Filtering for Highly Variable Genes and High-Quality Spots Improves Phylogenetic Analysis of Cancer Spatial Transcriptomics Visium Data
Phylogenetic relationship of cells within tumors can help us to understand how cancer develops in space and time and identify driver mutations and other evolutionary events that enable cancer growth and spread. Numerous studies have reconstructed phylogenies from single-cell DNA-seq data. Here, we a...
Saved in:
Published in | Journal of computational biology Vol. 32; no. 8; pp. 738 - 752 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Mary Ann Liebert, Inc., publishers
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1557-8666 1557-8666 |
DOI | 10.1089/cmb.2024.0614 |
Cover
Abstract | Phylogenetic relationship of cells within tumors can help us to understand how cancer develops in space and time and identify driver mutations and other evolutionary events that enable cancer growth and spread. Numerous studies have reconstructed phylogenies from single-cell DNA-seq data. Here, we are looking into the problem of phylogenetic analysis of spatially resolved near single-cell RNA-seq data, which is a cost-efficient alternative (or complementary) data source that integrates multiple sources of evolutionary information, including point mutations, copy number changes, and epimutations. Recent attempts to use such data, although promising, raised many methodological challenges. Here, we explored data preprocessing and modeling approaches for evolutionary analyses of Visium spatial transcriptomics data. We conclude that using only highly variable genes and accounting for heterogeneous RNA capture across tissue-covered spots improves the reconstructed topological relationships and influences estimated branch lengths. |
---|---|
AbstractList | Phylogenetic relationship of cells within tumors can help us to understand how cancer develops in space and time and identify driver mutations and other evolutionary events that enable cancer growth and spread. Numerous studies have reconstructed phylogenies from single-cell DNA-seq data. Here, we are looking into the problem of phylogenetic analysis of spatially resolved near single-cell RNA-seq data, which is a cost-efficient alternative (or complementary) data source that integrates multiple sources of evolutionary information, including point mutations, copy number changes, and epimutations. Recent attempts to use such data, although promising, raised many methodological challenges. Here, we explored data preprocessing and modeling approaches for evolutionary analyses of Visium spatial transcriptomics data. We conclude that using only highly variable genes and accounting for heterogeneous RNA capture across tissue-covered spots improves the reconstructed topological relationships and influences estimated branch lengths. Phylogenetic relationship of cells within tumors can help us to understand how cancer develops in space and time and identify driver mutations and other evolutionary events that enable cancer growth and spread. Numerous studies have reconstructed phylogenies from single-cell DNA-seq data. Here, we are looking into the problem of phylogenetic analysis of spatially resolved near single-cell RNA-seq data, which is a cost-efficient alternative (or complementary) data source that integrates multiple sources of evolutionary information, including point mutations, copy number changes, and epimutations. Recent attempts to use such data, although promising, raised many methodological challenges. Here, we explored data preprocessing and modeling approaches for evolutionary analyses of Visium spatial transcriptomics data. We conclude that using only highly variable genes and accounting for heterogeneous RNA capture across tissue-covered spots improves the reconstructed topological relationships and influences estimated branch lengths.Phylogenetic relationship of cells within tumors can help us to understand how cancer develops in space and time and identify driver mutations and other evolutionary events that enable cancer growth and spread. Numerous studies have reconstructed phylogenies from single-cell DNA-seq data. Here, we are looking into the problem of phylogenetic analysis of spatially resolved near single-cell RNA-seq data, which is a cost-efficient alternative (or complementary) data source that integrates multiple sources of evolutionary information, including point mutations, copy number changes, and epimutations. Recent attempts to use such data, although promising, raised many methodological challenges. Here, we explored data preprocessing and modeling approaches for evolutionary analyses of Visium spatial transcriptomics data. We conclude that using only highly variable genes and accounting for heterogeneous RNA capture across tissue-covered spots improves the reconstructed topological relationships and influences estimated branch lengths. |
Author | Pinkney, Holly R. Gavryushkin, Alex Gavryushkina, Alexandra “Sasha” Diermeier, Sarah D. |
Author_xml | – sequence: 1 givenname: Alexandra “Sasha” orcidid: 0000-0002-1885-1108 surname: Gavryushkina fullname: Gavryushkina, Alexandra “Sasha” – sequence: 2 givenname: Holly R. surname: Pinkney fullname: Pinkney, Holly R. – sequence: 3 givenname: Sarah D. surname: Diermeier fullname: Diermeier, Sarah D. – sequence: 4 givenname: Alex surname: Gavryushkin fullname: Gavryushkin, Alex |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40495757$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1P3DAQBmALUbEscOy18rGXLP5I7OS42gKLhAQVH9do4nUWV469tZ1K-QX92_WytOqNi8fSPDOy_M7RsfNOI_SZkgUldXOphm7BCCsXRNDyCJ3SqpJFLYQ4_u8-Q_MYfxBCuSDyBM1KUjaVrOQp-n1tbNLBuC3ufcBrs321E36BYKCzGt9opyMGt3nrFN9HsCZN-HHnU8S3wy74X7n_8DpZv800GYWXDuwUTcS-xytwSofMIRmw-CmAiyqYXfKDURG_mGjGAX-DBOfoUw826ov3eoaer6-eVuvi7v7mdrW8KxRrqlSoXigmOJWyZF2_4SSfHa951dS0k5R0DalJxRupZM0l40AbqJjquSqVEKTkZ-jrYW9--s9Rx9QOJiptLTjtx9hy9rabEpbpl3c6doPetLtgBghT-_fzMigOQAUfY9D9P0JJuw-nzeG0-3DafTjZ84PfG3DOGt3pkD6Y-gMb6JMn |
Cites_doi | 10.1093/molbev/msy194 10.1371/journal.pbio.0040088 10.1038/s41598-023-39995-6 10.1089/cmb.2022.0357 10.1038/s41580-019-0186-3 10.1093/molbev/msaa015 10.1038/ncomms7066 10.1371/journal.pcbi.1000520 10.1038/s41592-022-01409-2 10.1093/sysbio/syy032 10.1038/s41559-023-02000-4 10.1007/s12064-023-00408-x 10.1073/pnas.94.13.6815 10.1186/s13059-019-1874-1 10.1038/s41592-022-01480-9 10.1038/nature09807 10.1136/gutjnl-2020-323703 10.1093/molbev/msac143 10.1093/sysbio/syab075 10.1080/106351501753462876 10.1038/s41467-022-30033-z 10.1242/dev.169730 10.1038/s41467-025-56388-7 10.2307/2411186 10.1101/gr.209973.116 10.1016/j.cell.2021.04.048 10.1038/s41576-022-00458-9 10.1038/s41588-019-0423-x 10.1016/B978-1-4832-2734-4.50017-6 10.1038/s41698-024-00728-1 10.7717/peerj.2406 10.1093/gbe/evad211 10.1002/bies.201900221 10.1186/s13059-021-02583-w 10.1093/sysbio/syad067 10.1002/cpbi.96 10.1093/biostatistics/kxx053 10.1126/science.959840 10.1038/s41467-023-37168-7 10.1371/journal.pcbi.1006650 |
ContentType | Journal Article |
Copyright | 2025, Mary Ann Liebert, Inc., publishers |
Copyright_xml | – notice: 2025, Mary Ann Liebert, Inc., publishers |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1089/cmb.2024.0614 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1557-8666 |
EndPage | 752 |
ExternalDocumentID | 40495757 10_1089_cmb_2024_0614 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 29K 4.4 53G 5GY ABBKN ACGFO ADBBV AENEX AFOSN ALMA_UNASSIGNED_HOLDINGS BAWUL BNQNF CS3 D-I DIK DU5 EBS F5P IAO IHR IM4 MV1 NQHIM O9- P2P RML RNS TN5 TR2 UE5 AAYXX CITATION SCNPE 34G 39C ABEFU AI. CAG CGR COF CUY CVF ECM EIF EJD IER IGS ITC NPM R.V RIG RMSOB VH1 7X8 |
ID | FETCH-LOGICAL-c295t-cf6c26317742bfd302bfb3835981b710b90805397c783723a19a52cf3c4c66043 |
ISSN | 1557-8666 |
IngestDate | Fri Sep 05 15:55:35 EDT 2025 Fri Aug 01 03:41:23 EDT 2025 Wed Aug 20 07:43:46 EDT 2025 Thu Jul 31 06:40:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | cell lineages expression data RNA-sequencing single cell phylogeography of tumor |
Language | English |
License | https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c295t-cf6c26317742bfd302bfb3835981b710b90805397c783723a19a52cf3c4c66043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1885-1108 |
PMID | 40495757 |
PQID | 3217742102 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3217742102 pubmed_primary_40495757 crossref_primary_10_1089_cmb_2024_0614 maryannliebert_primary_10_1089_cmb_2024_0614 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of computational biology |
PublicationTitleAlternate | J Comput Biol |
PublicationYear | 2025 |
Publisher | Mary Ann Liebert, Inc., publishers |
Publisher_xml | – name: Mary Ann Liebert, Inc., publishers |
References | B20 B42 B21 Tavaré S (B41) 1986; 17 B43 B22 B44 B23 B24 B46 B25 B26 B27 B28 Zuckerkandl E (B45) 1962 B30 B31 B10 B32 B11 B33 B34 B13 B35 Felsenstein J (B12) 1973; 25 B14 B36 B15 B37 B16 B38 B39 B18 B19 Alves JM (B1) 2024 B2 B3 B4 B5 Mah JL (B29) 2024 B6 B7 B8 B9 B40 |
References_xml | – ident: B43 doi: 10.1093/molbev/msy194 – ident: B10 doi: 10.1371/journal.pbio.0040088 – ident: B26 doi: 10.1038/s41598-023-39995-6 – ident: B33 doi: 10.1089/cmb.2022.0357 – ident: B3 doi: 10.1038/s41580-019-0186-3 – ident: B32 doi: 10.1093/molbev/msaa015 – year: 2024 ident: B1 publication-title: bioRxiv – ident: B25 doi: 10.1038/ncomms7066 – volume: 17 start-page: 57 year: 1986 ident: B41 publication-title: Am Math Soc – ident: B21 doi: 10.1371/journal.pcbi.1000520 – ident: B34 doi: 10.1038/s41592-022-01409-2 – start-page: 1 year: 2024 ident: B29 publication-title: Nat Ecol Evol – ident: B38 doi: 10.1093/sysbio/syy032 – ident: B23 doi: 10.1038/s41559-023-02000-4 – ident: B8 doi: 10.1007/s12064-023-00408-x – ident: B40 doi: 10.1073/pnas.94.13.6815 – ident: B13 doi: 10.1186/s13059-019-1874-1 – volume: 25 start-page: 471 issue: 5 year: 1973 ident: B12 publication-title: Am J Hum Genet – ident: B27 doi: 10.1038/s41592-022-01480-9 – ident: B35 doi: 10.1038/nature09807 – ident: B7 doi: 10.1136/gutjnl-2020-323703 – ident: B6 doi: 10.1093/molbev/msac143 – ident: B11 doi: 10.1093/sysbio/syab075 – ident: B24 doi: 10.1080/106351501753462876 – ident: B31 doi: 10.1038/s41467-022-30033-z – ident: B30 doi: 10.1242/dev.169730 – ident: B39 doi: 10.1038/s41467-025-56388-7 – ident: B14 doi: 10.2307/2411186 – ident: B22 doi: 10.1101/gr.209973.116 – start-page: 189 year: 1962 ident: B45 publication-title: Horizons in Biochemistry – ident: B15 doi: 10.1016/j.cell.2021.04.048 – ident: B19 doi: 10.1038/s41576-022-00458-9 – ident: B18 doi: 10.1038/s41588-019-0423-x – ident: B46 doi: 10.1016/B978-1-4832-2734-4.50017-6 – ident: B37 doi: 10.1038/s41698-024-00728-1 – ident: B4 doi: 10.7717/peerj.2406 – ident: B9 doi: 10.1093/gbe/evad211 – ident: B2 doi: 10.1002/bies.201900221 – ident: B20 doi: 10.1186/s13059-021-02583-w – ident: B44 doi: 10.1093/sysbio/syad067 – ident: B42 doi: 10.1002/cpbi.96 – ident: B16 doi: 10.1093/biostatistics/kxx053 – ident: B36 doi: 10.1126/science.959840 – ident: B28 doi: 10.1038/s41467-023-37168-7 – ident: B5 doi: 10.1371/journal.pcbi.1006650 |
SSID | ssj0013607 |
Score | 2.4384925 |
Snippet | Phylogenetic relationship of cells within tumors can help us to understand how cancer develops in space and time and identify driver mutations and other... |
SourceID | proquest pubmed crossref maryannliebert |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 738 |
SubjectTerms | Computational Biology - methods Gene Expression Profiling - methods Humans Neoplasms - genetics Phylogeny Preface Single-Cell Analysis - methods Transcriptome - genetics |
Title | Filtering for Highly Variable Genes and High-Quality Spots Improves Phylogenetic Analysis of Cancer Spatial Transcriptomics Visium Data |
URI | https://www.liebertpub.com/doi/abs/10.1089/cmb.2024.0614 https://www.ncbi.nlm.nih.gov/pubmed/40495757 https://www.proquest.com/docview/3217742102 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBJIIBi3cpOREC8lI3USO3lEY1WBMSbRTn2LHCdRo63p1KRIhR_A3-YcO7cyJgYvUeW0J0q_Tz4Xnwshr4QUsZIMOwAktuWyNLYkZ6kFmi-yY1eIONUJskd8PHU_zrxZr_ejW11SRnvq-x_rSv4HVVgDXLFK9h-QbYTCAnwGfOEKCMP1ShiPMjzrrnMhMWXjbDM4Ae9X10NhR2nTgRnvWKZbBmwV58uyGJhgAtw_noPLDk_AYsatFiX7yIfVAGcWY1RdKzW9xWAdczE4yYpsvQDWlPISA1fpgRF1sLHq9tTk-8hvq826mJ9mpiitKrRZycFXWcwbXXEMrnKVjzbGqdhtfuN70OeLJKvmhmFcu01e7givZXejG8xrcuuaDdkDLcp51S774toFFWD72EFVLSJw_pm7hx5vq-vq8_2jL-FoengYTg5mk2vkOhPCnPF_-NQeQXFda988rGrQCuLfbgnfMmhuY72hzHPwHzAv_nK3RZsvk7vkTgULfWdIdI_0knyX3DCTSDe75Nbnpn1vcZ_8bIhFgVjUEIvWxKKaWBTQol1iUU0sWhOLdolFa2LRZUoNsWhFLPobsaghFkViPSDT0cFkf2xVEzssxQKvtFTKFeNgkgqXRWns2HCNHB-7RA4jsGWjABwUD0xgJXxHMEcOA-kxlTrKVZzbrvOQ7OTLPHlMqIgDJ4l5EoMaBCMz9YeJH0cYP0ikCKTsk9f13x6em8YsoU6o8IMQ8AkRnxDx6ZM326D87esva8hC2Gnx-EzmyXJdhA7T7wUWeZ88Mlg2olxwtMHxEU-u8Oun5GbL9Gdkp1ytk-dg2ZbRC83AX7Fuqik |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Filtering+for+Highly+Variable+Genes+and+High-Quality+Spots+Improves+Phylogenetic+Analysis+of+Cancer+Spatial+Transcriptomics+Visium+Data&rft.jtitle=Journal+of+computational+biology&rft.au=Gavryushkina%2C+Alexandra+Sasha&rft.au=Pinkney%2C+Holly+R&rft.au=Diermeier%2C+Sarah+D&rft.au=Gavryushkin%2C+Alex&rft.date=2025-08-01&rft.issn=1557-8666&rft.eissn=1557-8666&rft_id=info:doi/10.1089%2Fcmb.2024.0614&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-8666&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-8666&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-8666&client=summon |