1cdaeaf4b4ecb5305fed3 |
ISSN | 2159-3930 |
IngestDate | Mon Jun 30 06:31:23 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Tue Jul 01 00:44:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c295t-d2a6a169569dea9f35174b26d02be4b11b75695c9d3b1cdaeaf4b4ecb5305fed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4493-9426 0000-0002-9869-7170 0000-0002-1381-9838 0000-0001-6316-5265 0000-0002-4003-3056 |
OpenAccessLink | https://doi.org/10.1364/ome.450926 |
PQID | 2672768143 |
PQPubID | 2049553 |
ParticipantIDs | proquest_journals_2672768143 crossref_citationtrail_10_1364_OME_450926 crossref_primary_10_1364_OME_450926 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Optical materials express |
PublicationYear | 2022 |
Publisher | Optical Society of America |
Publisher_xml | – name: Optical Society of America |
References | Yamada (ome-12-6-2395-R59) 1993; 29 Guo (ome-12-6-2395-R33) 2019; 26 Feldmann (ome-12-6-2395-R6) 2021; 589 Larger (ome-12-6-2395-R30) 2012; 20 Farhat (ome-12-6-2395-R2) 1985; 24 Psaltis (ome-12-6-2395-R4) 1990; 343 Li (ome-12-6-2395-R25) 2014; 25 Michalzik (ome-12-6-2395-R82) 2012 Liu (ome-12-6-2395-R89) 2019; 7 Ackemann (ome-12-6-2395-R41) 2000; 221 Zhang (ome-12-6-2395-R67) 2020; 99 Tait (ome-12-6-2395-R24) 2019; 11 Bjork (ome-12-6-2395-R84) 1991; 27 Miller (ome-12-6-2395-R5) 2017; 35 Böckler (ome-12-6-2395-R93) 2008; 92 Gies (ome-12-6-2395-R83) 2019; 34 Zhang (ome-12-6-2395-R78) 2021; 9 Turconi (ome-12-6-2395-R51) 2013; 88 Hamerly (ome-12-6-2395-R90) 2019; 9 Haghighi (ome-12-6-2395-R8) 2021; 14 Paquot (ome-12-6-2395-R28) 2012; 2 Parto (ome-12-6-2395-R11) 2020; 19 Garbin (ome-12-6-2395-R53) 2018; 7 Vatin (ome-12-6-2395-R32) 2018; 43 Hurtado (ome-12-6-2395-R45) 2012; 100 Xiang (ome-12-6-2395-R69) 2019; 25 Brunner (ome-12-6-2395-R31) 2013; 4 Jaeger (ome-12-6-2395-R20) 2004; 304 Appeltant (ome-12-6-2395-R21) 2011; 2 Mos (ome-12-6-2395-R19) 1997; 36 Xiang (ome-12-6-2395-R65) 2018; 36 Robertson (ome-12-6-2395-R77) 2020; 28 Dolcemascolo (ome-12-6-2395-R54) 2018; 98 Hejda (ome-12-6-2395-R81) 2021; 6 Liu (ome-12-6-2395-R7) 2015; 9 Chow (ome-12-6-2395-R92) 2018; 5 Van der Sande (ome-12-6-2395-R22) 2017; 6 Lindemann (ome-12-6-2395-R10) 2019; 568 Prucnal (ome-12-6-2395-R23) 2016; 8 Deng (ome-12-6-2395-R48) 2017; 23 Selmi (ome-12-6-2395-R56) 2015; 40 Shastri (ome-12-6-2395-R3) 2021; 15 Vatin (ome-12-6-2395-R34) 2020; 5 Robertson (ome-12-6-2395-R75) 2020; 10 Harkhoe (ome-12-6-2395-R35) 2021; 11 Vatin (ome-12-6-2395-R16) 2019; 27 Xiang (ome-12-6-2395-R73) 2020; 45 Zhang (ome-12-6-2395-R71) 2020; 38 Deng (ome-12-6-2395-R49) 2018; 6 Gao (ome-12-6-2395-R74) 2021; 495 Xiang (ome-12-6-2395-R72) 2021; 32 Selmi (ome-12-6-2395-R55) 2014; 112 Porte (ome-12-6-2395-R15) 2021; 3 Robertson (ome-12-6-2395-R47) 2017; 42 Heindel (ome-12-6-2395-R86) 2010; 96 Zhang (ome-12-6-2395-R66) 2018; 8 Bueno (ome-12-6-2395-R38) 2018; 5 Xiang (ome-12-6-2395-R60) 2016; 8 Bueno (ome-12-6-2395-R29) 2021; 33 Malinowski (ome-12-6-2395-R42) 1977; 49 San Miguel (ome-12-6-2395-R26) 1995; 52 Reitzenstein (ome-12-6-2395-R85) 2008; 93 Zhou (ome-12-6-2395-R97) 2021; 15 Ackemann (ome-12-6-2395-R40) 1999 Heuser (ome-12-6-2395-R95) 2018; 3 Brunner (ome-12-6-2395-R14) 2015; 40 Lohmann (ome-12-6-2395-R1) 1996; 13 Schlehahn (ome-12-6-2395-R87) 2016; 1 Barbay (ome-12-6-2395-R17) 2011; 36 Selmi (ome-12-6-2395-R57) 2016; 94 Mehta (ome-12-6-2395-R88) 2006; 42 Duport (ome-12-6-2395-R36) 2012; 20 Heuser (ome-12-6-2395-R9) 2020; 2 Pammi (ome-12-6-2395-R58) 2019; 26 Robertson (ome-12-6-2395-R52) 2019; 25 Xiang (ome-12-6-2395-R68) 2018; 54 Moughames (ome-12-6-2395-R13) 2020; 7 Zhang (ome-12-6-2395-R64) 2018; 57 Song (ome-12-6-2395-R70) 2020; 26 Feldmann (ome-12-6-2395-R96) 2019; 569 Robertson (ome-12-6-2395-R50) 2020; 26 Skontranis (ome-12-6-2395-R63) 2021; 11 Hurtado (ome-12-6-2395-R18) 2015; 107 Turner (ome-12-6-2395-R43) 2006; 23 Zhang (ome-12-6-2395-R76) 2021; 9 Maktoobi (ome-12-6-2395-R91) 2020; 26 Hejda (ome-12-6-2395-R80) 2020; 2 Hurtado (ome-12-6-2395-R44) 2010; 18 Andreoli (ome-12-6-2395-R39) 2020; 9 Nahmias (ome-12-6-2395-R62) 2013; 19 Heuser (ome-12-6-2395-R94) 2020; 26 Bueno (ome-12-6-2395-R27) 2017; 25 Xiang (ome-12-6-2395-R61) 2017; 23 |
References_xml | – volume: 24 start-page: 1469 year: 1985 ident: ome-12-6-2395-R2 publication-title: Appl. Opt. doi: 10.1364/AO.24.001469 – volume: 100 start-page: 103703 year: 2012 ident: ome-12-6-2395-R45 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3692726 – volume: 6 start-page: 060802 year: 2021 ident: ome-12-6-2395-R81 publication-title: APL Photonics doi: 10.1063/5.0048674 – volume: 2 start-page: 044002 year: 2020 ident: ome-12-6-2395-R9 publication-title: JPhys Photonics doi: 10.1088/2515-7647/aba671 – volume: 28 start-page: 37526 year: 2020 ident: ome-12-6-2395-R77 publication-title: Opt. Express doi: 10.1364/OE.408747 – start-page: 19 year: 2012 ident: ome-12-6-2395-R82 article-title: VCSEL Fundamentals – volume: 9 start-page: B201 year: 2021 ident: ome-12-6-2395-R78 publication-title: Photonics Res. doi: 10.1364/PRJ.412141 – volume: 7 start-page: 121 year: 2019 ident: ome-12-6-2395-R89 publication-title: Photonics Res. doi: 10.1364/PRJ.7.000121 – volume: 221 start-page: 133 year: 2000 ident: ome-12-6-2395-R41 publication-title: phys. stat. sol. (b) doi: 10.1002/1521-3951(200009)221:1<133::AID-PSSB133>3.0.CO;2-9 – volume: 2 start-page: 044001 year: 2020 ident: ome-12-6-2395-R80 publication-title: JPhys Photonics doi: 10.1088/2515-7647/aba670 – volume: 5 start-page: 756 year: 2018 ident: ome-12-6-2395-R38 publication-title: Optica doi: 10.1364/OPTICA.5.000756 – volume: 589 start-page: 52 year: 2021 ident: ome-12-6-2395-R6 publication-title: Nature doi: 10.1038/s41586-020-03070-1 – volume: 343 start-page: 325 year: 1990 ident: ome-12-6-2395-R4 publication-title: Nature doi: 10.1038/343325a0 – volume: 304 start-page: 78 year: 2004 ident: ome-12-6-2395-R20 publication-title: Science doi: 10.1126/science.1091277 – volume: 43 start-page: 4497 year: 2018 ident: ome-12-6-2395-R32 publication-title: Opt. Lett. doi: 10.1364/OL.43.004497 – volume: 94 start-page: 042219 year: 2016 ident: ome-12-6-2395-R57 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.042219 – volume: 96 start-page: 011107 year: 2010 ident: ome-12-6-2395-R86 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3284514 – volume: 42 start-page: 675 year: 2006 ident: ome-12-6-2395-R88 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2006.876713 – volume: 568 start-page: 212 year: 2019 ident: ome-12-6-2395-R10 publication-title: Nature doi: 10.1038/s41586-019-1073-y – volume: 25 start-page: 2401 year: 2017 ident: ome-12-6-2395-R27 publication-title: Opt. Express doi: 10.1364/OE.25.002401 – volume: 5 start-page: 041302 year: 2018 ident: ome-12-6-2395-R92 publication-title: Appl. Phys. Rev. doi: 10.1063/1.5045580 – volume: 42 start-page: 1560 year: 2017 ident: ome-12-6-2395-R47 publication-title: Opt. Lett. doi: 10.1364/OL.42.001560 – volume: 99 start-page: 1103 year: 2020 ident: ome-12-6-2395-R67 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-05339-1 – volume: 26 start-page: 1 year: 2020 ident: ome-12-6-2395-R70 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2020.2975564 – volume: 10 start-page: 6098 year: 2020 ident: ome-12-6-2395-R75 publication-title: Sci. Rep. doi: 10.1038/s41598-020-62945-5 – volume: 8 start-page: 228 year: 2016 ident: ome-12-6-2395-R23 publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.8.000228 – volume: 92 start-page: 091107 year: 2008 ident: ome-12-6-2395-R93 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2890166 – volume: 8 start-page: 1 year: 2018 ident: ome-12-6-2395-R66 publication-title: Sci. Rep. – volume: 23 start-page: 1223 year: 2006 ident: ome-12-6-2395-R43 publication-title: Journal of Atmospheric and Oceanic Technology doi: 10.1175/JTECH1906.1 – volume: 38 start-page: 5071 year: 2020 ident: ome-12-6-2395-R71 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.3000670 – volume: 23 start-page: 1 year: 2017 ident: ome-12-6-2395-R61 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2017.2678170 – volume: 2 start-page: 287 year: 2012 ident: ome-12-6-2395-R28 publication-title: Sci. Rep. doi: 10.1038/srep00287 – volume: 13 start-page: 470 year: 1996 ident: ome-12-6-2395-R1 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.13.000470 – volume: 11 start-page: 064043 year: 2019 ident: ome-12-6-2395-R24 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.064043 – volume: 25 start-page: 126103 year: 2014 ident: ome-12-6-2395-R25 publication-title: SPIE Newsroom doi: 10.1117/2.1201411.005689 – volume: 14 start-page: 397 year: 2021 ident: ome-12-6-2395-R8 publication-title: Materials doi: 10.3390/ma14020397 – volume: 52 start-page: 1728 year: 1995 ident: ome-12-6-2395-R26 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.52.1728 – volume: 9 start-page: 172 year: 2015 ident: ome-12-6-2395-R7 publication-title: Laser and Photonics Reviews doi: 10.1002/lpor.201400219 – volume: 9 start-page: 1055 year: 2021 ident: ome-12-6-2395-R76 publication-title: Photonics Res. doi: 10.1364/PRJ.422628 – volume: 27 start-page: 18579 year: 2019 ident: ome-12-6-2395-R16 publication-title: Opt. Express doi: 10.1364/OE.27.018579 – volume: 112 start-page: 183902 year: 2014 ident: ome-12-6-2395-R55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.183902 – volume: 11 start-page: 4232 year: 2021 ident: ome-12-6-2395-R35 publication-title: Appl. Sci. doi: 10.3390/app11094232 – volume: 495 start-page: 127068 year: 2021 ident: ome-12-6-2395-R74 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2021.127068 – volume: 4 start-page: 1364 year: 2013 ident: ome-12-6-2395-R31 publication-title: Nat. Commun. doi: 10.1038/ncomms2368 – volume: 1 start-page: 011301 year: 2016 ident: ome-12-6-2395-R87 publication-title: APL Photonics doi: 10.1063/1.4939831 – volume: 93 start-page: 061104 year: 2008 ident: ome-12-6-2395-R85 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2969397 – volume: 27 start-page: 2386 year: 1991 ident: ome-12-6-2395-R84 publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.100877 – volume: 6 start-page: 561 year: 2017 ident: ome-12-6-2395-R22 publication-title: Nanophotonics doi: 10.1515/nanoph-2016-0132 – volume: 19 start-page: 725 year: 2020 ident: ome-12-6-2395-R11 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0635-6 – volume: 7 start-page: 640 year: 2020 ident: ome-12-6-2395-R13 publication-title: Optica doi: 10.1364/OPTICA.388205 – volume: 3 start-page: 116103 year: 2018 ident: ome-12-6-2395-R95 publication-title: APL Photonics doi: 10.1063/1.5050669 – volume: 20 start-page: 22783 year: 2012 ident: ome-12-6-2395-R36 publication-title: Opt. Express doi: 10.1364/OE.20.022783 – volume: 2 start-page: 468 year: 2011 ident: ome-12-6-2395-R21 publication-title: Nat. Commun. doi: 10.1038/ncomms1476 – volume: 45 start-page: 1104 year: 2020 ident: ome-12-6-2395-R73 publication-title: Opt. Lett. doi: 10.1364/OL.383942 – volume: 49 start-page: 606 year: 1977 ident: ome-12-6-2395-R42 publication-title: Anal. Chem. doi: 10.1021/ac50012a026 – volume: 40 start-page: 5690 year: 2015 ident: ome-12-6-2395-R56 publication-title: Opt. Lett. doi: 10.1364/OL.40.005690 – volume: 29 start-page: 1330 year: 1993 ident: ome-12-6-2395-R59 publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.236146 – volume: 26 start-page: 1 year: 2019 ident: ome-12-6-2395-R58 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2019.2929187 – volume: 36 start-page: 4227 year: 2018 ident: ome-12-6-2395-R65 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2818195 – volume: 32 start-page: 2494 year: 2021 ident: ome-12-6-2395-R72 publication-title: IEEE Trans. Neural Netw. Learning Syst. doi: 10.1109/TNNLS.2020.3006263 – year: 1999 ident: ome-12-6-2395-R40 article-title: Spatial structures and their control in injection locked broad-area VCSELs doi: 10.1364/NLGW.1999.WC4 – volume: 26 start-page: 1 year: 2020 ident: ome-12-6-2395-R91 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2019.2930454 – volume: 98 start-page: 062211 year: 2018 ident: ome-12-6-2395-R54 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.98.062211 – volume: 18 start-page: 9423 year: 2010 ident: ome-12-6-2395-R44 publication-title: Opt. Express doi: 10.1364/OE.18.009423 – volume: 15 start-page: 367 year: 2021 ident: ome-12-6-2395-R97 publication-title: Nat. Photonics doi: 10.1038/s41566-021-00796-w – volume: 26 start-page: 1 year: 2019 ident: ome-12-6-2395-R33 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2019.2932023 – volume: 88 start-page: 022923 year: 2013 ident: ome-12-6-2395-R51 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.022923 – volume: 20 start-page: 3241 year: 2012 ident: ome-12-6-2395-R30 publication-title: Opt. Express doi: 10.1364/OE.20.003241 – volume: 5 start-page: 086105 year: 2020 ident: ome-12-6-2395-R34 publication-title: APL Photonics doi: 10.1063/5.0017574 – volume: 3 start-page: 024017 year: 2021 ident: ome-12-6-2395-R15 publication-title: JPhys Photonics doi: 10.1088/2515-7647/abf6bd – volume: 34 start-page: 073001 year: 2019 ident: ome-12-6-2395-R83 publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/ab1551 – volume: 40 start-page: 3854 year: 2015 ident: ome-12-6-2395-R14 publication-title: Opt. Lett. doi: 10.1364/OL.40.003854 – volume: 25 start-page: 1 year: 2019 ident: ome-12-6-2395-R52 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2019.2899040 – volume: 36 start-page: 4476 year: 2011 ident: ome-12-6-2395-R17 publication-title: Opt. Lett. doi: 10.1364/OL.36.004476 – volume: 9 start-page: 4139 year: 2020 ident: ome-12-6-2395-R39 publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0171 – volume: 25 start-page: 1 year: 2019 ident: ome-12-6-2395-R69 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2019.2911565 – volume: 9 start-page: 021032 year: 2019 ident: ome-12-6-2395-R90 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.9.021032 – volume: 26 start-page: 1 year: 2020 ident: ome-12-6-2395-R50 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2019.2931215 – volume: 569 start-page: 208 year: 2019 ident: ome-12-6-2395-R96 publication-title: Nature doi: 10.1038/s41586-019-1157-8 – volume: 11 start-page: 1383 year: 2021 ident: ome-12-6-2395-R63 publication-title: Appl. Sci. doi: 10.3390/app11041383 – volume: 26 start-page: 1 year: 2020 ident: ome-12-6-2395-R94 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2019.2925968 – volume: 23 start-page: 1 year: 2017 ident: ome-12-6-2395-R48 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2017.2685140 – volume: 36 start-page: 6654 year: 1997 ident: ome-12-6-2395-R19 publication-title: Appl. Opt. doi: 10.1364/AO.36.006654 – volume: 33 start-page: 920 year: 2021 ident: ome-12-6-2395-R29 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2021.3075095 – volume: 107 start-page: 241103 year: 2015 ident: ome-12-6-2395-R18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4937730 – volume: 8 start-page: 1 year: 2016 ident: ome-12-6-2395-R60 publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2016.2614104 – volume: 19 start-page: 1 year: 2013 ident: ome-12-6-2395-R62 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2013.2257700 – volume: 7 start-page: 96 year: 2018 ident: ome-12-6-2395-R53 publication-title: Cybernetics and Physics doi: 10.35470/2226-4116-2018-7-3-96-101 – volume: 15 start-page: 102 year: 2021 ident: ome-12-6-2395-R3 publication-title: Nat. Photonics doi: 10.1038/s41566-020-00754-y – volume: 57 start-page: 1731 year: 2018 ident: ome-12-6-2395-R64 publication-title: Appl. Opt. doi: 10.1364/AO.57.001731 – volume: 54 start-page: 1 year: 2018 ident: ome-12-6-2395-R68 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2018.2879484 – volume: 35 start-page: 346 year: 2017 ident: ome-12-6-2395-R5 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2647779 – volume: 6 start-page: 67951 year: 2018 ident: ome-12-6-2395-R49 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2878940 |
SSID | ssj0000562822 |
Score | 2.5368092 |
SecondaryResourceType | review_article |
Snippet | Photonic realizations of neural network computing hardware are a
promising approach to enable future scalability of neuromorphic
computing. The number of... Photonic realizations of neural network computing hardware are a promising approach to enable future scalability of neuromorphic computing. The number of... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2395 |
SubjectTerms | Hardware Holes Microlasers Modulation Neural networks Neuromorphic computing Neurons Optical components Photonics Quantum electrodynamics Semiconductor lasers Spiking Substrates Vertical cavity surface emission lasers Waveguides |
Title | Photonic neuromorphic computing using vertical cavity semiconductor lasers |
URI | https://www.proquest.com/docview/2672768143 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbx2Avpfti7boh2F72oC6WZCV6LCWlhLbZQwJ5M_oypXR2mR1G-9fv9GE7YWFsezGJLUSiO59-d_rdHUKfR3qSCdg6iCuZJRwgOFF0LIlSI6oBQRsZMuSursXFks9W-WqgNYfsklafmMedeSX_I1W4B3L1WbL_INl-UrgBn0G-cAUJw_WvZPztpm5DB5tQlfJ7DWsGX0xo1OBDAOsQCAgdl0MdEBUaRTSeD19XvtBr7QOWTSLBdxh1fh-HA5aNf8K3AeiZGqFhl7qLWdWnlRq48oGjnRK4ZnVzs-4t_vynqwiY04TZVflg7RCEvbUqZg217nYzCAH-a0-Wii5r-mEd09SD6HjgFLeZYM8AXEjCZDqG6Ywv3VCyLUvKYvPN30w8ExzkMr-annAAO3RHHe3reXG-vLwsFtPV4il6RsGB2HS2Y9V34fmzqV4tTPl1mHAboWxv0AF1LA7QfnIX8GmU_Uv0xFWv0PNA2zXNazTrNABvagDuNQAHDcCdBuCoAXhLA3DUgDdoeT5dnF2Q1B2DGCrzlliqhMoE-LfSOiVL5muOayosvGSO6yzTY3iUG2mZzoxVTpVcc2d0Dia-dJa9RXtVXbl3CAuqrRvznE7UhGs1VrnSknE9MoJ5I32IvnQrUphUOt53MLkrwnmo4AWsXhFX7xB96sfex4IpO0cddwtbpBeqKahnBYgJIPijPz9-j14MSniM9tofa_cBsGGrPwYx_wKCJ2yV |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photonic+neuromorphic+computing+using+vertical+cavity+semiconductor+lasers&rft.jtitle=Optical+materials+express&rft.au=Skalli%2C+Anas&rft.au=Robertson%2C+Joshua&rft.au=Owen-Newns%2C+Dafydd&rft.au=Hejda%2C+Matej&rft.date=2022-06-01&rft.pub=Optical+Society+of+America&rft.eissn=2159-3930&rft.volume=12&rft.issue=6&rft.spage=2395&rft_id=info:doi/10.1364%2FOME.450926&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2159-3930&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2159-3930&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2159-3930&client=summon |