PSCC-Net: Progressive Spatio-Channel Correlation Network for Image Manipulation Detection and Localization

To defend against manipulation of image content, such as splicing, copy-move, and removal, we develop a Progressive Spatio-Channel Correlation Network (PSCC-Net) to detect and localize image manipulations. PSCC-Net processes the image in a two-path procedure: a top-down path that extracts local and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 11; pp. 7505 - 7517
Main Authors Liu, Xiaohong, Liu, Yaojie, Chen, Jun, Liu, Xiaoming
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To defend against manipulation of image content, such as splicing, copy-move, and removal, we develop a Progressive Spatio-Channel Correlation Network (PSCC-Net) to detect and localize image manipulations. PSCC-Net processes the image in a two-path procedure: a top-down path that extracts local and global features and a bottom-up path that detects whether the input image is manipulated, and estimates its manipulation masks at multiple scales, where each mask is conditioned on the previous one. Different from the conventional encoder-decoder and no-pooling structures, PSCC-Net leverages features at different scales with dense cross-connections to produce manipulation masks in a coarse-to-fine fashion. Moreover, a Spatio-Channel Correlation Module (SCCM) captures both spatial and channel-wise correlations in the bottom-up path, which endows features with holistic cues, enabling the network to cope with a wide range of manipulation attacks. Thanks to the light-weight backbone and progressive mechanism, PSCC-Net can process <inline-formula> <tex-math notation="LaTeX">1,080\text{P} </tex-math></inline-formula> images at 50+FPS. Extensive experiments demonstrate the superiority of PSCC-Net over the state-of-the-art methods on both detection and localization. Codes and models are available at https://github.com/proteus1991/PSCC-Net .
AbstractList To defend against manipulation of image content, such as splicing, copy-move, and removal, we develop a Progressive Spatio-Channel Correlation Network (PSCC-Net) to detect and localize image manipulations. PSCC-Net processes the image in a two-path procedure: a top-down path that extracts local and global features and a bottom-up path that detects whether the input image is manipulated, and estimates its manipulation masks at multiple scales, where each mask is conditioned on the previous one. Different from the conventional encoder-decoder and no-pooling structures, PSCC-Net leverages features at different scales with dense cross-connections to produce manipulation masks in a coarse-to-fine fashion. Moreover, a Spatio-Channel Correlation Module (SCCM) captures both spatial and channel-wise correlations in the bottom-up path, which endows features with holistic cues, enabling the network to cope with a wide range of manipulation attacks. Thanks to the light-weight backbone and progressive mechanism, PSCC-Net can process [Formula Omitted] images at 50+FPS. Extensive experiments demonstrate the superiority of PSCC-Net over the state-of-the-art methods on both detection and localization. Codes and models are available at https://github.com/proteus1991/PSCC-Net .
To defend against manipulation of image content, such as splicing, copy-move, and removal, we develop a Progressive Spatio-Channel Correlation Network (PSCC-Net) to detect and localize image manipulations. PSCC-Net processes the image in a two-path procedure: a top-down path that extracts local and global features and a bottom-up path that detects whether the input image is manipulated, and estimates its manipulation masks at multiple scales, where each mask is conditioned on the previous one. Different from the conventional encoder-decoder and no-pooling structures, PSCC-Net leverages features at different scales with dense cross-connections to produce manipulation masks in a coarse-to-fine fashion. Moreover, a Spatio-Channel Correlation Module (SCCM) captures both spatial and channel-wise correlations in the bottom-up path, which endows features with holistic cues, enabling the network to cope with a wide range of manipulation attacks. Thanks to the light-weight backbone and progressive mechanism, PSCC-Net can process <inline-formula> <tex-math notation="LaTeX">1,080\text{P} </tex-math></inline-formula> images at 50+FPS. Extensive experiments demonstrate the superiority of PSCC-Net over the state-of-the-art methods on both detection and localization. Codes and models are available at https://github.com/proteus1991/PSCC-Net .
Author Liu, Xiaoming
Chen, Jun
Liu, Yaojie
Liu, Xiaohong
Author_xml – sequence: 1
  givenname: Xiaohong
  orcidid: 0000-0001-6377-4730
  surname: Liu
  fullname: Liu, Xiaohong
  email: xiaohongliu@sjtu.edu.cn
  organization: Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
– sequence: 2
  givenname: Yaojie
  orcidid: 0000-0003-3756-7820
  surname: Liu
  fullname: Liu, Yaojie
  email: liuyaoj1@msu.edu
  organization: Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-8084-9332
  surname: Chen
  fullname: Chen, Jun
  email: chenjun@mcmaster.ca
  organization: Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
– sequence: 4
  givenname: Xiaoming
  surname: Liu
  fullname: Liu, Xiaoming
  email: liuxm@msu.edu
  organization: Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
BookMark eNp9UMtOwzAQtFCRaAs_AJdInFP8iBObGwqvSgUqtXCNnGRdXNI4OCkIvp4krThw4LSjnZkd7YzQoLQlIHRK8IQQLC-W8eJlOaGY0gkjQvKAH6Ah4Vz4lGI-aDHmxBeU8CM0qus1xiQQQTRE6_kijv1HaC69ubMrB3VtPsBbVKox1o9fVVlC4cXWOSi6Vem12k_r3jxtnTfdqBV4D6o01XZPX0MDWY9UmXszm6nCfPfUMTrUqqjhZD_H6Pn2Zhnf-7Onu2l8NfMzKnnjZ0xKonhItcQBVkxGqdapinSY8m6RBwHVea4jiAKVR2nIMBURBsVIRlgg2Bid7-5Wzr5voW6Std26so1MaERlyARlnYruVJmzde1AJ5UzG-W-EoKTrtOk7zTpOk32nbYm8ceUmaZ_rnHKFP9bz3ZWAwC_WVIQKTFjPyIqh30
CODEN ITCTEM
CitedBy_id crossref_primary_10_3390_computation12110228
crossref_primary_10_3390_jimaging10020042
crossref_primary_10_1016_j_jvcir_2025_104396
crossref_primary_10_1016_j_knosys_2024_111988
crossref_primary_10_1080_23742917_2023_2192888
crossref_primary_10_1007_s11760_024_03376_x
crossref_primary_10_1016_j_jvcir_2023_103981
crossref_primary_10_3390_electronics12061451
crossref_primary_10_1109_TIM_2024_3451570
crossref_primary_10_1117_1_JEI_32_6_063010
crossref_primary_10_1016_j_jisa_2025_103965
crossref_primary_10_1016_j_asoc_2024_112068
crossref_primary_10_1109_ACCESS_2024_3413709
crossref_primary_10_1002_aisy_202300749
crossref_primary_10_1007_s00371_024_03482_4
crossref_primary_10_1093_comjnl_bxae112
crossref_primary_10_1109_TII_2024_3359454
crossref_primary_10_1109_TCSVT_2023_3251444
crossref_primary_10_1109_TCSVT_2023_3289171
crossref_primary_10_1109_TIFS_2024_3381470
crossref_primary_10_1109_TIFS_2023_3306181
crossref_primary_10_1049_ipr2_12885
crossref_primary_10_1016_j_neucom_2025_129471
crossref_primary_10_1007_s11760_024_03389_6
crossref_primary_10_1016_j_eswa_2024_124975
crossref_primary_10_3390_electronics11030403
crossref_primary_10_1109_TII_2024_3476541
crossref_primary_10_1007_s11263_024_02255_9
crossref_primary_10_1016_j_patcog_2024_110828
crossref_primary_10_3390_bdcc8090119
crossref_primary_10_1109_TCSVT_2024_3390127
crossref_primary_10_3390_electronics13193919
crossref_primary_10_1109_TCSVT_2024_3473933
crossref_primary_10_1177_30504554241301395
crossref_primary_10_1016_j_eswa_2024_124171
crossref_primary_10_1016_j_neucom_2022_09_060
crossref_primary_10_1109_TCE_2024_3367947
crossref_primary_10_1016_j_knosys_2024_112776
crossref_primary_10_1109_TIM_2023_3338703
crossref_primary_10_1109_TPAMI_2024_3432551
crossref_primary_10_1016_j_asoc_2024_111914
crossref_primary_10_1016_j_eswa_2025_126492
crossref_primary_10_1016_j_patcog_2024_111230
crossref_primary_10_1109_TAI_2024_3379941
crossref_primary_10_1016_j_jvcir_2025_104393
crossref_primary_10_3390_math11143134
crossref_primary_10_1007_s00371_021_02310_3
crossref_primary_10_1016_j_imavis_2024_105342
crossref_primary_10_3390_app132112053
crossref_primary_10_1016_j_jvcir_2024_104210
crossref_primary_10_1109_ACCESS_2024_3410974
crossref_primary_10_1109_TMM_2023_3270629
crossref_primary_10_1007_s11760_024_03775_0
crossref_primary_10_1016_j_jisa_2024_103863
crossref_primary_10_1109_TCSVT_2023_3269948
crossref_primary_10_1016_j_dsp_2024_104901
crossref_primary_10_1016_j_patcog_2025_111565
crossref_primary_10_1109_TIFS_2025_3531103
crossref_primary_10_1145_3678883
crossref_primary_10_1016_j_jisa_2024_103825
crossref_primary_10_1007_s11760_025_03964_5
crossref_primary_10_32604_cmc_2024_051705
crossref_primary_10_1109_TCSVT_2023_3299278
crossref_primary_10_1016_j_dsp_2025_105114
crossref_primary_10_1016_j_displa_2024_102637
crossref_primary_10_1109_TGRS_2024_3502035
crossref_primary_10_1117_1_JEI_33_3_033027
crossref_primary_10_1016_j_patter_2024_101038
crossref_primary_10_1016_j_engappai_2023_107200
crossref_primary_10_1016_j_knosys_2024_112545
crossref_primary_10_1109_TIFS_2024_3424987
crossref_primary_10_1016_j_neunet_2024_106430
crossref_primary_10_1109_TIFS_2025_3541957
crossref_primary_10_1016_j_patcog_2024_111136
crossref_primary_10_1109_TCSVT_2023_3247607
crossref_primary_10_1007_s11042_025_20626_3
crossref_primary_10_1111_exsy_13729
crossref_primary_10_1016_j_eswa_2024_123501
crossref_primary_10_3390_electronics13020447
crossref_primary_10_1016_j_jvcir_2024_104267
crossref_primary_10_1016_j_knosys_2024_111656
crossref_primary_10_1016_j_eswa_2024_123548
crossref_primary_10_1109_ACCESS_2025_3545830
crossref_primary_10_1016_j_patcog_2024_110727
crossref_primary_10_1109_LSP_2023_3279018
crossref_primary_10_1109_LSP_2024_3442089
crossref_primary_10_1007_s00371_022_02620_0
crossref_primary_10_1016_j_neucom_2024_128607
crossref_primary_10_1109_TCSVT_2023_3281448
crossref_primary_10_1109_LSP_2024_3455230
crossref_primary_10_1007_s11760_024_03622_2
crossref_primary_10_3390_sym15101898
crossref_primary_10_1145_3698770
crossref_primary_10_3390_s24134143
crossref_primary_10_1007_s00530_024_01583_7
Cites_doi 10.1016/j.inffus.2020.06.014
10.1007/978-3-319-10602-1_48
10.1109/CVPR42600.2020.00559
10.1109/TCSVT.2021.3075039
10.1109/TCSVT.2018.2804768
10.1109/CVPR52688.2022.01495
10.1109/CVPR42600.2020.00302
10.1109/CVPR42600.2020.00926
10.1109/CVPR42600.2020.00790
10.1109/ICIP.2016.7532339
10.1109/TCSVT.2020.2993004
10.1109/ICCV.2019.00320
10.1007/978-3-030-01234-2_1
10.1007/978-3-030-58523-5_24
10.1007/978-3-030-58529-7_1
10.1109/TCSVT.2021.3074259
10.1109/TCSVT.2020.3046240
10.1109/TIFS.2015.2455334
10.1007/978-3-030-01252-6_7
10.1109/ChinaSIP.2013.6625374
10.1109/CVPR.2018.00264
10.1109/WIFS.2015.7368565
10.1007/978-3-030-58621-8_6
10.1007/978-3-030-58589-1_19
10.1109/TCSVT.2021.3133859
10.1109/CVPR.2018.00813
10.1109/CVPR.2018.00116
10.1109/WACV.2018.00211
10.1109/CVPR42600.2020.00582
10.1109/ICCV.2019.00741
10.1016/j.image.2018.05.015
10.1109/CVPR.2018.00081
10.1109/CVPR42600.2020.00837
10.1109/CVPR.2019.00326
10.1109/WACVW50321.2020.9096940
10.1145/1774088.1774427
10.1007/978-3-030-58539-6_21
10.1109/CVPR42600.2020.00803
10.1109/CVPR42600.2020.00526
10.1109/CVPR.2019.00977
10.1109/TPAMI.2016.2577031
10.1109/TIFS.2019.2916364
10.1109/CVPR42600.2020.00473
10.1109/TIP.2019.2895466
10.1109/CVPR.2016.90
10.1109/TPAMI.2020.2983686
10.1109/ICCV.2017.532
10.1109/ICCV.2019.00606
10.1145/3123266.3123411
10.1109/CVPR.2018.00343
10.1109/CVPRW.2017.232
10.1109/TIFS.2019.2902826
10.1109/CVPR.2018.00745
10.1186/s13635-017-0067-2
10.1109/TCSVT.2021.3123829
10.1109/CVPR.2019.00740
10.1007/s11263-013-0688-y
10.1007/978-3-030-58592-1_3
10.1016/j.jvcir.2018.01.010
10.1109/CVPRW.2017.233
10.1007/978-3-030-01231-1_11
10.1109/TIFS.2012.2190402
10.1109/CVPR42600.2020.00778
10.1109/CVPR42600.2020.01371
10.1109/CVPR46437.2021.00342
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3189545
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 7517
ExternalDocumentID 10_1109_TCSVT_2022_3189545
9819903
Genre orig-research
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency (DARPA)
  grantid: HR00112090131
  funderid: 10.13039/100000185
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-c3991a562f9040a397bffba7f6b5040ad442fddf7e74ad7b6302870ea31c13483
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Sun Jun 29 15:21:14 EDT 2025
Tue Jul 01 00:41:18 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Wed Aug 27 02:14:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-c3991a562f9040a397bffba7f6b5040ad442fddf7e74ad7b6302870ea31c13483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3756-7820
0000-0002-8084-9332
0000-0001-6377-4730
PQID 2729638238
PQPubID 85433
PageCount 13
ParticipantIDs ieee_primary_9819903
proquest_journals_2729638238
crossref_primary_10_1109_TCSVT_2022_3189545
crossref_citationtrail_10_1109_TCSVT_2022_3189545
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
Asnani (ref26) 2021
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref19
ref18
ref51
ref50
Ng (ref73) 2022
ref46
ref48
ref47
ref42
ref41
ref44
ref43
ref49
(ref70) 2022
ref8
ref7
ref9
Thomson (ref16) 2020
ref4
ref3
Vaswani (ref57)
ref6
ref5
Willingham (ref17) 2020
ref40
Joseph (ref45) 2015; 2
Kniaz (ref35)
Kingma (ref77)
ref34
ref37
ref36
ref31
ref30
ref74
ref33
ref32
ref76
ref2
ref1
ref39
ref38
Mortenson (ref69) 1999
ref71
ref72
ref24
ref68
ref23
ref67
ref25
ref20
ref64
ref22
ref66
ref21
ref65
ref28
ref27
ref29
(ref75) 2016
Park (ref63)
ref60
ref62
ref61
References_xml – ident: ref12
  doi: 10.1016/j.inffus.2020.06.014
– volume-title: Camera Model Identification
  year: 2022
  ident: ref70
– volume: 2
  start-page: 740
  issue: 4
  year: 2015
  ident: ref45
  article-title: Literature survey on image manipulation detection
  publication-title: Int. Res. J. Eng. Technol.
– start-page: 1
  volume-title: Proc. Brit. Mach. Vis. Conf. (BMVC)
  ident: ref63
  article-title: BAM: Bottleneck attention module
– ident: ref68
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref2
  doi: 10.1109/CVPR42600.2020.00559
– ident: ref44
  doi: 10.1109/TCSVT.2021.3075039
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref57
  article-title: Attention is all you need
– ident: ref40
  doi: 10.1109/TCSVT.2018.2804768
– ident: ref25
  doi: 10.1109/CVPR52688.2022.01495
– ident: ref20
  doi: 10.1109/CVPR42600.2020.00302
– ident: ref9
  doi: 10.1109/CVPR42600.2020.00926
– ident: ref1
  doi: 10.1109/CVPR42600.2020.00790
– ident: ref38
  doi: 10.1109/ICIP.2016.7532339
– ident: ref42
  doi: 10.1109/TCSVT.2020.2993004
– ident: ref50
  doi: 10.1109/ICCV.2019.00320
– ident: ref64
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref46
  doi: 10.1007/978-3-030-58523-5_24
– ident: ref8
  doi: 10.1007/978-3-030-58529-7_1
– ident: ref15
  doi: 10.1109/TCSVT.2021.3074259
– ident: ref43
  doi: 10.1109/TCSVT.2020.3046240
– ident: ref37
  doi: 10.1109/TIFS.2015.2455334
– ident: ref10
  doi: 10.1007/978-3-030-01252-6_7
– ident: ref74
  doi: 10.1109/ChinaSIP.2013.6625374
– ident: ref52
  doi: 10.1109/CVPR.2018.00264
– ident: ref31
  doi: 10.1109/WIFS.2015.7368565
– ident: ref4
  doi: 10.1007/978-3-030-58621-8_6
– ident: ref18
  doi: 10.1007/978-3-030-58589-1_19
– ident: ref14
  doi: 10.1109/TCSVT.2021.3133859
– ident: ref59
  doi: 10.1109/CVPR.2018.00813
– ident: ref23
  doi: 10.1109/CVPR.2018.00116
– ident: ref39
  doi: 10.1109/WACV.2018.00211
– volume-title: Columbia Image Splicing Detection Evaluation Dataset
  year: 2022
  ident: ref73
– volume-title: NIST: Nist Nimble 2016 Datasets
  year: 2016
  ident: ref75
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref35
  article-title: The point where reality meets fantasy: Mixed adversarial generators for image splice detection
– ident: ref13
  doi: 10.1109/CVPR42600.2020.00582
– ident: ref60
  doi: 10.1109/ICCV.2019.00741
– ident: ref41
  doi: 10.1016/j.image.2018.05.015
– ident: ref53
  doi: 10.1109/CVPR.2018.00081
– ident: ref51
  doi: 10.1109/CVPR42600.2020.00837
– ident: ref65
  doi: 10.1109/CVPR.2019.00326
– ident: ref76
  doi: 10.1109/WACVW50321.2020.9096940
– ident: ref72
  doi: 10.1145/1774088.1774427
– ident: ref54
  doi: 10.1007/978-3-030-58539-6_21
– ident: ref61
  doi: 10.1109/CVPR42600.2020.00803
– ident: ref3
  doi: 10.1109/CVPR42600.2020.00526
– ident: ref11
  doi: 10.1109/CVPR.2019.00977
– ident: ref48
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref19
  doi: 10.1109/TIFS.2019.2916364
– ident: ref29
  doi: 10.1109/CVPR42600.2020.00473
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref77
  article-title: Adam: A method for stochastic optimization
– volume-title: Is that video real?
  year: 2020
  ident: ref17
– volume-title: Seeing no longer means believing
  year: 2020
  ident: ref16
– ident: ref24
  doi: 10.1109/TIP.2019.2895466
– year: 2021
  ident: ref26
  article-title: Reverse engineering of generative models: Inferring model hyperparameters from generated images
  publication-title: arXiv:2106.07873
– ident: ref66
  doi: 10.1109/CVPR.2016.90
– volume-title: Mathematics for Computer Graphics Applications
  year: 1999
  ident: ref69
– ident: ref27
  doi: 10.1109/TPAMI.2020.2983686
– ident: ref21
  doi: 10.1109/ICCV.2017.532
– ident: ref5
  doi: 10.1109/ICCV.2019.00606
– ident: ref34
  doi: 10.1145/3123266.3123411
– ident: ref49
  doi: 10.1109/CVPR.2018.00343
– ident: ref33
  doi: 10.1109/CVPRW.2017.232
– ident: ref67
  doi: 10.1109/TIFS.2019.2902826
– ident: ref58
  doi: 10.1109/CVPR.2018.00745
– ident: ref71
  doi: 10.1186/s13635-017-0067-2
– ident: ref36
  doi: 10.1109/TCSVT.2021.3123829
– ident: ref56
  doi: 10.1109/CVPR.2019.00740
– ident: ref30
  doi: 10.1007/s11263-013-0688-y
– ident: ref55
  doi: 10.1007/978-3-030-58592-1_3
– ident: ref22
  doi: 10.1016/j.jvcir.2018.01.010
– ident: ref32
  doi: 10.1109/CVPRW.2017.233
– ident: ref28
  doi: 10.1007/978-3-030-01231-1_11
– ident: ref47
  doi: 10.1109/TIFS.2012.2190402
– ident: ref6
  doi: 10.1109/CVPR42600.2020.00778
– ident: ref7
  doi: 10.1109/CVPR42600.2020.01371
– ident: ref62
  doi: 10.1109/CVPR46437.2021.00342
SSID ssj0014847
Score 2.7130365
Snippet To defend against manipulation of image content, such as splicing, copy-move, and removal, we develop a Progressive Spatio-Channel Correlation Network...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7505
SubjectTerms attention mechanism
Coders
Correlation
Encoders-Decoders
Estimation
Feature extraction
Forgery
Image manipulation
Image manipulation detection and localization
Localization
Location awareness
Masks
progressive mechanism
Splicing
Task analysis
Weight reduction
Title PSCC-Net: Progressive Spatio-Channel Correlation Network for Image Manipulation Detection and Localization
URI https://ieeexplore.ieee.org/document/9819903
https://www.proquest.com/docview/2729638238
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3rwVcVqlT1407R5bhJvEi1VbCm0ld7CbrILak1FUw_-emc2D0RFvIWwGxZmd-ebzPfNEHIKd6Kd8gRr7HvMcBM46eCGuRFKTzCmlOMx1A4PR2wwc2_n3rxBzmstjJRSk89kFx91Lj9dJiv8VdYLwX2FWNpzDQK3QqtVZwzcQDcTA7hgGQH4sUogY4a9aTS5n0IoaNsQoQahh9KlL05Id1X5cRVr_9LfIsNqZQWt5Km7ykU3-fhWtPG_S98mmyXQpJfFztghDZntko0v5Qdb5HE8iSJjJPMLOkaaFjJi3yWdaJK1gbqDTC5ohP07CsYcHRWkcQpIl948w1VEhzx7qFqA0SuZa2ZXRnmW0jt0k6XMc4_M-tfTaGCUvReMxA693EgAuFgcwJEK4ZhzQC1CKcF9xYSHL1LXtVWaKl_6Lk99wRwTU6aSO1ZiOW7g7JNmtszkAaGCKZubnrItYWF9P-H7sBsUACdhOo4j2sSqjBEnZWFy7I-xiHWAYoaxNmCMBoxLA7bJWT3npSjL8efoFlqkHlkao006lc3j8uS-xTZEGwyTo8Hh77OOyDp-u9Ajdkgzf13JYwAmuTjRO_ITi6jenQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1PT9RAFH9BPCgHUdGwiDgHPZku7bQzbU04mALZld0NyS6GW51pZxIBi4GuRj-LX4XvxnvTdkOQeCPx1jQzbTrzm_d7r-8fwFuUibxUBdXYF9KLCjzpSMPKS43QUlobCkm5w-OJHBxFn47F8RL8WeTCGGNc8Jnp06Xz5ZfnxZx-lW2nSF-p37WqPjC_fqKBdrkz3MXdfMf5_t4sG3htDwGv4KmovQIJOFBI8jZFuCpkX22tVrGVWtCNMoq4LUsbmzhSZaxl6JPrz6gwKIIwSkJ87gN4iF8ieJMdtvBRRIlrX4YKSuAlyJxdSo6fbs-y6ecZGp-co02cpIKSpW7Qnuvj8pfwd4y2vwpX3Vo0gSyn_Xmt-8XvW2Ui_9fFegpPWlWafWyw_wyWTPUcVm4UWFyDk8NplnkTU39ghxSIRjG_PwybujByjzIrKnPGMupQ0sQEskkTFs9Ql2fDbyhs2VhVX7smZ2zX1C52rWKqKtmIFIE2kfUFHN3Lx76E5eq8MuvAtLRc-cLyQAdUwVDHMeLdomqo_TAMdQ-CbvPzoi29Th1AznJngvlp7gCTE2DyFjA9eL-Y870pPPLP0WuEgMXIdvN7sNlhLG9l02XO0Z6S5P5NNu6e9QYeDWbjUT4aTg5ewWN6T5N9uQnL9cXcvEY1rNZb7jQw-HLfiLoGVtU7yA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PSCC-Net%3A+Progressive+Spatio-Channel+Correlation+Network+for+Image+Manipulation+Detection+and+Localization&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Liu%2C+Xiaohong&rft.au=Liu%2C+Yaojie&rft.au=Chen%2C+Jun&rft.au=Liu%2C+Xiaoming&rft.date=2022-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=11&rft.spage=7505&rft_id=info:doi/10.1109%2FTCSVT.2022.3189545&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon