Filtering for Highly Variable Genes and High-Quality Spots Improves Phylogenetic Analysis of Cancer Spatial Transcriptomics Visium Data

Phylogenetic relationship of cells within tumors can help us to understand how cancer develops in space and time and identify driver mutations and other evolutionary events that enable cancer growth and spread. Numerous studies have reconstructed phylogenies from single-cell DNA-seq data. Here, we a...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational biology Vol. 32; no. 8; pp. 738 - 752
Main Authors Gavryushkina, Alexandra “Sasha”, Pinkney, Holly R., Diermeier, Sarah D., Gavryushkin, Alex
Format Journal Article
LanguageEnglish
Published United States Mary Ann Liebert, Inc., publishers 01.08.2025
Subjects
Online AccessGet full text
ISSN1557-8666
1557-8666
DOI10.1089/cmb.2024.0614

Cover

Abstract Phylogenetic relationship of cells within tumors can help us to understand how cancer develops in space and time and identify driver mutations and other evolutionary events that enable cancer growth and spread. Numerous studies have reconstructed phylogenies from single-cell DNA-seq data. Here, we are looking into the problem of phylogenetic analysis of spatially resolved near single-cell RNA-seq data, which is a cost-efficient alternative (or complementary) data source that integrates multiple sources of evolutionary information, including point mutations, copy number changes, and epimutations. Recent attempts to use such data, although promising, raised many methodological challenges. Here, we explored data preprocessing and modeling approaches for evolutionary analyses of Visium spatial transcriptomics data. We conclude that using only highly variable genes and accounting for heterogeneous RNA capture across tissue-covered spots improves the reconstructed topological relationships and influences estimated branch lengths.
AbstractList Phylogenetic relationship of cells within tumors can help us to understand how cancer develops in space and time and identify driver mutations and other evolutionary events that enable cancer growth and spread. Numerous studies have reconstructed phylogenies from single-cell DNA-seq data. Here, we are looking into the problem of phylogenetic analysis of spatially resolved near single-cell RNA-seq data, which is a cost-efficient alternative (or complementary) data source that integrates multiple sources of evolutionary information, including point mutations, copy number changes, and epimutations. Recent attempts to use such data, although promising, raised many methodological challenges. Here, we explored data preprocessing and modeling approaches for evolutionary analyses of Visium spatial transcriptomics data. We conclude that using only highly variable genes and accounting for heterogeneous RNA capture across tissue-covered spots improves the reconstructed topological relationships and influences estimated branch lengths.
Phylogenetic relationship of cells within tumors can help us to understand how cancer develops in space and time and identify driver mutations and other evolutionary events that enable cancer growth and spread. Numerous studies have reconstructed phylogenies from single-cell DNA-seq data. Here, we are looking into the problem of phylogenetic analysis of spatially resolved near single-cell RNA-seq data, which is a cost-efficient alternative (or complementary) data source that integrates multiple sources of evolutionary information, including point mutations, copy number changes, and epimutations. Recent attempts to use such data, although promising, raised many methodological challenges. Here, we explored data preprocessing and modeling approaches for evolutionary analyses of Visium spatial transcriptomics data. We conclude that using only highly variable genes and accounting for heterogeneous RNA capture across tissue-covered spots improves the reconstructed topological relationships and influences estimated branch lengths.Phylogenetic relationship of cells within tumors can help us to understand how cancer develops in space and time and identify driver mutations and other evolutionary events that enable cancer growth and spread. Numerous studies have reconstructed phylogenies from single-cell DNA-seq data. Here, we are looking into the problem of phylogenetic analysis of spatially resolved near single-cell RNA-seq data, which is a cost-efficient alternative (or complementary) data source that integrates multiple sources of evolutionary information, including point mutations, copy number changes, and epimutations. Recent attempts to use such data, although promising, raised many methodological challenges. Here, we explored data preprocessing and modeling approaches for evolutionary analyses of Visium spatial transcriptomics data. We conclude that using only highly variable genes and accounting for heterogeneous RNA capture across tissue-covered spots improves the reconstructed topological relationships and influences estimated branch lengths.
Author Pinkney, Holly R.
Gavryushkin, Alex
Gavryushkina, Alexandra “Sasha”
Diermeier, Sarah D.
Author_xml – sequence: 1
  givenname: Alexandra “Sasha”
  orcidid: 0000-0002-1885-1108
  surname: Gavryushkina
  fullname: Gavryushkina, Alexandra “Sasha”
– sequence: 2
  givenname: Holly R.
  surname: Pinkney
  fullname: Pinkney, Holly R.
– sequence: 3
  givenname: Sarah D.
  surname: Diermeier
  fullname: Diermeier, Sarah D.
– sequence: 4
  givenname: Alex
  surname: Gavryushkin
  fullname: Gavryushkin, Alex
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40495757$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1P3DAQBmALUbEscOy18rGXLP5I7OS42gKLhAQVH9do4nUWV469tZ1K-QX92_WytOqNi8fSPDOy_M7RsfNOI_SZkgUldXOphm7BCCsXRNDyCJ3SqpJFLYQ4_u8-Q_MYfxBCuSDyBM1KUjaVrOQp-n1tbNLBuC3ufcBrs321E36BYKCzGt9opyMGt3nrFN9HsCZN-HHnU8S3wy74X7n_8DpZv800GYWXDuwUTcS-xytwSofMIRmw-CmAiyqYXfKDURG_mGjGAX-DBOfoUw826ov3eoaer6-eVuvi7v7mdrW8KxRrqlSoXigmOJWyZF2_4SSfHa951dS0k5R0DalJxRupZM0l40AbqJjquSqVEKTkZ-jrYW9--s9Rx9QOJiptLTjtx9hy9rabEpbpl3c6doPetLtgBghT-_fzMigOQAUfY9D9P0JJuw-nzeG0-3DafTjZ84PfG3DOGt3pkD6Y-gMb6JMn
Cites_doi 10.1093/molbev/msy194
10.1371/journal.pbio.0040088
10.1038/s41598-023-39995-6
10.1089/cmb.2022.0357
10.1038/s41580-019-0186-3
10.1093/molbev/msaa015
10.1038/ncomms7066
10.1371/journal.pcbi.1000520
10.1038/s41592-022-01409-2
10.1093/sysbio/syy032
10.1038/s41559-023-02000-4
10.1007/s12064-023-00408-x
10.1073/pnas.94.13.6815
10.1186/s13059-019-1874-1
10.1038/s41592-022-01480-9
10.1038/nature09807
10.1136/gutjnl-2020-323703
10.1093/molbev/msac143
10.1093/sysbio/syab075
10.1080/106351501753462876
10.1038/s41467-022-30033-z
10.1242/dev.169730
10.1038/s41467-025-56388-7
10.2307/2411186
10.1101/gr.209973.116
10.1016/j.cell.2021.04.048
10.1038/s41576-022-00458-9
10.1038/s41588-019-0423-x
10.1016/B978-1-4832-2734-4.50017-6
10.1038/s41698-024-00728-1
10.7717/peerj.2406
10.1093/gbe/evad211
10.1002/bies.201900221
10.1186/s13059-021-02583-w
10.1093/sysbio/syad067
10.1002/cpbi.96
10.1093/biostatistics/kxx053
10.1126/science.959840
10.1038/s41467-023-37168-7
10.1371/journal.pcbi.1006650
ContentType Journal Article
Copyright 2025, Mary Ann Liebert, Inc., publishers
Copyright_xml – notice: 2025, Mary Ann Liebert, Inc., publishers
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1089/cmb.2024.0614
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1557-8666
EndPage 752
ExternalDocumentID 40495757
10_1089_cmb_2024_0614
Genre Journal Article
GroupedDBID ---
0R~
29K
4.4
53G
5GY
ABBKN
ACGFO
ADBBV
AENEX
AFOSN
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BNQNF
CS3
D-I
DIK
DU5
EBS
F5P
IAO
IHR
IM4
MV1
NQHIM
O9-
P2P
RML
RNS
TN5
TR2
UE5
AAYXX
CITATION
SCNPE
34G
39C
ABEFU
AI.
CAG
CGR
COF
CUY
CVF
ECM
EIF
EJD
IER
IGS
ITC
NPM
R.V
RIG
RMSOB
VH1
7X8
ID FETCH-LOGICAL-c295t-cf6c26317742bfd302bfb3835981b710b90805397c783723a19a52cf3c4c66043
ISSN 1557-8666
IngestDate Fri Sep 05 15:55:35 EDT 2025
Fri Aug 01 03:41:23 EDT 2025
Wed Aug 20 07:43:46 EDT 2025
Thu Jul 31 06:40:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords cell lineages
expression data
RNA-sequencing
single cell
phylogeography of tumor
Language English
License https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c295t-cf6c26317742bfd302bfb3835981b710b90805397c783723a19a52cf3c4c66043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1885-1108
PMID 40495757
PQID 3217742102
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_3217742102
pubmed_primary_40495757
crossref_primary_10_1089_cmb_2024_0614
maryannliebert_primary_10_1089_cmb_2024_0614
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of computational biology
PublicationTitleAlternate J Comput Biol
PublicationYear 2025
Publisher Mary Ann Liebert, Inc., publishers
Publisher_xml – name: Mary Ann Liebert, Inc., publishers
References B20
B42
B21
Tavaré S (B41) 1986; 17
B43
B22
B44
B23
B24
B46
B25
B26
B27
B28
Zuckerkandl E (B45) 1962
B30
B31
B10
B32
B11
B33
B34
B13
B35
Felsenstein J (B12) 1973; 25
B14
B36
B15
B37
B16
B38
B39
B18
B19
Alves JM (B1) 2024
B2
B3
B4
B5
Mah JL (B29) 2024
B6
B7
B8
B9
B40
References_xml – ident: B43
  doi: 10.1093/molbev/msy194
– ident: B10
  doi: 10.1371/journal.pbio.0040088
– ident: B26
  doi: 10.1038/s41598-023-39995-6
– ident: B33
  doi: 10.1089/cmb.2022.0357
– ident: B3
  doi: 10.1038/s41580-019-0186-3
– ident: B32
  doi: 10.1093/molbev/msaa015
– year: 2024
  ident: B1
  publication-title: bioRxiv
– ident: B25
  doi: 10.1038/ncomms7066
– volume: 17
  start-page: 57
  year: 1986
  ident: B41
  publication-title: Am Math Soc
– ident: B21
  doi: 10.1371/journal.pcbi.1000520
– ident: B34
  doi: 10.1038/s41592-022-01409-2
– start-page: 1
  year: 2024
  ident: B29
  publication-title: Nat Ecol Evol
– ident: B38
  doi: 10.1093/sysbio/syy032
– ident: B23
  doi: 10.1038/s41559-023-02000-4
– ident: B8
  doi: 10.1007/s12064-023-00408-x
– ident: B40
  doi: 10.1073/pnas.94.13.6815
– ident: B13
  doi: 10.1186/s13059-019-1874-1
– volume: 25
  start-page: 471
  issue: 5
  year: 1973
  ident: B12
  publication-title: Am J Hum Genet
– ident: B27
  doi: 10.1038/s41592-022-01480-9
– ident: B35
  doi: 10.1038/nature09807
– ident: B7
  doi: 10.1136/gutjnl-2020-323703
– ident: B6
  doi: 10.1093/molbev/msac143
– ident: B11
  doi: 10.1093/sysbio/syab075
– ident: B24
  doi: 10.1080/106351501753462876
– ident: B31
  doi: 10.1038/s41467-022-30033-z
– ident: B30
  doi: 10.1242/dev.169730
– ident: B39
  doi: 10.1038/s41467-025-56388-7
– ident: B14
  doi: 10.2307/2411186
– ident: B22
  doi: 10.1101/gr.209973.116
– start-page: 189
  year: 1962
  ident: B45
  publication-title: Horizons in Biochemistry
– ident: B15
  doi: 10.1016/j.cell.2021.04.048
– ident: B19
  doi: 10.1038/s41576-022-00458-9
– ident: B18
  doi: 10.1038/s41588-019-0423-x
– ident: B46
  doi: 10.1016/B978-1-4832-2734-4.50017-6
– ident: B37
  doi: 10.1038/s41698-024-00728-1
– ident: B4
  doi: 10.7717/peerj.2406
– ident: B9
  doi: 10.1093/gbe/evad211
– ident: B2
  doi: 10.1002/bies.201900221
– ident: B20
  doi: 10.1186/s13059-021-02583-w
– ident: B44
  doi: 10.1093/sysbio/syad067
– ident: B42
  doi: 10.1002/cpbi.96
– ident: B16
  doi: 10.1093/biostatistics/kxx053
– ident: B36
  doi: 10.1126/science.959840
– ident: B28
  doi: 10.1038/s41467-023-37168-7
– ident: B5
  doi: 10.1371/journal.pcbi.1006650
SSID ssj0013607
Score 2.4384925
Snippet Phylogenetic relationship of cells within tumors can help us to understand how cancer develops in space and time and identify driver mutations and other...
SourceID proquest
pubmed
crossref
maryannliebert
SourceType Aggregation Database
Index Database
Publisher
StartPage 738
SubjectTerms Computational Biology - methods
Gene Expression Profiling - methods
Humans
Neoplasms - genetics
Phylogeny
Preface
Single-Cell Analysis - methods
Transcriptome - genetics
Title Filtering for Highly Variable Genes and High-Quality Spots Improves Phylogenetic Analysis of Cancer Spatial Transcriptomics Visium Data
URI https://www.liebertpub.com/doi/abs/10.1089/cmb.2024.0614
https://www.ncbi.nlm.nih.gov/pubmed/40495757
https://www.proquest.com/docview/3217742102
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBJIIBi3cpOREC8lI3USO3lEY1WBMSbRTn2LHCdRo63p1KRIhR_A3-YcO7cyJgYvUeW0J0q_Tz4Xnwshr4QUsZIMOwAktuWyNLYkZ6kFmi-yY1eIONUJskd8PHU_zrxZr_ejW11SRnvq-x_rSv4HVVgDXLFK9h-QbYTCAnwGfOEKCMP1ShiPMjzrrnMhMWXjbDM4Ae9X10NhR2nTgRnvWKZbBmwV58uyGJhgAtw_noPLDk_AYsatFiX7yIfVAGcWY1RdKzW9xWAdczE4yYpsvQDWlPISA1fpgRF1sLHq9tTk-8hvq826mJ9mpiitKrRZycFXWcwbXXEMrnKVjzbGqdhtfuN70OeLJKvmhmFcu01e7givZXejG8xrcuuaDdkDLcp51S774toFFWD72EFVLSJw_pm7hx5vq-vq8_2jL-FoengYTg5mk2vkOhPCnPF_-NQeQXFda988rGrQCuLfbgnfMmhuY72hzHPwHzAv_nK3RZsvk7vkTgULfWdIdI_0knyX3DCTSDe75Nbnpn1vcZ_8bIhFgVjUEIvWxKKaWBTQol1iUU0sWhOLdolFa2LRZUoNsWhFLPobsaghFkViPSDT0cFkf2xVEzssxQKvtFTKFeNgkgqXRWns2HCNHB-7RA4jsGWjABwUD0xgJXxHMEcOA-kxlTrKVZzbrvOQ7OTLPHlMqIgDJ4l5EoMaBCMz9YeJH0cYP0ikCKTsk9f13x6em8YsoU6o8IMQ8AkRnxDx6ZM326D87esva8hC2Gnx-EzmyXJdhA7T7wUWeZ88Mlg2olxwtMHxEU-u8Oun5GbL9Gdkp1ytk-dg2ZbRC83AX7Fuqik
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Filtering+for+Highly+Variable+Genes+and+High-Quality+Spots+Improves+Phylogenetic+Analysis+of+Cancer+Spatial+Transcriptomics+Visium+Data&rft.jtitle=Journal+of+computational+biology&rft.au=Gavryushkina%2C+Alexandra+Sasha&rft.au=Pinkney%2C+Holly+R&rft.au=Diermeier%2C+Sarah+D&rft.au=Gavryushkin%2C+Alex&rft.date=2025-08-01&rft.issn=1557-8666&rft.eissn=1557-8666&rft_id=info:doi/10.1089%2Fcmb.2024.0614&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-8666&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-8666&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-8666&client=summon