Video Person Re-Identification Using Attribute-Enhanced Features

In this work we propose to boost video-based person re-identification (Re-ID) by using attribute-enhanced feature presentation. To this end, we not only try to use the ID-relevant attributes more effectively, but also for the first time in literature harness the ID-irrelevant attributes to help mode...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 11; pp. 7951 - 7966
Main Authors Chai, Tianrui, Chen, Zhiyuan, Li, Annan, Chen, Jiaxin, Mei, Xinyu, Wang, Yunhong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1051-8215
1558-2205
DOI10.1109/TCSVT.2022.3189027

Cover

Loading…
Abstract In this work we propose to boost video-based person re-identification (Re-ID) by using attribute-enhanced feature presentation. To this end, we not only try to use the ID-relevant attributes more effectively, but also for the first time in literature harness the ID-irrelevant attributes to help model training. The former mainly include gender, age, clothing characteristics, etc., which contain rich and supplementary information about the pedestrian; the latter include viewpoint, action, etc., which are seldom used for identification previously. In particular, we use the attributes to enhance the significant areas of the image with a novel Attribute Salient Region Enhance (ASRE) module that can attend more accurately to the body of the pedestrian, so as to better separate the target from the background. Furthermore, we find that many ID-irrelevant but subject-relevant factors, like the view angle and movement of the target pedestrian, have great impact on the two-dimensional appearance of a pedestrian. We then propose to exploit both the ID-relevant and the ID-irrelevant attributes via a novel triplet loss called the Viewpoint and Action-Invariant (VAI) triplet loss. Based on the above, we design an Attribute Salience Assisted Network (ASA-Net) to perform attribute recognition along with identity recognition, and use the attributes for feature enhancement and hard sample mining. Extensive experiments on MARS and DukeMTMC-VideoReID datasets show that our method outperforms the state-of-the-arts. Also, the visualizations of learning results further prove the effectiveness of the proposed method.
AbstractList In this work we propose to boost video-based person re-identification (Re-ID) by using attribute-enhanced feature presentation. To this end, we not only try to use the ID-relevant attributes more effectively, but also for the first time in literature harness the ID-irrelevant attributes to help model training. The former mainly include gender, age, clothing characteristics, etc., which contain rich and supplementary information about the pedestrian; the latter include viewpoint, action, etc., which are seldom used for identification previously. In particular, we use the attributes to enhance the significant areas of the image with a novel Attribute Salient Region Enhance (ASRE) module that can attend more accurately to the body of the pedestrian, so as to better separate the target from the background. Furthermore, we find that many ID-irrelevant but subject-relevant factors, like the view angle and movement of the target pedestrian, have great impact on the two-dimensional appearance of a pedestrian. We then propose to exploit both the ID-relevant and the ID-irrelevant attributes via a novel triplet loss called the Viewpoint and Action-Invariant (VAI) triplet loss. Based on the above, we design an Attribute Salience Assisted Network (ASA-Net) to perform attribute recognition along with identity recognition, and use the attributes for feature enhancement and hard sample mining. Extensive experiments on MARS and DukeMTMC-VideoReID datasets show that our method outperforms the state-of-the-arts. Also, the visualizations of learning results further prove the effectiveness of the proposed method.
Author Chen, Zhiyuan
Chen, Jiaxin
Wang, Yunhong
Chai, Tianrui
Li, Annan
Mei, Xinyu
Author_xml – sequence: 1
  givenname: Tianrui
  orcidid: 0000-0003-2557-9496
  surname: Chai
  fullname: Chai, Tianrui
  email: trchai@buaa.edu.cn
  organization: ByteDance Inc., Shanghai, China
– sequence: 2
  givenname: Zhiyuan
  surname: Chen
  fullname: Chen, Zhiyuan
  email: dechen@buaa.edu.cn
  organization: Alibaba Group, Hangzhou, China
– sequence: 3
  givenname: Annan
  orcidid: 0000-0003-3497-5052
  surname: Li
  fullname: Li, Annan
  email: liannan@buaa.edu.cn
  organization: State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
– sequence: 4
  givenname: Jiaxin
  surname: Chen
  fullname: Chen, Jiaxin
  email: jiaxinchen@buaa.edu.cn
  organization: State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
– sequence: 5
  givenname: Xinyu
  surname: Mei
  fullname: Mei, Xinyu
  email: xymei@buaa.edu.cn
  organization: China Southern Power Grid, Guangzhou, China
– sequence: 6
  givenname: Yunhong
  orcidid: 0000-0001-8001-2703
  surname: Wang
  fullname: Wang, Yunhong
  email: yhwang@buaa.edu.cn
  organization: State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
BookMark eNp9kE1PAjEQhhuDiYD-Ab2QeF7sx3bb3iQElIREo8B10-1OtQS72HYP_nsXMB48eJrJ5H1mMs8A9XzjAaFrgseEYHW3mr5uVmOKKR0zIhWm4gz1CecyoxTzXtdjTjJJCb9Agxi3GJNc5qKP7jeuhmb0DCE2fvQC2aIGn5x1RifXTdbR-bfRJKXgqjZBNvPv2huoR3PQqQ0QL9G51bsIVz91iNbz2Wr6mC2fHhbTyTIzVPGUmVrWVY1ZzZTEhhKNmdFMVMRiwrESirGc28IWSoGA3FoGXBrBmSlMVRQVG6Lb0959aD5biKncNm3w3cmSCqoKpnDOu5Q8pUxoYgxgS-PS8ZMUtNuVBJcHX-XRV3nwVf746lD6B90H96HD1__QzQlyAPALKEkEE5J9A68KeAo
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_JIOT_2023_3335209
crossref_primary_10_1109_TCSVT_2024_3454366
crossref_primary_10_1109_TCSVT_2021_3137216
crossref_primary_10_1109_TCSVT_2024_3390573
crossref_primary_10_1109_TCSVT_2024_3408645
crossref_primary_10_32604_cmc_2024_054895
crossref_primary_10_1109_TCSVT_2023_3293130
crossref_primary_10_1145_3632624
crossref_primary_10_3934_mbe_2024293
crossref_primary_10_1109_TCSVT_2023_3340428
crossref_primary_10_1109_TMM_2022_3231103
crossref_primary_10_1016_j_neunet_2024_107109
crossref_primary_10_1109_TNNLS_2024_3384446
crossref_primary_10_1109_TCSVT_2023_3250464
crossref_primary_10_1016_j_neucom_2024_128479
crossref_primary_10_1016_j_neucom_2023_127193
crossref_primary_10_1109_TCSVT_2023_3285411
crossref_primary_10_1016_j_engappai_2025_110429
Cites_doi 10.1007/978-3-319-48881-3_2
10.1109/ACCESS.2019.2890836
10.1007/978-3-642-21227-7_9
10.1109/TPAMI.2012.246
10.1109/TCSVT.2021.3128214
10.1109/TCSVT.2021.3076097
10.1109/CVPR.2016.90
10.1109/ICCV.2015.420
10.1109/TMM.2021.3050082
10.1109/ICCV.2017.507
10.1016/j.patcog.2020.107414
10.1109/TIP.2019.2910414
10.1109/CVPR42600.2020.00335
10.1109/CVPR.2019.00730
10.1007/978-3-030-31723-2_18
10.1109/TCSVT.2020.2988034
10.5244/C.26.24
10.1109/ICIP42928.2021.9506348
10.1109/TIP.2021.3120054
10.1109/CVPR.2018.00046
10.1109/CVPR.2009.5206848
10.1109/TMM.2018.2877886
10.1609/aaai.v33i01.33018287
10.1145/3394171.3413979
10.1109/TMM.2020.3042068
10.1109/TCSVT.2014.2352552
10.1109/TCSVT.2022.3169422
10.1109/CVPR.2017.362
10.1109/CVPR.2016.148
10.1109/CVPR46437.2021.00205
10.1109/CVPR46437.2021.00226
10.1109/TIP.2020.3036762
10.1007/978-3-319-46478-7_31
10.1145/2647868.2654966
10.1109/ICCV.2019.00406
10.1109/ICCV48922.2021.00022
10.1007/978-3-030-58595-2_24
10.1109/TIP.2019.2946975
10.1109/ICCV.2019.00065
10.24963/ijcai.2018/441
10.1109/TIFS.2021.3139224
10.1609/aaai.v34i07.6802
10.1109/TCSVT.2020.3033165
10.1109/CVPR.2019.00637
10.1016/j.patcog.2019.06.006
10.1109/TIP.2020.3001693
10.1007/978-3-7908-2604-3_16
10.1109/CVPR.2018.00543
10.1109/CVPR.2017.357
10.1109/TCSVT.2018.2865749
10.1109/CVPRW.2019.00190
10.1109/CVPR.2019.00735
10.1109/TIP.2021.3131937
10.1007/978-3-319-10584-0_1
10.1609/aaai.v33i01.33018786
10.1109/CVPR.2018.00242
10.1007/978-3-319-46466-4_52
10.1109/CVPR42600.2020.00297
10.1109/TMM.2021.3069562
10.1109/CVPR46437.2021.00435
10.1145/3240508.3240550
10.24963/ijcai.2021/179
10.1109/ICCV.2017.550
10.1016/j.neucom.2019.01.027
10.1109/CVPR.2019.00505
10.1109/TCSVT.2022.3157130
10.1007/978-3-030-58598-3_39
10.1109/ICME51207.2021.9428110
10.1007/978-3-030-58536-5_14
10.1109/TIP.2021.3093759
10.1109/TNNLS.2018.2890289
10.1145/3474085.3475566
10.1109/ICCV.2017.349
10.1109/TCSVT.2019.2952550
10.1145/3343031.3351003
10.1109/CVPR.2017.145
10.1145/3394171.3413843
10.1109/CVPR.2017.717
10.1109/TPAMI.2017.2679002
10.1109/CVPR42600.2020.01042
10.1109/ICCV.2017.46
10.1109/TPAMI.2021.3054775
10.1109/CVPR.2017.358
10.1109/CVPR.2015.7299016
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3189027
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 7966
ExternalDocumentID 10_1109_TCSVT_2022_3189027
9817378
Genre orig-research
GrantInformation_xml – fundername: Key Program of National Natural Science Foundation of China
  grantid: U20B2069
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-cd8dbd03d3980c21a03ca37b1f01509793345f6f699e7e4ff3e58c753c6cb66b3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Sun Jun 29 16:18:51 EDT 2025
Thu Apr 24 22:58:00 EDT 2025
Tue Jul 01 00:41:18 EDT 2025
Wed Aug 27 02:14:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-cd8dbd03d3980c21a03ca37b1f01509793345f6f699e7e4ff3e58c753c6cb66b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8001-2703
0000-0003-3497-5052
0000-0003-2557-9496
PQID 2729639045
PQPubID 85433
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2022_3189027
crossref_primary_10_1109_TCSVT_2022_3189027
proquest_journals_2729639045
ieee_primary_9817378
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
Hermans (ref5) 2017
ref19
ref18
ref51
ref50
ref91
ref90
ref46
ref45
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref82
ref81
ref40
ref84
Vaswani (ref65) 2017
ref83
Van der Maaten (ref92) 2008; 9
ref80
ref35
ref34
ref78
ref37
ref36
ref31
Zhu (ref66); 34
ref75
ref30
ref74
ref33
ref77
ref32
ref76
Xu (ref70)
ref2
ref1
ref39
ref38
ref71
ref73
ref72
Liu (ref28) 2019
Liu (ref79) 2020
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref21
Kingma (ref89) 2014
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref33
  doi: 10.1007/978-3-319-48881-3_2
– ident: ref20
  doi: 10.1109/ACCESS.2019.2890836
– year: 2019
  ident: ref28
  article-title: Spatially and temporally efficient non-local attention network for video-based person re-identification
  publication-title: arXiv:1908.01683
– ident: ref2
  doi: 10.1007/978-3-642-21227-7_9
– ident: ref3
  doi: 10.1109/TPAMI.2012.246
– ident: ref38
  doi: 10.1109/TCSVT.2021.3128214
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: ref92
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref10
  doi: 10.1109/TCSVT.2021.3076097
– ident: ref34
  doi: 10.1109/CVPR.2016.90
– ident: ref41
  doi: 10.1109/ICCV.2015.420
– ident: ref30
  doi: 10.1109/TMM.2021.3050082
– volume: 34
  start-page: 13114
  issue: 7
  volume-title: Proc. AAAI
  ident: ref66
  article-title: Aware loss with angular regularization for person re-identification
– ident: ref48
  doi: 10.1109/ICCV.2017.507
– ident: ref62
  doi: 10.1016/j.patcog.2020.107414
– ident: ref67
  doi: 10.1109/TIP.2019.2910414
– ident: ref9
  doi: 10.1109/CVPR42600.2020.00335
– ident: ref19
  doi: 10.1109/CVPR.2019.00730
– ident: ref31
  doi: 10.1007/978-3-030-31723-2_18
– ident: ref75
  doi: 10.1109/TCSVT.2020.2988034
– ident: ref58
  doi: 10.5244/C.26.24
– ident: ref24
  doi: 10.1109/ICIP42928.2021.9506348
– ident: ref44
  doi: 10.1109/TIP.2021.3120054
– ident: ref26
  doi: 10.1109/CVPR.2018.00046
– ident: ref88
  doi: 10.1109/CVPR.2009.5206848
– ident: ref74
  doi: 10.1109/TMM.2018.2877886
– ident: ref27
  doi: 10.1609/aaai.v33i01.33018287
– ident: ref63
  doi: 10.1145/3394171.3413979
– ident: ref14
  doi: 10.1109/TMM.2020.3042068
– ident: ref59
  doi: 10.1109/TCSVT.2014.2352552
– ident: ref45
  doi: 10.1109/TCSVT.2022.3169422
– ident: ref37
  doi: 10.1109/CVPR.2017.362
– ident: ref46
  doi: 10.1109/CVPR.2016.148
– ident: ref85
  doi: 10.1109/CVPR46437.2021.00205
– ident: ref81
  doi: 10.1109/CVPR46437.2021.00226
– ident: ref18
  doi: 10.1109/TIP.2020.3036762
– ident: ref72
  doi: 10.1007/978-3-319-46478-7_31
– ident: ref54
  doi: 10.1145/2647868.2654966
– ident: ref77
  doi: 10.1109/ICCV.2019.00406
– ident: ref82
  doi: 10.1109/ICCV48922.2021.00022
– ident: ref84
  doi: 10.1007/978-3-030-58595-2_24
– ident: ref61
  doi: 10.1109/TIP.2019.2946975
– ident: ref23
  doi: 10.1109/ICCV.2019.00065
– ident: ref56
  doi: 10.24963/ijcai.2018/441
– ident: ref68
  doi: 10.1109/TIFS.2021.3139224
– year: 2014
  ident: ref89
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref22
  doi: 10.1609/aaai.v34i07.6802
– ident: ref25
  doi: 10.1109/TCSVT.2020.3033165
– ident: ref69
  doi: 10.1109/CVPR.2019.00637
– ident: ref15
  doi: 10.1016/j.patcog.2019.06.006
– year: 2017
  ident: ref65
  article-title: Attention is all you need
  publication-title: arXiv:1706.03762
– ident: ref87
  doi: 10.1109/TIP.2020.3001693
– ident: ref90
  doi: 10.1007/978-3-7908-2604-3_16
– ident: ref86
  doi: 10.1109/CVPR.2018.00543
– ident: ref4
  doi: 10.1109/CVPR.2017.357
– ident: ref11
  doi: 10.1109/TCSVT.2018.2865749
– ident: ref73
  doi: 10.1109/CVPRW.2019.00190
– ident: ref76
  doi: 10.1109/CVPR.2019.00735
– ident: ref91
  doi: 10.1109/TIP.2021.3131937
– ident: ref40
  doi: 10.1007/978-3-319-10584-0_1
– ident: ref49
  doi: 10.1609/aaai.v33i01.33018786
– start-page: 11525
  volume-title: Proc. ICML
  ident: ref70
  article-title: Dash: Semi-supervised learning with dynamic thresholding
– ident: ref13
  doi: 10.1109/CVPR.2018.00242
– ident: ref32
  doi: 10.1007/978-3-319-46466-4_52
– ident: ref50
  doi: 10.1109/CVPR42600.2020.00297
– year: 2017
  ident: ref5
  article-title: In defense of the triplet loss for person re-identification
  publication-title: arXiv:1703.07737
– ident: ref42
  doi: 10.1109/TMM.2021.3069562
– ident: ref83
  doi: 10.1109/CVPR46437.2021.00435
– ident: ref17
  doi: 10.1145/3240508.3240550
– ident: ref39
  doi: 10.24963/ijcai.2021/179
– ident: ref53
  doi: 10.1109/ICCV.2017.550
– ident: ref16
  doi: 10.1016/j.neucom.2019.01.027
– ident: ref21
  doi: 10.1109/CVPR.2019.00505
– ident: ref52
  doi: 10.1109/TCSVT.2022.3157130
– ident: ref8
  doi: 10.1007/978-3-030-58598-3_39
– ident: ref64
  doi: 10.1109/ICME51207.2021.9428110
– ident: ref7
  doi: 10.1007/978-3-030-58536-5_14
– year: 2020
  ident: ref79
  article-title: Temporal attribute-appearance learning network for video-based person re-identification
  publication-title: arXiv:2009.04181
– ident: ref78
  doi: 10.1109/TIP.2021.3093759
– ident: ref43
  doi: 10.1109/TNNLS.2018.2890289
– ident: ref80
  doi: 10.1145/3474085.3475566
– ident: ref35
  doi: 10.1109/ICCV.2017.349
– ident: ref60
  doi: 10.1109/TCSVT.2019.2952550
– ident: ref57
  doi: 10.1145/3343031.3351003
– ident: ref6
  doi: 10.1109/CVPR.2017.145
– ident: ref29
  doi: 10.1145/3394171.3413843
– ident: ref47
  doi: 10.1109/CVPR.2017.717
– ident: ref12
  doi: 10.1109/TPAMI.2017.2679002
– ident: ref51
  doi: 10.1109/CVPR42600.2020.01042
– ident: ref55
  doi: 10.1109/ICCV.2017.46
– ident: ref71
  doi: 10.1109/TPAMI.2021.3054775
– ident: ref1
  doi: 10.1109/CVPR.2017.358
– ident: ref36
  doi: 10.1109/CVPR.2015.7299016
SSID ssj0014847
Score 2.5146313
Snippet In this work we propose to boost video-based person re-identification (Re-ID) by using attribute-enhanced feature presentation. To this end, we not only try to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7951
SubjectTerms Annotations
attribute salient region enhance
Feature extraction
Footwear
Hair
Image color analysis
Image enhancement
Measurement
pedestrian attribute
Video-based person Re-ID
viewpoint and action-invariant triplet loss
Visualization
Title Video Person Re-Identification Using Attribute-Enhanced Features
URI https://ieeexplore.ieee.org/document/9817378
https://www.proquest.com/docview/2729639045
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFgjKwQdokThx7o6qKKqQiBG3VLYpfAoFSBMnCr8d2HuIlxJbBtqw7X-777HsAnDGhGA5p4KZBytyQaZ7CJNHmLlMpeKQiPzb5zrMbPF2E16to1YKLJhdGSmmDz-TAfNq3fLHmhbkqG1LixygmbWhr4lbmajUvBiGxzcQ0XPBdov1YnSDj0eF8fL-cayoYBJqhmne1-IsTsl1VfvyKrX-52oZZvbMyrORpUORswN-_FW3879Z3YKsCms6oPBm70JLZHmx-Kj_Yhcvlo5Br59aCbudOumXWrqqu8RwbTuCM8rIplnQn2YONF3AMbiw0T9-HxdVkPp66VUcFlwc0yl0uiGDCQwJR4vHATz3EUxQzX5mLD6ptFYWRwgpTKmMZKoVkRLhmNBxzhjFDB9DJ1pk8BId6IuVMYcFS3zhCzaSjUAmkCZiKwxT1wK9FnPCq3LjpevGcWNrh0cSqJTFqSSq19OC8mfNSFtv4c3TXyLkZWYm4B_1ak0llj29JoDmExmIavx79PusYNszaZZZhHzr5ayFPNNzI2ak9Zx-D3NDn
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VcgAObAVRKJADN0ibxNl8o6paFWgrBGnVWxRvAoFaBMmFr8d2FrEJccvBlq0ZT-Y9exaAM8IE8V3smImTENMlkqcQHkpz5wln1BOeHah85_HEH07d67k3r8FFlQvDOdfBZ7ytPvVbPlvSTF2VdXBoBygIV2BV-n3PzrO1qjcDN9TtxCRgsM1QerIyRcbCnah3P4skGXQcyVHVy1rwxQ3pvio_fsbawwy2YFzuLQ8seWpnKWnT929lG_-7-W3YLKCm0c3Pxg7U-GIXNj4VIGzA5eyR8aVxq2G3ccfNPG9XFBd5hg4oMLpp3haLm_3Fg44YMBRyzCRT34PpoB_1hmbRU8GkDvZSk7KQEWYhhnBoUcdOLEQTFBBbqKsPLK0VuZ7whY8xD7grBOJeSCWnoT4lvk_QPtQXywU_AANbLKFE-IwktnKFkkt7rmBIUjARuAlqgl2KOKZFwXHV9-I51sTDwrFWS6zUEhdqacJ5NeclL7fx5-iGknM1shBxE1qlJuPCIt9iR7IIicYkgj38fdYprA2j8SgeXU1ujmBdrZPnHLagnr5m_FiCj5Sc6DP3AZdz1DA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Video+Person+Re-Identification+Using+Attribute-Enhanced+Features&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Chai%2C+Tianrui&rft.au=Chen%2C+Zhiyuan&rft.au=Li%2C+Annan&rft.au=Chen%2C+Jiaxin&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=11&rft.spage=7951&rft.epage=7966&rft_id=info:doi/10.1109%2FTCSVT.2022.3189027&rft.externalDocID=9817378
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon