PSCC-Net: Progressive Spatio-Channel Correlation Network for Image Manipulation Detection and Localization
To defend against manipulation of image content, such as splicing, copy-move, and removal, we develop a Progressive Spatio-Channel Correlation Network (PSCC-Net) to detect and localize image manipulations. PSCC-Net processes the image in a two-path procedure: a top-down path that extracts local and...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 11; pp. 7505 - 7517 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To defend against manipulation of image content, such as splicing, copy-move, and removal, we develop a Progressive Spatio-Channel Correlation Network (PSCC-Net) to detect and localize image manipulations. PSCC-Net processes the image in a two-path procedure: a top-down path that extracts local and global features and a bottom-up path that detects whether the input image is manipulated, and estimates its manipulation masks at multiple scales, where each mask is conditioned on the previous one. Different from the conventional encoder-decoder and no-pooling structures, PSCC-Net leverages features at different scales with dense cross-connections to produce manipulation masks in a coarse-to-fine fashion. Moreover, a Spatio-Channel Correlation Module (SCCM) captures both spatial and channel-wise correlations in the bottom-up path, which endows features with holistic cues, enabling the network to cope with a wide range of manipulation attacks. Thanks to the light-weight backbone and progressive mechanism, PSCC-Net can process <inline-formula> <tex-math notation="LaTeX">1,080\text{P} </tex-math></inline-formula> images at 50+FPS. Extensive experiments demonstrate the superiority of PSCC-Net over the state-of-the-art methods on both detection and localization. Codes and models are available at https://github.com/proteus1991/PSCC-Net . |
---|---|
AbstractList | To defend against manipulation of image content, such as splicing, copy-move, and removal, we develop a Progressive Spatio-Channel Correlation Network (PSCC-Net) to detect and localize image manipulations. PSCC-Net processes the image in a two-path procedure: a top-down path that extracts local and global features and a bottom-up path that detects whether the input image is manipulated, and estimates its manipulation masks at multiple scales, where each mask is conditioned on the previous one. Different from the conventional encoder-decoder and no-pooling structures, PSCC-Net leverages features at different scales with dense cross-connections to produce manipulation masks in a coarse-to-fine fashion. Moreover, a Spatio-Channel Correlation Module (SCCM) captures both spatial and channel-wise correlations in the bottom-up path, which endows features with holistic cues, enabling the network to cope with a wide range of manipulation attacks. Thanks to the light-weight backbone and progressive mechanism, PSCC-Net can process [Formula Omitted] images at 50+FPS. Extensive experiments demonstrate the superiority of PSCC-Net over the state-of-the-art methods on both detection and localization. Codes and models are available at https://github.com/proteus1991/PSCC-Net . To defend against manipulation of image content, such as splicing, copy-move, and removal, we develop a Progressive Spatio-Channel Correlation Network (PSCC-Net) to detect and localize image manipulations. PSCC-Net processes the image in a two-path procedure: a top-down path that extracts local and global features and a bottom-up path that detects whether the input image is manipulated, and estimates its manipulation masks at multiple scales, where each mask is conditioned on the previous one. Different from the conventional encoder-decoder and no-pooling structures, PSCC-Net leverages features at different scales with dense cross-connections to produce manipulation masks in a coarse-to-fine fashion. Moreover, a Spatio-Channel Correlation Module (SCCM) captures both spatial and channel-wise correlations in the bottom-up path, which endows features with holistic cues, enabling the network to cope with a wide range of manipulation attacks. Thanks to the light-weight backbone and progressive mechanism, PSCC-Net can process <inline-formula> <tex-math notation="LaTeX">1,080\text{P} </tex-math></inline-formula> images at 50+FPS. Extensive experiments demonstrate the superiority of PSCC-Net over the state-of-the-art methods on both detection and localization. Codes and models are available at https://github.com/proteus1991/PSCC-Net . |
Author | Liu, Xiaoming Chen, Jun Liu, Yaojie Liu, Xiaohong |
Author_xml | – sequence: 1 givenname: Xiaohong orcidid: 0000-0001-6377-4730 surname: Liu fullname: Liu, Xiaohong email: xiaohongliu@sjtu.edu.cn organization: Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada – sequence: 2 givenname: Yaojie orcidid: 0000-0003-3756-7820 surname: Liu fullname: Liu, Yaojie email: liuyaoj1@msu.edu organization: Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA – sequence: 3 givenname: Jun orcidid: 0000-0002-8084-9332 surname: Chen fullname: Chen, Jun email: chenjun@mcmaster.ca organization: Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada – sequence: 4 givenname: Xiaoming surname: Liu fullname: Liu, Xiaoming email: liuxm@msu.edu organization: Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA |
BookMark | eNp9UMtOwzAQtFCRaAs_AJdInFP8iBObGwqvSgUqtXCNnGRdXNI4OCkIvp4krThw4LSjnZkd7YzQoLQlIHRK8IQQLC-W8eJlOaGY0gkjQvKAH6Ah4Vz4lGI-aDHmxBeU8CM0qus1xiQQQTRE6_kijv1HaC69ubMrB3VtPsBbVKox1o9fVVlC4cXWOSi6Vem12k_r3jxtnTfdqBV4D6o01XZPX0MDWY9UmXszm6nCfPfUMTrUqqjhZD_H6Pn2Zhnf-7Onu2l8NfMzKnnjZ0xKonhItcQBVkxGqdapinSY8m6RBwHVea4jiAKVR2nIMBURBsVIRlgg2Bid7-5Wzr5voW6Std26so1MaERlyARlnYruVJmzde1AJ5UzG-W-EoKTrtOk7zTpOk32nbYm8ceUmaZ_rnHKFP9bz3ZWAwC_WVIQKTFjPyIqh30 |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_3390_computation12110228 crossref_primary_10_3390_jimaging10020042 crossref_primary_10_1016_j_jvcir_2025_104396 crossref_primary_10_1016_j_knosys_2024_111988 crossref_primary_10_1080_23742917_2023_2192888 crossref_primary_10_1007_s11760_024_03376_x crossref_primary_10_1016_j_jvcir_2023_103981 crossref_primary_10_3390_electronics12061451 crossref_primary_10_1109_TIM_2024_3451570 crossref_primary_10_1117_1_JEI_32_6_063010 crossref_primary_10_1016_j_jisa_2025_103965 crossref_primary_10_1016_j_asoc_2024_112068 crossref_primary_10_1109_ACCESS_2024_3413709 crossref_primary_10_1002_aisy_202300749 crossref_primary_10_1007_s00371_024_03482_4 crossref_primary_10_1093_comjnl_bxae112 crossref_primary_10_1109_TII_2024_3359454 crossref_primary_10_1109_TCSVT_2023_3251444 crossref_primary_10_1109_TCSVT_2023_3289171 crossref_primary_10_1109_TIFS_2024_3381470 crossref_primary_10_1109_TIFS_2023_3306181 crossref_primary_10_1049_ipr2_12885 crossref_primary_10_1016_j_neucom_2025_129471 crossref_primary_10_1007_s11760_024_03389_6 crossref_primary_10_1016_j_eswa_2024_124975 crossref_primary_10_3390_electronics11030403 crossref_primary_10_1109_TII_2024_3476541 crossref_primary_10_1007_s11263_024_02255_9 crossref_primary_10_1016_j_patcog_2024_110828 crossref_primary_10_3390_bdcc8090119 crossref_primary_10_1109_TCSVT_2024_3390127 crossref_primary_10_3390_electronics13193919 crossref_primary_10_1109_TCSVT_2024_3473933 crossref_primary_10_1177_30504554241301395 crossref_primary_10_1016_j_eswa_2024_124171 crossref_primary_10_1016_j_neucom_2022_09_060 crossref_primary_10_1109_TCE_2024_3367947 crossref_primary_10_1016_j_knosys_2024_112776 crossref_primary_10_1109_TIM_2023_3338703 crossref_primary_10_1109_TPAMI_2024_3432551 crossref_primary_10_1016_j_asoc_2024_111914 crossref_primary_10_1016_j_eswa_2025_126492 crossref_primary_10_1016_j_patcog_2024_111230 crossref_primary_10_1109_TAI_2024_3379941 crossref_primary_10_1016_j_jvcir_2025_104393 crossref_primary_10_3390_math11143134 crossref_primary_10_1007_s00371_021_02310_3 crossref_primary_10_1016_j_imavis_2024_105342 crossref_primary_10_3390_app132112053 crossref_primary_10_1016_j_jvcir_2024_104210 crossref_primary_10_1109_ACCESS_2024_3410974 crossref_primary_10_1109_TMM_2023_3270629 crossref_primary_10_1007_s11760_024_03775_0 crossref_primary_10_1016_j_jisa_2024_103863 crossref_primary_10_1109_TCSVT_2023_3269948 crossref_primary_10_1016_j_dsp_2024_104901 crossref_primary_10_1016_j_patcog_2025_111565 crossref_primary_10_1109_TIFS_2025_3531103 crossref_primary_10_1145_3678883 crossref_primary_10_1016_j_jisa_2024_103825 crossref_primary_10_1007_s11760_025_03964_5 crossref_primary_10_32604_cmc_2024_051705 crossref_primary_10_1109_TCSVT_2023_3299278 crossref_primary_10_1016_j_dsp_2025_105114 crossref_primary_10_1016_j_displa_2024_102637 crossref_primary_10_1109_TGRS_2024_3502035 crossref_primary_10_1117_1_JEI_33_3_033027 crossref_primary_10_1016_j_patter_2024_101038 crossref_primary_10_1016_j_engappai_2023_107200 crossref_primary_10_1016_j_knosys_2024_112545 crossref_primary_10_1109_TIFS_2024_3424987 crossref_primary_10_1016_j_neunet_2024_106430 crossref_primary_10_1109_TIFS_2025_3541957 crossref_primary_10_1016_j_patcog_2024_111136 crossref_primary_10_1109_TCSVT_2023_3247607 crossref_primary_10_1007_s11042_025_20626_3 crossref_primary_10_1111_exsy_13729 crossref_primary_10_1016_j_eswa_2024_123501 crossref_primary_10_3390_electronics13020447 crossref_primary_10_1016_j_jvcir_2024_104267 crossref_primary_10_1016_j_knosys_2024_111656 crossref_primary_10_1016_j_eswa_2024_123548 crossref_primary_10_1109_ACCESS_2025_3545830 crossref_primary_10_1016_j_patcog_2024_110727 crossref_primary_10_1109_LSP_2023_3279018 crossref_primary_10_1109_LSP_2024_3442089 crossref_primary_10_1007_s00371_022_02620_0 crossref_primary_10_1016_j_neucom_2024_128607 crossref_primary_10_1109_TCSVT_2023_3281448 crossref_primary_10_1109_LSP_2024_3455230 crossref_primary_10_1007_s11760_024_03622_2 crossref_primary_10_3390_sym15101898 crossref_primary_10_1145_3698770 crossref_primary_10_3390_s24134143 crossref_primary_10_1007_s00530_024_01583_7 |
Cites_doi | 10.1016/j.inffus.2020.06.014 10.1007/978-3-319-10602-1_48 10.1109/CVPR42600.2020.00559 10.1109/TCSVT.2021.3075039 10.1109/TCSVT.2018.2804768 10.1109/CVPR52688.2022.01495 10.1109/CVPR42600.2020.00302 10.1109/CVPR42600.2020.00926 10.1109/CVPR42600.2020.00790 10.1109/ICIP.2016.7532339 10.1109/TCSVT.2020.2993004 10.1109/ICCV.2019.00320 10.1007/978-3-030-01234-2_1 10.1007/978-3-030-58523-5_24 10.1007/978-3-030-58529-7_1 10.1109/TCSVT.2021.3074259 10.1109/TCSVT.2020.3046240 10.1109/TIFS.2015.2455334 10.1007/978-3-030-01252-6_7 10.1109/ChinaSIP.2013.6625374 10.1109/CVPR.2018.00264 10.1109/WIFS.2015.7368565 10.1007/978-3-030-58621-8_6 10.1007/978-3-030-58589-1_19 10.1109/TCSVT.2021.3133859 10.1109/CVPR.2018.00813 10.1109/CVPR.2018.00116 10.1109/WACV.2018.00211 10.1109/CVPR42600.2020.00582 10.1109/ICCV.2019.00741 10.1016/j.image.2018.05.015 10.1109/CVPR.2018.00081 10.1109/CVPR42600.2020.00837 10.1109/CVPR.2019.00326 10.1109/WACVW50321.2020.9096940 10.1145/1774088.1774427 10.1007/978-3-030-58539-6_21 10.1109/CVPR42600.2020.00803 10.1109/CVPR42600.2020.00526 10.1109/CVPR.2019.00977 10.1109/TPAMI.2016.2577031 10.1109/TIFS.2019.2916364 10.1109/CVPR42600.2020.00473 10.1109/TIP.2019.2895466 10.1109/CVPR.2016.90 10.1109/TPAMI.2020.2983686 10.1109/ICCV.2017.532 10.1109/ICCV.2019.00606 10.1145/3123266.3123411 10.1109/CVPR.2018.00343 10.1109/CVPRW.2017.232 10.1109/TIFS.2019.2902826 10.1109/CVPR.2018.00745 10.1186/s13635-017-0067-2 10.1109/TCSVT.2021.3123829 10.1109/CVPR.2019.00740 10.1007/s11263-013-0688-y 10.1007/978-3-030-58592-1_3 10.1016/j.jvcir.2018.01.010 10.1109/CVPRW.2017.233 10.1007/978-3-030-01231-1_11 10.1109/TIFS.2012.2190402 10.1109/CVPR42600.2020.00778 10.1109/CVPR42600.2020.01371 10.1109/CVPR46437.2021.00342 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2022.3189545 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 7517 |
ExternalDocumentID | 10_1109_TCSVT_2022_3189545 9819903 |
Genre | orig-research |
GrantInformation_xml | – fundername: Defense Advanced Research Projects Agency (DARPA) grantid: HR00112090131 funderid: 10.13039/100000185 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-c3991a562f9040a397bffba7f6b5040ad442fddf7e74ad7b6302870ea31c13483 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Sun Jun 29 15:21:14 EDT 2025 Tue Jul 01 00:41:18 EDT 2025 Thu Apr 24 23:12:38 EDT 2025 Wed Aug 27 02:14:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-c3991a562f9040a397bffba7f6b5040ad442fddf7e74ad7b6302870ea31c13483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3756-7820 0000-0002-8084-9332 0000-0001-6377-4730 |
PQID | 2729638238 |
PQPubID | 85433 |
PageCount | 13 |
ParticipantIDs | ieee_primary_9819903 proquest_journals_2729638238 crossref_primary_10_1109_TCSVT_2022_3189545 crossref_citationtrail_10_1109_TCSVT_2022_3189545 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 ref15 Asnani (ref26) 2021 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref19 ref18 ref51 ref50 Ng (ref73) 2022 ref46 ref48 ref47 ref42 ref41 ref44 ref43 ref49 (ref70) 2022 ref8 ref7 ref9 Thomson (ref16) 2020 ref4 ref3 Vaswani (ref57) ref6 ref5 Willingham (ref17) 2020 ref40 Joseph (ref45) 2015; 2 Kniaz (ref35) Kingma (ref77) ref34 ref37 ref36 ref31 ref30 ref74 ref33 ref32 ref76 ref2 ref1 ref39 ref38 Mortenson (ref69) 1999 ref71 ref72 ref24 ref68 ref23 ref67 ref25 ref20 ref64 ref22 ref66 ref21 ref65 ref28 ref27 ref29 (ref75) 2016 Park (ref63) ref60 ref62 ref61 |
References_xml | – ident: ref12 doi: 10.1016/j.inffus.2020.06.014 – volume-title: Camera Model Identification year: 2022 ident: ref70 – volume: 2 start-page: 740 issue: 4 year: 2015 ident: ref45 article-title: Literature survey on image manipulation detection publication-title: Int. Res. J. Eng. Technol. – start-page: 1 volume-title: Proc. Brit. Mach. Vis. Conf. (BMVC) ident: ref63 article-title: BAM: Bottleneck attention module – ident: ref68 doi: 10.1007/978-3-319-10602-1_48 – ident: ref2 doi: 10.1109/CVPR42600.2020.00559 – ident: ref44 doi: 10.1109/TCSVT.2021.3075039 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS) ident: ref57 article-title: Attention is all you need – ident: ref40 doi: 10.1109/TCSVT.2018.2804768 – ident: ref25 doi: 10.1109/CVPR52688.2022.01495 – ident: ref20 doi: 10.1109/CVPR42600.2020.00302 – ident: ref9 doi: 10.1109/CVPR42600.2020.00926 – ident: ref1 doi: 10.1109/CVPR42600.2020.00790 – ident: ref38 doi: 10.1109/ICIP.2016.7532339 – ident: ref42 doi: 10.1109/TCSVT.2020.2993004 – ident: ref50 doi: 10.1109/ICCV.2019.00320 – ident: ref64 doi: 10.1007/978-3-030-01234-2_1 – ident: ref46 doi: 10.1007/978-3-030-58523-5_24 – ident: ref8 doi: 10.1007/978-3-030-58529-7_1 – ident: ref15 doi: 10.1109/TCSVT.2021.3074259 – ident: ref43 doi: 10.1109/TCSVT.2020.3046240 – ident: ref37 doi: 10.1109/TIFS.2015.2455334 – ident: ref10 doi: 10.1007/978-3-030-01252-6_7 – ident: ref74 doi: 10.1109/ChinaSIP.2013.6625374 – ident: ref52 doi: 10.1109/CVPR.2018.00264 – ident: ref31 doi: 10.1109/WIFS.2015.7368565 – ident: ref4 doi: 10.1007/978-3-030-58621-8_6 – ident: ref18 doi: 10.1007/978-3-030-58589-1_19 – ident: ref14 doi: 10.1109/TCSVT.2021.3133859 – ident: ref59 doi: 10.1109/CVPR.2018.00813 – ident: ref23 doi: 10.1109/CVPR.2018.00116 – ident: ref39 doi: 10.1109/WACV.2018.00211 – volume-title: Columbia Image Splicing Detection Evaluation Dataset year: 2022 ident: ref73 – volume-title: NIST: Nist Nimble 2016 Datasets year: 2016 ident: ref75 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS) ident: ref35 article-title: The point where reality meets fantasy: Mixed adversarial generators for image splice detection – ident: ref13 doi: 10.1109/CVPR42600.2020.00582 – ident: ref60 doi: 10.1109/ICCV.2019.00741 – ident: ref41 doi: 10.1016/j.image.2018.05.015 – ident: ref53 doi: 10.1109/CVPR.2018.00081 – ident: ref51 doi: 10.1109/CVPR42600.2020.00837 – ident: ref65 doi: 10.1109/CVPR.2019.00326 – ident: ref76 doi: 10.1109/WACVW50321.2020.9096940 – ident: ref72 doi: 10.1145/1774088.1774427 – ident: ref54 doi: 10.1007/978-3-030-58539-6_21 – ident: ref61 doi: 10.1109/CVPR42600.2020.00803 – ident: ref3 doi: 10.1109/CVPR42600.2020.00526 – ident: ref11 doi: 10.1109/CVPR.2019.00977 – ident: ref48 doi: 10.1109/TPAMI.2016.2577031 – ident: ref19 doi: 10.1109/TIFS.2019.2916364 – ident: ref29 doi: 10.1109/CVPR42600.2020.00473 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref77 article-title: Adam: A method for stochastic optimization – volume-title: Is that video real? year: 2020 ident: ref17 – volume-title: Seeing no longer means believing year: 2020 ident: ref16 – ident: ref24 doi: 10.1109/TIP.2019.2895466 – year: 2021 ident: ref26 article-title: Reverse engineering of generative models: Inferring model hyperparameters from generated images publication-title: arXiv:2106.07873 – ident: ref66 doi: 10.1109/CVPR.2016.90 – volume-title: Mathematics for Computer Graphics Applications year: 1999 ident: ref69 – ident: ref27 doi: 10.1109/TPAMI.2020.2983686 – ident: ref21 doi: 10.1109/ICCV.2017.532 – ident: ref5 doi: 10.1109/ICCV.2019.00606 – ident: ref34 doi: 10.1145/3123266.3123411 – ident: ref49 doi: 10.1109/CVPR.2018.00343 – ident: ref33 doi: 10.1109/CVPRW.2017.232 – ident: ref67 doi: 10.1109/TIFS.2019.2902826 – ident: ref58 doi: 10.1109/CVPR.2018.00745 – ident: ref71 doi: 10.1186/s13635-017-0067-2 – ident: ref36 doi: 10.1109/TCSVT.2021.3123829 – ident: ref56 doi: 10.1109/CVPR.2019.00740 – ident: ref30 doi: 10.1007/s11263-013-0688-y – ident: ref55 doi: 10.1007/978-3-030-58592-1_3 – ident: ref22 doi: 10.1016/j.jvcir.2018.01.010 – ident: ref32 doi: 10.1109/CVPRW.2017.233 – ident: ref28 doi: 10.1007/978-3-030-01231-1_11 – ident: ref47 doi: 10.1109/TIFS.2012.2190402 – ident: ref6 doi: 10.1109/CVPR42600.2020.00778 – ident: ref7 doi: 10.1109/CVPR42600.2020.01371 – ident: ref62 doi: 10.1109/CVPR46437.2021.00342 |
SSID | ssj0014847 |
Score | 2.7130365 |
Snippet | To defend against manipulation of image content, such as splicing, copy-move, and removal, we develop a Progressive Spatio-Channel Correlation Network... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7505 |
SubjectTerms | attention mechanism Coders Correlation Encoders-Decoders Estimation Feature extraction Forgery Image manipulation Image manipulation detection and localization Localization Location awareness Masks progressive mechanism Splicing Task analysis Weight reduction |
Title | PSCC-Net: Progressive Spatio-Channel Correlation Network for Image Manipulation Detection and Localization |
URI | https://ieeexplore.ieee.org/document/9819903 https://www.proquest.com/docview/2729638238 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3rwVcVqlT1407R5bhJvEi1VbCm0ld7CbrILak1FUw_-emc2D0RFvIWwGxZmd-ebzPfNEHIKd6Kd8gRr7HvMcBM46eCGuRFKTzCmlOMx1A4PR2wwc2_n3rxBzmstjJRSk89kFx91Lj9dJiv8VdYLwX2FWNpzDQK3QqtVZwzcQDcTA7hgGQH4sUogY4a9aTS5n0IoaNsQoQahh9KlL05Id1X5cRVr_9LfIsNqZQWt5Km7ykU3-fhWtPG_S98mmyXQpJfFztghDZntko0v5Qdb5HE8iSJjJPMLOkaaFjJi3yWdaJK1gbqDTC5ohP07CsYcHRWkcQpIl948w1VEhzx7qFqA0SuZa2ZXRnmW0jt0k6XMc4_M-tfTaGCUvReMxA693EgAuFgcwJEK4ZhzQC1CKcF9xYSHL1LXtVWaKl_6Lk99wRwTU6aSO1ZiOW7g7JNmtszkAaGCKZubnrItYWF9P-H7sBsUACdhOo4j2sSqjBEnZWFy7I-xiHWAYoaxNmCMBoxLA7bJWT3npSjL8efoFlqkHlkao006lc3j8uS-xTZEGwyTo8Hh77OOyDp-u9Ajdkgzf13JYwAmuTjRO_ITi6jenQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1PT9RAFH9BPCgHUdGwiDgHPZku7bQzbU04mALZld0NyS6GW51pZxIBi4GuRj-LX4XvxnvTdkOQeCPx1jQzbTrzm_d7r-8fwFuUibxUBdXYF9KLCjzpSMPKS43QUlobCkm5w-OJHBxFn47F8RL8WeTCGGNc8Jnp06Xz5ZfnxZx-lW2nSF-p37WqPjC_fqKBdrkz3MXdfMf5_t4sG3htDwGv4KmovQIJOFBI8jZFuCpkX22tVrGVWtCNMoq4LUsbmzhSZaxl6JPrz6gwKIIwSkJ87gN4iF8ieJMdtvBRRIlrX4YKSuAlyJxdSo6fbs-y6ecZGp-co02cpIKSpW7Qnuvj8pfwd4y2vwpX3Vo0gSyn_Xmt-8XvW2Ui_9fFegpPWlWafWyw_wyWTPUcVm4UWFyDk8NplnkTU39ghxSIRjG_PwybujByjzIrKnPGMupQ0sQEskkTFs9Ql2fDbyhs2VhVX7smZ2zX1C52rWKqKtmIFIE2kfUFHN3Lx76E5eq8MuvAtLRc-cLyQAdUwVDHMeLdomqo_TAMdQ-CbvPzoi29Th1AznJngvlp7gCTE2DyFjA9eL-Y870pPPLP0WuEgMXIdvN7sNlhLG9l02XO0Z6S5P5NNu6e9QYeDWbjUT4aTg5ewWN6T5N9uQnL9cXcvEY1rNZb7jQw-HLfiLoGVtU7yA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PSCC-Net%3A+Progressive+Spatio-Channel+Correlation+Network+for+Image+Manipulation+Detection+and+Localization&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Liu%2C+Xiaohong&rft.au=Liu%2C+Yaojie&rft.au=Chen%2C+Jun&rft.au=Liu%2C+Xiaoming&rft.date=2022-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=11&rft.spage=7505&rft_id=info:doi/10.1109%2FTCSVT.2022.3189545&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |