Deep-Learning Technique for Risk-based Action Prediction Using Extremely Low-Resolution Thermopile Sensor Array

Eldering caring is important in today's aging society, especially that accident anticipation/prevention plays an important role. In this paper, a novel approach to preventing elderly accidents based on a very low-resolution thermopile sensor array (TPA) (only 32×32 pixels) is proposed for predi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 33; no. 6; p. 1
Main Authors Morawski, Igor, Lie, Wen-Nung, Aing, Lee, Chiang, Jui-Chiu, Chen, Kuan-Ting
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Eldering caring is important in today's aging society, especially that accident anticipation/prevention plays an important role. In this paper, a novel approach to preventing elderly accidents based on a very low-resolution thermopile sensor array (TPA) (only 32×32 pixels) is proposed for prediction of bed-exit event that might lead to elderly falls in home caring. Low-resolution TPA sensor, capable of collecting far infrared energy, ensures cost-effective monitoring, no interference with user's daily life, and most importantly privacy-preservation. Since most of the fall accidents occur when the elderly attempts to get off the bed without assistance, it is thus the focus of this paper to monitor his/her posture and action via TPA image sensor and then predict that an action of getting off the bed will occur in a near future (e.g., S seconds later). Our system can raise an alarm to the caregivers so that they can intervene and offer the necessary assistance. A deep-learning model based on CNN-RNN (Convolutional neural network-Recurrent neural network) architecture was designed which is capable of predicting the elderly bed-exit intention by S = 5.78 seconds in advance of the action onset at an accuracy of 99.37% according to our dataset evaluation. Our system is also suitable for on-line real-time operation which will be helpful to elderly caring in our society.
AbstractList Eldering caring is important in today’s aging society, especially that accident anticipation/prevention plays an important role. In this paper, a novel approach to preventing elderly accidents based on a very low-resolution thermopile sensor array (TPA) (only [Formula Omitted] pixels) is proposed for prediction of bed-exit event that might lead to elderly falls in home caring. Low-resolution TPA sensor, capable of collecting far infrared energy, ensures cost-effective monitoring, no interference with user’s daily life, and most importantly privacy-preservation. Since most of the fall accidents occur when the elderly attempts to get off the bed without assistance, it is thus the focus of this paper to monitor his/her posture and action via TPA image sensor and then predict that an action of getting off the bed will occur in a near future (e.g., [Formula Omitted] seconds later). Our system can raise an alarm to the caregivers so that they can intervene and offer the necessary assistance. A deep-learning model based on CNN-RNN (Convolutional neural network-Recurrent neural network) architecture was designed which is capable of predicting the elderly bed-exit intention by [Formula Omitted] seconds in advance of the action onset at an accuracy of 99.37% according to our dataset evaluation. Our system is also suitable for on-line real-time operation which will be helpful to elderly caring in our society.
Eldering caring is important in today's aging society, especially that accident anticipation/prevention plays an important role. In this paper, a novel approach to preventing elderly accidents based on a very low-resolution thermopile sensor array (TPA) (only 32×32 pixels) is proposed for prediction of bed-exit event that might lead to elderly falls in home caring. Low-resolution TPA sensor, capable of collecting far infrared energy, ensures cost-effective monitoring, no interference with user's daily life, and most importantly privacy-preservation. Since most of the fall accidents occur when the elderly attempts to get off the bed without assistance, it is thus the focus of this paper to monitor his/her posture and action via TPA image sensor and then predict that an action of getting off the bed will occur in a near future (e.g., S seconds later). Our system can raise an alarm to the caregivers so that they can intervene and offer the necessary assistance. A deep-learning model based on CNN-RNN (Convolutional neural network-Recurrent neural network) architecture was designed which is capable of predicting the elderly bed-exit intention by S = 5.78 seconds in advance of the action onset at an accuracy of 99.37% according to our dataset evaluation. Our system is also suitable for on-line real-time operation which will be helpful to elderly caring in our society.
Author Aing, Lee
Chiang, Jui-Chiu
Morawski, Igor
Chen, Kuan-Ting
Lie, Wen-Nung
Author_xml – sequence: 1
  givenname: Igor
  surname: Morawski
  fullname: Morawski, Igor
  organization: Department of Electrical Engineering, National Chung Cheng University (CCU), Chiayi, Taiwan
– sequence: 2
  givenname: Wen-Nung
  orcidid: 0000-0002-8166-2844
  surname: Lie
  fullname: Lie, Wen-Nung
  organization: Department of Electrical Engineering, Center for Innovative Research on Aging Society (CIRAS), and Advanced Institute of Manufacturing with High-tech Innovations (AIM-HI), National Chung Cheng University (CCU), Chiayi, Taiwan
– sequence: 3
  givenname: Lee
  orcidid: 0000-0002-8362-7989
  surname: Aing
  fullname: Aing, Lee
  organization: Department of Electrical Engineering, National Chung Cheng University (CCU), Chiayi, Taiwan
– sequence: 4
  givenname: Jui-Chiu
  orcidid: 0000-0003-1397-8393
  surname: Chiang
  fullname: Chiang, Jui-Chiu
  organization: Department of Electrical Engineering, Center for Innovative Research on Aging Society (CIRAS), and Advanced Institute of Manufacturing with High-tech Innovations (AIM-HI), National Chung Cheng University (CCU), Chiayi, Taiwan
– sequence: 5
  givenname: Kuan-Ting
  surname: Chen
  fullname: Chen, Kuan-Ting
  organization: Department of Electrical Engineering, National Chung Cheng University (CCU), Chiayi, Taiwan
BookMark eNp9kF1PwjAUhhuDiYD-Ab1Z4vWw7dqtvSSIHwmJBoa3S7eeSXGs2I4o_97BiBdeeHXe5LzP-XgHqFfbGhC6JnhECJZ36WTxlo4opnQUUSoxl2eoTzgXIaWY91qNOQkFJfwCDbxfY0yYYEkf2XuAbTgD5WpTvwcpFKvafO4gKK0L5sZ_hLnyoINx0RhbB68OtOnk0h-A6XfjYAPVPpjZr3AO3la7YztdgdvYrakgWEDt22lj59T-Ep2XqvJwdapDtHyYppOncPby-DwZz8KCSt6EhYgkJrxMchZzoZOE6ZzlcSl4wjXQGMeaxJKpRCVaKy0YBRGrMpIRk7KUEA3RbTd362z7jm-ytd25ul2ZUUEjIhkmSesSnatw1nsHZVaYRh3ub5wyVUZwdog3O8abHeLNTvG2KP2Dbp3ZKLf_H7rpIAMAv4CUgsWxjH4Amg2Jaw
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3307138
crossref_primary_10_1002_adma_202402542
Cites_doi 10.1007/978-3-319-54190-7_9
10.1109/TIV.2020.3003889
10.1109/ICIP42928.2021.9506024
10.1109/AVSS.2017.8078497
10.1109/ICCV.2015.364
10.1109/TCSVT.2022.3142771
10.1109/ICIP.2019.8803820
10.1109/TITS.2020.3033436
10.1109/JBHI.2019.2963388
10.1109/CVPR.2016.110
10.1109/JIOT.2019.2915095
10.1109/ICRA.2016.7487478
10.1109/SenSysML50931.2020.00004
10.1109/ICCV.2015.510
10.1109/TCSVT.2020.2975065
10.1016/j.ijge.2013.10.007
10.1109/TCSVT.2022.3156058
10.1109/ICC.2015.7248370
10.1109/CVPRW.2019.00357
10.1109/CVPR.2018.00371
10.1109/VCIP.2018.8698650
10.1109/TITS.2019.2954183
10.1109/TCSVT.2020.3017203
10.14236/ewic/HCI2018.143
10.1109/PIMRC.2014.7136520
10.1109/CVPR.2019.00367
10.1117/12.2566315
10.1109/CVPR.2016.293
10.1109/VCIP.2018.8698710
10.1109/JBHI.2019.2906499
10.1109/ICMLA.2019.00296
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3229059
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1558-2205
EndPage 1
ExternalDocumentID 10_1109_TCSVT_2022_3229059
9984669
Genre orig-research
GrantInformation_xml – fundername: Ministry of Education, Taiwan
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 109-2221-E-194 -035 - MY3
  funderid: 10.13039/501100004663
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
RIG
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-c839015f7b4658d774db4b6f8575de2606d1694a7a7ddad842e86af393499f9e3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Sun Jun 29 12:33:18 EDT 2025
Thu Apr 24 22:58:00 EDT 2025
Tue Jul 01 00:41:19 EDT 2025
Wed Aug 27 02:29:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-c839015f7b4658d774db4b6f8575de2606d1694a7a7ddad842e86af393499f9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1397-8393
0000-0002-8166-2844
0000-0002-8362-7989
0000-0002-1071-8695
PQID 2823194017
PQPubID 85433
PageCount 1
ParticipantIDs proquest_journals_2823194017
ieee_primary_9984669
crossref_citationtrail_10_1109_TCSVT_2022_3229059
crossref_primary_10_1109_TCSVT_2022_3229059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref37
ref14
ref31
ref30
ref11
ref33
basu (ref9) 2015
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
(ref39) 2022
gönen (ref24) 2007
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
tao (ref10) 2018
simonyan (ref23) 2014
ref8
ref7
kong (ref4) 2018
ref3
ref6
(ref36) 2022
ref5
tao (ref15) 2019
References_xml – ident: ref20
  doi: 10.1007/978-3-319-54190-7_9
– year: 2015
  ident: ref9
  article-title: Tracking motion and proxemics using thermal-sensor array
  publication-title: arXiv 1511 08166
– year: 2018
  ident: ref10
  article-title: Home activity monitoring using low resolution infrared sensor
  publication-title: arXiv 1811 05416
– year: 2014
  ident: ref23
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref34
  doi: 10.1109/TIV.2020.3003889
– ident: ref30
  doi: 10.1109/ICIP42928.2021.9506024
– ident: ref14
  doi: 10.1109/AVSS.2017.8078497
– ident: ref18
  doi: 10.1109/ICCV.2015.364
– ident: ref38
  doi: 10.1109/TCSVT.2022.3142771
– ident: ref22
  doi: 10.1109/ICIP.2019.8803820
– ident: ref35
  doi: 10.1109/TITS.2020.3033436
– ident: ref31
  doi: 10.1109/JBHI.2019.2963388
– ident: ref29
  doi: 10.1109/CVPR.2016.110
– ident: ref13
  doi: 10.1109/JIOT.2019.2915095
– ident: ref19
  doi: 10.1109/ICRA.2016.7487478
– ident: ref17
  doi: 10.1109/SenSysML50931.2020.00004
– ident: ref27
  doi: 10.1109/ICCV.2015.510
– ident: ref7
  doi: 10.1109/TCSVT.2020.2975065
– ident: ref2
  doi: 10.1016/j.ijge.2013.10.007
– year: 2007
  ident: ref24
  publication-title: Analyzing Receiver Operating Characteristic Curves with SAS
– ident: ref3
  doi: 10.1109/TCSVT.2022.3156058
– start-page: 1
  year: 2019
  ident: ref15
  article-title: 3D convolutional neural network for home monitoring using low resolution thermal-sensor array
  publication-title: Proc 3rd IET Int Conf Technol Act Assist Living (TechAAL)
– ident: ref8
  doi: 10.1109/ICC.2015.7248370
– ident: ref28
  doi: 10.1109/CVPRW.2019.00357
– ident: ref21
  doi: 10.1109/CVPR.2018.00371
– year: 2018
  ident: ref4
  article-title: Human action recognition and prediction: A survey
  publication-title: arXiv 1806 11230
– ident: ref37
  doi: 10.1109/VCIP.2018.8698650
– ident: ref33
  doi: 10.1109/TITS.2019.2954183
– ident: ref32
  doi: 10.1109/TCSVT.2020.3017203
– ident: ref11
  doi: 10.14236/ewic/HCI2018.143
– ident: ref25
  doi: 10.1109/PIMRC.2014.7136520
– ident: ref6
  doi: 10.1109/CVPR.2019.00367
– year: 2022
  ident: ref39
  publication-title: Orthostatic Hypotension
– ident: ref16
  doi: 10.1117/12.2566315
– ident: ref5
  doi: 10.1109/CVPR.2016.293
– year: 2022
  ident: ref36
  publication-title: Youden/'s J Statistic
– ident: ref12
  doi: 10.1109/VCIP.2018.8698710
– ident: ref1
  doi: 10.1109/JBHI.2019.2906499
– ident: ref26
  doi: 10.1109/ICMLA.2019.00296
SSID ssj0014847
Score 2.4377615
Snippet Eldering caring is important in today's aging society, especially that accident anticipation/prevention plays an important role. In this paper, a novel...
Eldering caring is important in today’s aging society, especially that accident anticipation/prevention plays an important role. In this paper, a novel...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accidents
action prediction
Artificial neural networks
Cameras
Deep learning
elderly monitoring
low resolution
Machine learning
Monitoring
Neural networks
Older adults
Older people
privacy
Real time operation
Recurrent neural networks
Sensor arrays
Sensors
Sociology
Statistics
Task analysis
thermopile sensor array
Thermopiles
Title Deep-Learning Technique for Risk-based Action Prediction Using Extremely Low-Resolution Thermopile Sensor Array
URI https://ieeexplore.ieee.org/document/9984669
https://www.proquest.com/docview/2823194017
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHLxp1t02ps1x8YGIiugq3krSTEXU7VK7-Pj1TtJ2ERXxlkPaBmaamW8e3wBsi0iHKjUpVyYWXMhQcCUF-pAA2k4n6xrXO3x-IU9uxOnd_t0E7I57YRDRF59h2y19Lt_m6ciFyvYIGggp1SRMEnCrerXGGQMR-2Fi5C50eUx2rGmQ6ai9_sH1bZ-gYBC0Q0dv7nhJvxghP1Xlx1Xs7cvxHJw3J6vKSh7bo9K0049vpI3_Pfo8zNaOJutVmrEAEzhYhJkv9IOLMO08zYqoeQnyQ8Qhr-lW71m_4XZl5NWyq4eXR-4MnmU93wjBLguX4fFLX3XAjt5KF2p8emdn-St3WYFKpxkpYvGcD-n2YdeEmeltvaLQ78twc3zUPzjh9TQGngZqv-Rp7MMjWWQEeS2W3EZrhJGZG_FpkWCRtF2phI50ZK22sQgwljoLVUigKlMYrsDUIB_gKjBpJFq0GWoUQstAh7ROs1BEMSJ9oAXdRjxJWlOVu4kZT4mHLB2VeJEmTqRJLdIW7IyfGVZEHX_uXnIyGu-sxdOCjUYLkvpffkkClylVhEOjtd-fWodpN4S-KiDbgKmyGOEmuSql2fI6-glQeecZ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ROEAPLY9W3UKpD9zAy27ideLjioIWuouqEhC3yI4nVQXdrEJWLfz6jp1khQBVvfngJJZm4vnm9Q3Anoh0qDKTcWViwYUMBVdSoA8JoO318r5xvcOTczm6FGfXg-slOFj0wiCiLz7Drlv6XL4tsrkLlR2SayCkVK9ghez-IKi7tRY5AxH7cWIEGPo8JkvWtsj01GFydHGVkDMYBN3QEZw7ZtJHZsjPVXl2GXsLc_IWJu3Z6sKSm-68Mt3s4Qlt4_8efh3eNFCTDWvd2IAlnG7C60cEhJuw5rBmTdW8BcUXxBlvCFd_sKRld2WEa9n3n3c33Jk8y4a-FYJ9K12Oxy993QE7_lO5YOPtPRsXv7nLC9RazUgVy1_FjO4fdkFeM71tWJb6_h1cnhwnRyPezGPgWaAGFc9iHyDJIyMIt1gCjtYII3M35NMiOUbS9qUSOtKRtdrGIsBY6jxUIblVucLwPSxPiyl-ACaNRIs2R41CaBnokNZZHoooRqQPdKDfiifNGrJyNzPjNvVOS0-lXqSpE2naiLQD-4tnZjVVxz93bzkZLXY24unATqsFafM336WBy5Uq8kSjjy8_9RlWR8lknI5Pz79uw5obSV-Xk-3AclXO8RMBl8rsen39C4UI6mM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning+Technique+for+Risk-based+Action+Prediction+Using+Extremely+Low-Resolution+Thermopile+Sensor+Array&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Morawski%2C+Igor&rft.au=Lie%2C+Wen-Nung&rft.au=Aing%2C+Lee&rft.au=Chiang%2C+Jui-Chiu&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=1051-8215&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCSVT.2022.3229059&rft.externalDocID=9984669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon