Deep-Learning Technique for Risk-based Action Prediction Using Extremely Low-Resolution Thermopile Sensor Array
Eldering caring is important in today's aging society, especially that accident anticipation/prevention plays an important role. In this paper, a novel approach to preventing elderly accidents based on a very low-resolution thermopile sensor array (TPA) (only 32×32 pixels) is proposed for predi...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 33; no. 6; p. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Eldering caring is important in today's aging society, especially that accident anticipation/prevention plays an important role. In this paper, a novel approach to preventing elderly accidents based on a very low-resolution thermopile sensor array (TPA) (only 32×32 pixels) is proposed for prediction of bed-exit event that might lead to elderly falls in home caring. Low-resolution TPA sensor, capable of collecting far infrared energy, ensures cost-effective monitoring, no interference with user's daily life, and most importantly privacy-preservation. Since most of the fall accidents occur when the elderly attempts to get off the bed without assistance, it is thus the focus of this paper to monitor his/her posture and action via TPA image sensor and then predict that an action of getting off the bed will occur in a near future (e.g., S seconds later). Our system can raise an alarm to the caregivers so that they can intervene and offer the necessary assistance. A deep-learning model based on CNN-RNN (Convolutional neural network-Recurrent neural network) architecture was designed which is capable of predicting the elderly bed-exit intention by S = 5.78 seconds in advance of the action onset at an accuracy of 99.37% according to our dataset evaluation. Our system is also suitable for on-line real-time operation which will be helpful to elderly caring in our society. |
---|---|
AbstractList | Eldering caring is important in today’s aging society, especially that accident anticipation/prevention plays an important role. In this paper, a novel approach to preventing elderly accidents based on a very low-resolution thermopile sensor array (TPA) (only [Formula Omitted] pixels) is proposed for prediction of bed-exit event that might lead to elderly falls in home caring. Low-resolution TPA sensor, capable of collecting far infrared energy, ensures cost-effective monitoring, no interference with user’s daily life, and most importantly privacy-preservation. Since most of the fall accidents occur when the elderly attempts to get off the bed without assistance, it is thus the focus of this paper to monitor his/her posture and action via TPA image sensor and then predict that an action of getting off the bed will occur in a near future (e.g., [Formula Omitted] seconds later). Our system can raise an alarm to the caregivers so that they can intervene and offer the necessary assistance. A deep-learning model based on CNN-RNN (Convolutional neural network-Recurrent neural network) architecture was designed which is capable of predicting the elderly bed-exit intention by [Formula Omitted] seconds in advance of the action onset at an accuracy of 99.37% according to our dataset evaluation. Our system is also suitable for on-line real-time operation which will be helpful to elderly caring in our society. Eldering caring is important in today's aging society, especially that accident anticipation/prevention plays an important role. In this paper, a novel approach to preventing elderly accidents based on a very low-resolution thermopile sensor array (TPA) (only 32×32 pixels) is proposed for prediction of bed-exit event that might lead to elderly falls in home caring. Low-resolution TPA sensor, capable of collecting far infrared energy, ensures cost-effective monitoring, no interference with user's daily life, and most importantly privacy-preservation. Since most of the fall accidents occur when the elderly attempts to get off the bed without assistance, it is thus the focus of this paper to monitor his/her posture and action via TPA image sensor and then predict that an action of getting off the bed will occur in a near future (e.g., S seconds later). Our system can raise an alarm to the caregivers so that they can intervene and offer the necessary assistance. A deep-learning model based on CNN-RNN (Convolutional neural network-Recurrent neural network) architecture was designed which is capable of predicting the elderly bed-exit intention by S = 5.78 seconds in advance of the action onset at an accuracy of 99.37% according to our dataset evaluation. Our system is also suitable for on-line real-time operation which will be helpful to elderly caring in our society. |
Author | Aing, Lee Chiang, Jui-Chiu Morawski, Igor Chen, Kuan-Ting Lie, Wen-Nung |
Author_xml | – sequence: 1 givenname: Igor surname: Morawski fullname: Morawski, Igor organization: Department of Electrical Engineering, National Chung Cheng University (CCU), Chiayi, Taiwan – sequence: 2 givenname: Wen-Nung orcidid: 0000-0002-8166-2844 surname: Lie fullname: Lie, Wen-Nung organization: Department of Electrical Engineering, Center for Innovative Research on Aging Society (CIRAS), and Advanced Institute of Manufacturing with High-tech Innovations (AIM-HI), National Chung Cheng University (CCU), Chiayi, Taiwan – sequence: 3 givenname: Lee orcidid: 0000-0002-8362-7989 surname: Aing fullname: Aing, Lee organization: Department of Electrical Engineering, National Chung Cheng University (CCU), Chiayi, Taiwan – sequence: 4 givenname: Jui-Chiu orcidid: 0000-0003-1397-8393 surname: Chiang fullname: Chiang, Jui-Chiu organization: Department of Electrical Engineering, Center for Innovative Research on Aging Society (CIRAS), and Advanced Institute of Manufacturing with High-tech Innovations (AIM-HI), National Chung Cheng University (CCU), Chiayi, Taiwan – sequence: 5 givenname: Kuan-Ting surname: Chen fullname: Chen, Kuan-Ting organization: Department of Electrical Engineering, National Chung Cheng University (CCU), Chiayi, Taiwan |
BookMark | eNp9kF1PwjAUhhuDiYD-Ab1Z4vWw7dqtvSSIHwmJBoa3S7eeSXGs2I4o_97BiBdeeHXe5LzP-XgHqFfbGhC6JnhECJZ36WTxlo4opnQUUSoxl2eoTzgXIaWY91qNOQkFJfwCDbxfY0yYYEkf2XuAbTgD5WpTvwcpFKvafO4gKK0L5sZ_hLnyoINx0RhbB68OtOnk0h-A6XfjYAPVPpjZr3AO3la7YztdgdvYrakgWEDt22lj59T-Ep2XqvJwdapDtHyYppOncPby-DwZz8KCSt6EhYgkJrxMchZzoZOE6ZzlcSl4wjXQGMeaxJKpRCVaKy0YBRGrMpIRk7KUEA3RbTd362z7jm-ytd25ul2ZUUEjIhkmSesSnatw1nsHZVaYRh3ub5wyVUZwdog3O8abHeLNTvG2KP2Dbp3ZKLf_H7rpIAMAv4CUgsWxjH4Amg2Jaw |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3307138 crossref_primary_10_1002_adma_202402542 |
Cites_doi | 10.1007/978-3-319-54190-7_9 10.1109/TIV.2020.3003889 10.1109/ICIP42928.2021.9506024 10.1109/AVSS.2017.8078497 10.1109/ICCV.2015.364 10.1109/TCSVT.2022.3142771 10.1109/ICIP.2019.8803820 10.1109/TITS.2020.3033436 10.1109/JBHI.2019.2963388 10.1109/CVPR.2016.110 10.1109/JIOT.2019.2915095 10.1109/ICRA.2016.7487478 10.1109/SenSysML50931.2020.00004 10.1109/ICCV.2015.510 10.1109/TCSVT.2020.2975065 10.1016/j.ijge.2013.10.007 10.1109/TCSVT.2022.3156058 10.1109/ICC.2015.7248370 10.1109/CVPRW.2019.00357 10.1109/CVPR.2018.00371 10.1109/VCIP.2018.8698650 10.1109/TITS.2019.2954183 10.1109/TCSVT.2020.3017203 10.14236/ewic/HCI2018.143 10.1109/PIMRC.2014.7136520 10.1109/CVPR.2019.00367 10.1117/12.2566315 10.1109/CVPR.2016.293 10.1109/VCIP.2018.8698710 10.1109/JBHI.2019.2906499 10.1109/ICMLA.2019.00296 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2022.3229059 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics |
EISSN | 1558-2205 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TCSVT_2022_3229059 9984669 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Education, Taiwan – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 109-2221-E-194 -035 - MY3 funderid: 10.13039/501100004663 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 ICLAB IFJZH RIG VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-c839015f7b4658d774db4b6f8575de2606d1694a7a7ddad842e86af393499f9e3 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Sun Jun 29 12:33:18 EDT 2025 Thu Apr 24 22:58:00 EDT 2025 Tue Jul 01 00:41:19 EDT 2025 Wed Aug 27 02:29:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-c839015f7b4658d774db4b6f8575de2606d1694a7a7ddad842e86af393499f9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1397-8393 0000-0002-8166-2844 0000-0002-8362-7989 0000-0002-1071-8695 |
PQID | 2823194017 |
PQPubID | 85433 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2823194017 ieee_primary_9984669 crossref_citationtrail_10_1109_TCSVT_2022_3229059 crossref_primary_10_1109_TCSVT_2022_3229059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref37 ref14 ref31 ref30 ref11 ref33 basu (ref9) 2015 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 (ref39) 2022 gönen (ref24) 2007 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 tao (ref10) 2018 simonyan (ref23) 2014 ref8 ref7 kong (ref4) 2018 ref3 ref6 (ref36) 2022 ref5 tao (ref15) 2019 |
References_xml | – ident: ref20 doi: 10.1007/978-3-319-54190-7_9 – year: 2015 ident: ref9 article-title: Tracking motion and proxemics using thermal-sensor array publication-title: arXiv 1511 08166 – year: 2018 ident: ref10 article-title: Home activity monitoring using low resolution infrared sensor publication-title: arXiv 1811 05416 – year: 2014 ident: ref23 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – ident: ref34 doi: 10.1109/TIV.2020.3003889 – ident: ref30 doi: 10.1109/ICIP42928.2021.9506024 – ident: ref14 doi: 10.1109/AVSS.2017.8078497 – ident: ref18 doi: 10.1109/ICCV.2015.364 – ident: ref38 doi: 10.1109/TCSVT.2022.3142771 – ident: ref22 doi: 10.1109/ICIP.2019.8803820 – ident: ref35 doi: 10.1109/TITS.2020.3033436 – ident: ref31 doi: 10.1109/JBHI.2019.2963388 – ident: ref29 doi: 10.1109/CVPR.2016.110 – ident: ref13 doi: 10.1109/JIOT.2019.2915095 – ident: ref19 doi: 10.1109/ICRA.2016.7487478 – ident: ref17 doi: 10.1109/SenSysML50931.2020.00004 – ident: ref27 doi: 10.1109/ICCV.2015.510 – ident: ref7 doi: 10.1109/TCSVT.2020.2975065 – ident: ref2 doi: 10.1016/j.ijge.2013.10.007 – year: 2007 ident: ref24 publication-title: Analyzing Receiver Operating Characteristic Curves with SAS – ident: ref3 doi: 10.1109/TCSVT.2022.3156058 – start-page: 1 year: 2019 ident: ref15 article-title: 3D convolutional neural network for home monitoring using low resolution thermal-sensor array publication-title: Proc 3rd IET Int Conf Technol Act Assist Living (TechAAL) – ident: ref8 doi: 10.1109/ICC.2015.7248370 – ident: ref28 doi: 10.1109/CVPRW.2019.00357 – ident: ref21 doi: 10.1109/CVPR.2018.00371 – year: 2018 ident: ref4 article-title: Human action recognition and prediction: A survey publication-title: arXiv 1806 11230 – ident: ref37 doi: 10.1109/VCIP.2018.8698650 – ident: ref33 doi: 10.1109/TITS.2019.2954183 – ident: ref32 doi: 10.1109/TCSVT.2020.3017203 – ident: ref11 doi: 10.14236/ewic/HCI2018.143 – ident: ref25 doi: 10.1109/PIMRC.2014.7136520 – ident: ref6 doi: 10.1109/CVPR.2019.00367 – year: 2022 ident: ref39 publication-title: Orthostatic Hypotension – ident: ref16 doi: 10.1117/12.2566315 – ident: ref5 doi: 10.1109/CVPR.2016.293 – year: 2022 ident: ref36 publication-title: Youden/'s J Statistic – ident: ref12 doi: 10.1109/VCIP.2018.8698710 – ident: ref1 doi: 10.1109/JBHI.2019.2906499 – ident: ref26 doi: 10.1109/ICMLA.2019.00296 |
SSID | ssj0014847 |
Score | 2.4377615 |
Snippet | Eldering caring is important in today's aging society, especially that accident anticipation/prevention plays an important role. In this paper, a novel... Eldering caring is important in today’s aging society, especially that accident anticipation/prevention plays an important role. In this paper, a novel... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accidents action prediction Artificial neural networks Cameras Deep learning elderly monitoring low resolution Machine learning Monitoring Neural networks Older adults Older people privacy Real time operation Recurrent neural networks Sensor arrays Sensors Sociology Statistics Task analysis thermopile sensor array Thermopiles |
Title | Deep-Learning Technique for Risk-based Action Prediction Using Extremely Low-Resolution Thermopile Sensor Array |
URI | https://ieeexplore.ieee.org/document/9984669 https://www.proquest.com/docview/2823194017 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHLxp1t02ps1x8YGIiugq3krSTEXU7VK7-Pj1TtJ2ERXxlkPaBmaamW8e3wBsi0iHKjUpVyYWXMhQcCUF-pAA2k4n6xrXO3x-IU9uxOnd_t0E7I57YRDRF59h2y19Lt_m6ciFyvYIGggp1SRMEnCrerXGGQMR-2Fi5C50eUx2rGmQ6ai9_sH1bZ-gYBC0Q0dv7nhJvxghP1Xlx1Xs7cvxHJw3J6vKSh7bo9K0049vpI3_Pfo8zNaOJutVmrEAEzhYhJkv9IOLMO08zYqoeQnyQ8Qhr-lW71m_4XZl5NWyq4eXR-4MnmU93wjBLguX4fFLX3XAjt5KF2p8emdn-St3WYFKpxkpYvGcD-n2YdeEmeltvaLQ78twc3zUPzjh9TQGngZqv-Rp7MMjWWQEeS2W3EZrhJGZG_FpkWCRtF2phI50ZK22sQgwljoLVUigKlMYrsDUIB_gKjBpJFq0GWoUQstAh7ROs1BEMSJ9oAXdRjxJWlOVu4kZT4mHLB2VeJEmTqRJLdIW7IyfGVZEHX_uXnIyGu-sxdOCjUYLkvpffkkClylVhEOjtd-fWodpN4S-KiDbgKmyGOEmuSql2fI6-glQeecZ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROEAPLY9W3UKpD9zAy27ideLjioIWuouqEhC3yI4nVQXdrEJWLfz6jp1khQBVvfngJJZm4vnm9Q3Anoh0qDKTcWViwYUMBVdSoA8JoO318r5xvcOTczm6FGfXg-slOFj0wiCiLz7Drlv6XL4tsrkLlR2SayCkVK9ghez-IKi7tRY5AxH7cWIEGPo8JkvWtsj01GFydHGVkDMYBN3QEZw7ZtJHZsjPVXl2GXsLc_IWJu3Z6sKSm-68Mt3s4Qlt4_8efh3eNFCTDWvd2IAlnG7C60cEhJuw5rBmTdW8BcUXxBlvCFd_sKRld2WEa9n3n3c33Jk8y4a-FYJ9K12Oxy993QE7_lO5YOPtPRsXv7nLC9RazUgVy1_FjO4fdkFeM71tWJb6_h1cnhwnRyPezGPgWaAGFc9iHyDJIyMIt1gCjtYII3M35NMiOUbS9qUSOtKRtdrGIsBY6jxUIblVucLwPSxPiyl-ACaNRIs2R41CaBnokNZZHoooRqQPdKDfiifNGrJyNzPjNvVOS0-lXqSpE2naiLQD-4tnZjVVxz93bzkZLXY24unATqsFafM336WBy5Uq8kSjjy8_9RlWR8lknI5Pz79uw5obSV-Xk-3AclXO8RMBl8rsen39C4UI6mM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning+Technique+for+Risk-based+Action+Prediction+Using+Extremely+Low-Resolution+Thermopile+Sensor+Array&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Morawski%2C+Igor&rft.au=Lie%2C+Wen-Nung&rft.au=Aing%2C+Lee&rft.au=Chiang%2C+Jui-Chiu&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=1051-8215&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCSVT.2022.3229059&rft.externalDocID=9984669 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |