Beyond Single Reference for Training: Underwater Image Enhancement via Comparative Learning

Due to the wavelength-dependent light absorption and scattering, the raw underwater images are usually inevitably degraded. Underwater image enhancement (UIE) is of great importance for underwater observation and operation. Data-driven methods, such as deep learning-based UIE approaches, tend to be...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 33; no. 6; pp. 2561 - 2576
Main Authors Li, Kunqian, Wu, Li, Qi, Qi, Liu, Wenjie, Gao, Xiang, Zhou, Liqin, Song, Dalei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the wavelength-dependent light absorption and scattering, the raw underwater images are usually inevitably degraded. Underwater image enhancement (UIE) is of great importance for underwater observation and operation. Data-driven methods, such as deep learning-based UIE approaches, tend to be more applicable to real underwater scenarios. However, the training of deep models is limited by the extreme scarcity of underwater images with enhancement references, resulting in their poor performance in dynamic and diverse underwater scenes. As an alternative, enhancement reference achieved by volunteer voting alleviate the sample shortage to some extent. Since such artificially acquired references are not veritable ground truth, they are far from complete and accurate to provide correct and rich supervision for the enhancement model training. Beyond training with single reference, we propose the first comparative learning framework for UIE problem, namely CLUIE-Net, to learn from multiple candidates of enhancement reference. This new strategy also supports semi-supervised learning mode. Besides, we propose a regional quality-superiority discriminative network (RQSD-Net) as an embedded quality discriminator for the CLUIE-Net. Comprehensive experiments demonstrate the effectiveness of RQSD-Net and the comparative learning strategy for UIE problem. The code, models and new dataset RQSD-UI are available at: https://justwj.github.io/CLUIE-Net.html/ .
AbstractList Due to the wavelength-dependent light absorption and scattering, the raw underwater images are usually inevitably degraded. Underwater image enhancement (UIE) is of great importance for underwater observation and operation. Data-driven methods, such as deep learning-based UIE approaches, tend to be more applicable to real underwater scenarios. However, the training of deep models is limited by the extreme scarcity of underwater images with enhancement references, resulting in their poor performance in dynamic and diverse underwater scenes. As an alternative, enhancement reference achieved by volunteer voting alleviate the sample shortage to some extent. Since such artificially acquired references are not veritable ground truth, they are far from complete and accurate to provide correct and rich supervision for the enhancement model training. Beyond training with single reference, we propose the first comparative learning framework for UIE problem, namely CLUIE-Net, to learn from multiple candidates of enhancement reference. This new strategy also supports semi-supervised learning mode. Besides, we propose a regional quality-superiority discriminative network (RQSD-Net) as an embedded quality discriminator for the CLUIE-Net. Comprehensive experiments demonstrate the effectiveness of RQSD-Net and the comparative learning strategy for UIE problem. The code, models and new dataset RQSD-UI are available at: https://justwj.github.io/CLUIE-Net.html/ .
Author Qi, Qi
Zhou, Liqin
Li, Kunqian
Wu, Li
Gao, Xiang
Liu, Wenjie
Song, Dalei
Author_xml – sequence: 1
  givenname: Kunqian
  orcidid: 0000-0001-9831-6457
  surname: Li
  fullname: Li, Kunqian
  email: likunqian@ouc.edu.cn
  organization: College of Engineering, Ocean University of China, Qingdao, China
– sequence: 2
  givenname: Li
  surname: Wu
  fullname: Wu, Li
  email: wuli@stu.ouc.edu.cn
  organization: College of Engineering, Ocean University of China, Qingdao, China
– sequence: 3
  givenname: Qi
  orcidid: 0000-0002-1837-9501
  surname: Qi
  fullname: Qi, Qi
  email: qiqi2013@stu.ouc.edu.cn
  organization: College of Computer Science and Technology, Ocean University of China, Qingdao, China
– sequence: 4
  givenname: Wenjie
  surname: Liu
  fullname: Liu, Wenjie
  email: lwj8310@stu.ouc.edu.cn
  organization: College of Engineering, Ocean University of China, Qingdao, China
– sequence: 5
  givenname: Xiang
  orcidid: 0000-0003-1497-5637
  surname: Gao
  fullname: Gao, Xiang
  email: xiang.gao@ia.ac.cn
  organization: Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Liqin
  surname: Zhou
  fullname: Zhou, Liqin
  email: zlq@ouc.edu.cn
  organization: College of Engineering, Ocean University of China, Qingdao, China
– sequence: 7
  givenname: Dalei
  orcidid: 0000-0001-5407-5989
  surname: Song
  fullname: Song, Dalei
  email: songdalei@ouc.edu.cn
  organization: College of Engineering and Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China
BookMark eNp9kDFPwzAQhS0EEm3hD8BiiTnFduLYZoOoQKVKSDRlYYgc91JSNXZx0qL-e1xaMTAw3Un3vrt3r49OrbOA0BUlQ0qJus2z6Vs-ZISxYcwYj0V6gnqUcxkxRvhp6AmnkWSUn6N-2y4JoYlMRA-9P8DO2Tme1naxAvwKFXiwBnDlPM69rm0Y3OGZnYP_0h14PG70AvDIfugga8B2eFtrnLlmrb3u6i3gCWi_xy7QWaVXLVwe6wDNHkd59hxNXp7G2f0kMkzxLiqhVJrLEqTQwKESVKYipqJMRTkvE2YksNBoIRUYIxIJoBKujeQyLZmg8QDdHPauvfvcQNsVS7fxNpwsmGQxVbFKk6CSB5Xxrm09VIWpu2DY2S68uSooKfZRFj9RFvsoi2OUAWV_0LWvG-13_0PXB6gGgF9AqZQnwdE39MKCww
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102494
crossref_primary_10_3390_e26110918
crossref_primary_10_1007_s11263_024_01987_y
crossref_primary_10_1016_j_engappai_2024_109999
crossref_primary_10_1109_LGRS_2024_3397866
crossref_primary_10_1007_s11760_024_03047_x
crossref_primary_10_3390_jmse11071285
crossref_primary_10_1109_TCSVT_2024_3412748
crossref_primary_10_1016_j_asoc_2024_112000
crossref_primary_10_1007_s10489_024_05538_3
crossref_primary_10_1109_JOE_2024_3458351
crossref_primary_10_1109_TGRS_2023_3315772
crossref_primary_10_1109_ACCESS_2024_3400533
crossref_primary_10_1016_j_engappai_2024_108411
crossref_primary_10_1016_j_image_2025_117271
crossref_primary_10_1016_j_eswa_2024_125350
crossref_primary_10_1109_TGRS_2024_3353371
crossref_primary_10_1109_TGRS_2024_3485030
crossref_primary_10_1007_s00138_024_01651_y
crossref_primary_10_3390_s25061861
crossref_primary_10_1109_ACCESS_2023_3335618
crossref_primary_10_1109_TCSVT_2023_3289566
crossref_primary_10_1109_ACCESS_2024_3435569
crossref_primary_10_1364_OE_525348
crossref_primary_10_1007_s00371_024_03611_z
crossref_primary_10_1007_s11760_023_02562_7
crossref_primary_10_1109_TMM_2024_3387760
crossref_primary_10_3390_electronics13122313
crossref_primary_10_1016_j_eswa_2024_125549
crossref_primary_10_1007_s11042_024_18686_y
crossref_primary_10_1007_s11263_024_02318_x
crossref_primary_10_3389_fmars_2025_1555128
crossref_primary_10_1007_s00530_023_01224_5
crossref_primary_10_1016_j_dsp_2025_105048
crossref_primary_10_1016_j_compeleceng_2025_110228
crossref_primary_10_1109_TGRS_2024_3358892
crossref_primary_10_1109_TCSVT_2023_3328272
crossref_primary_10_1109_ACCESS_2024_3465550
crossref_primary_10_1109_TCSVT_2023_3305777
Cites_doi 10.1016/j.image.2020.115978
10.1109/TIP.2017.2759252
10.1016/j.image.2021.116248
10.1109/CVPR.2018.00194
10.1109/TIM.2021.3120130
10.1016/j.patrec.2017.05.023
10.1109/CVPR.2014.224
10.1109/LGRS.2019.2950056
10.1109/TCSVT.2019.2963772
10.1109/ICRA.2018.8460552
10.1109/TCSVT.2021.3074197
10.1109/ICIP.2018.8451209
10.1109/CVPR42600.2020.00975
10.1007/s11042-022-12151-4
10.1109/TNNLS.2014.2336852
10.1016/j.image.2020.115892
10.1016/j.image.2019.08.006
10.1109/CVPR52688.2022.00572
10.3156/jsoft.29.5_177_2
10.1109/TIP.2020.3002478
10.1007/978-3-030-00776-8_62
10.1016/j.ins.2018.11.055
10.1109/CVPR.2006.100
10.1007/978-3-319-24574-4_28
10.1109/IROS45743.2020.9340821
10.1109/JOE.2015.2469915
10.1109/ICIP.2014.7025927
10.1007/978-981-13-5841-8_59
10.1109/CVPR.2012.6247661
10.1109/TCSVT.2021.3115791
10.1109/TIP.2015.2491020
10.1109/LSP.2021.3099746
10.1109/TPAMI.2020.2977624
10.1109/ICIP.2017.8296508
10.1049/ipr2.12433
10.1109/TPAMI.2010.168
10.1016/j.engappai.2022.104759
10.1016/j.optlastec.2018.05.048
10.1109/LRA.2017.2730363
10.15607/RSS.2020.XVI.018
10.1109/TMM.2019.2957984
10.1109/TIP.2022.3196546
10.1109/ICCV.2017.118
10.1109/MSP.2017.2736018
10.1109/TPAMI.2020.2982166
10.1109/TIP.2017.2708503
10.1109/TIP.2017.2663846
10.1049/iet-ipr.2018.5237
10.1109/TMM.2019.2933334
10.1109/TIP.2022.3216208
10.1109/LSP.2018.2792050
10.1109/TPAMI.2014.2345401
10.1109/ICSMC.2010.5642311
10.1109/CVPR.2019.00178
10.1109/TCSVT.2022.3174817
10.1109/LSP.2021.3072563
10.1109/TIP.2016.2612882
10.1109/ACCESS.2019.2932611
10.1016/j.image.2021.116218
10.1109/TIP.2022.3177129
10.1109/JOE.2019.2911447
10.1109/TCSVT.2021.3055197
10.1109/CVPR46437.2021.01041
10.1016/j.patcog.2019.107038
10.1109/TIP.2019.2955241
10.1109/ACCESS.2019.2932130
10.1109/ISPACS.2017.8266583
10.1109/TCSVT.2016.2543099
10.1109/TIP.2021.3076367
10.1007/978-3-030-00764-5_47
10.1109/ACCESS.2020.3034275
10.1109/TIP.2021.3061932
10.1109/TCSVT.2018.2886771
10.1002/col.20070
10.1109/LRA.2020.2974710
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3225376
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 2576
ExternalDocumentID 10_1109_TCSVT_2022_3225376
9965419
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61906177
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2019BF034
  funderid: 10.13039/501100007129
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 201964013
  funderid: 10.13039/501100012226
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-beb9a58be87ae5ef71867317b67bdb42c8e2bdba789ecc748ee945ac8586b2713
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 10:11:43 EDT 2025
Tue Jul 01 00:41:19 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Wed Aug 27 02:25:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-beb9a58be87ae5ef71867317b67bdb42c8e2bdba789ecc748ee945ac8586b2713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1837-9501
0000-0003-1497-5637
0000-0001-9831-6457
0000-0001-5407-5989
PQID 2823193964
PQPubID 85433
PageCount 16
ParticipantIDs ieee_primary_9965419
proquest_journals_2823193964
crossref_citationtrail_10_1109_TCSVT_2022_3225376
crossref_primary_10_1109_TCSVT_2022_3225376
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
Anwar (ref25) 2018
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Simonyan (ref53)
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref24
ref68
ref23
ref67
ref26
Chen (ref77)
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Ma (ref72) 2021
ref60
ref62
ref61
References_xml – year: 2021
  ident: ref72
  article-title: An underwater image semantic segmentation method focusing on boundaries and a real underwater scene semantic segmentation dataset
  publication-title: arXiv:2108.11727
– ident: ref1
  doi: 10.1016/j.image.2020.115978
– ident: ref67
  doi: 10.1109/TIP.2017.2759252
– ident: ref33
  doi: 10.1016/j.image.2021.116248
– ident: ref50
  doi: 10.1109/CVPR.2018.00194
– ident: ref17
  doi: 10.1109/TIM.2021.3120130
– ident: ref3
  doi: 10.1016/j.patrec.2017.05.023
– ident: ref42
  doi: 10.1109/CVPR.2014.224
– ident: ref29
  doi: 10.1109/LGRS.2019.2950056
– ident: ref66
  doi: 10.1109/TCSVT.2019.2963772
– ident: ref28
  doi: 10.1109/ICRA.2018.8460552
– ident: ref20
  doi: 10.1109/TCSVT.2021.3074197
– ident: ref24
  doi: 10.1109/ICIP.2018.8451209
– ident: ref78
  doi: 10.1109/CVPR42600.2020.00975
– ident: ref9
  doi: 10.1007/s11042-022-12151-4
– ident: ref43
  doi: 10.1109/TNNLS.2014.2336852
– ident: ref57
  doi: 10.1016/j.image.2020.115892
– ident: ref12
  doi: 10.1016/j.image.2019.08.006
– ident: ref8
  doi: 10.1109/CVPR52688.2022.00572
– ident: ref32
  doi: 10.3156/jsoft.29.5_177_2
– ident: ref45
  doi: 10.1109/TIP.2020.3002478
– ident: ref64
  doi: 10.1007/978-3-030-00776-8_62
– ident: ref75
  doi: 10.1016/j.ins.2018.11.055
– ident: ref76
  doi: 10.1109/CVPR.2006.100
– ident: ref52
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref54
  doi: 10.1109/IROS45743.2020.9340821
– ident: ref69
  doi: 10.1109/JOE.2015.2469915
– ident: ref61
  doi: 10.1109/ICIP.2014.7025927
– ident: ref11
  doi: 10.1007/978-981-13-5841-8_59
– ident: ref40
  doi: 10.1109/CVPR.2012.6247661
– ident: ref4
  doi: 10.1109/TCSVT.2021.3115791
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref53
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref68
  doi: 10.1109/TIP.2015.2491020
– ident: ref31
  doi: 10.1109/LSP.2021.3099746
– ident: ref14
  doi: 10.1109/TPAMI.2020.2977624
– ident: ref23
  doi: 10.1109/ICIP.2017.8296508
– ident: ref21
  doi: 10.1049/ipr2.12433
– ident: ref56
  doi: 10.1109/TPAMI.2010.168
– year: 2018
  ident: ref25
  article-title: Deep underwater image enhancement
  publication-title: arXiv:1807.03528
– ident: ref5
  doi: 10.1016/j.engappai.2022.104759
– ident: ref36
  doi: 10.1016/j.optlastec.2018.05.048
– ident: ref27
  doi: 10.1109/LRA.2017.2730363
– ident: ref65
  doi: 10.15607/RSS.2020.XVI.018
– ident: ref74
  doi: 10.1109/TMM.2019.2957984
– ident: ref6
  doi: 10.1109/TIP.2022.3196546
– ident: ref49
  doi: 10.1109/ICCV.2017.118
– ident: ref41
  doi: 10.1109/MSP.2017.2736018
– ident: ref13
  doi: 10.1109/TPAMI.2020.2982166
– start-page: 1597
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref77
  article-title: A simple framework for contrastive learning of visual representations
– ident: ref47
  doi: 10.1109/TIP.2017.2708503
– ident: ref60
  doi: 10.1109/TIP.2017.2663846
– ident: ref26
  doi: 10.1049/iet-ipr.2018.5237
– ident: ref10
  doi: 10.1109/TMM.2019.2933334
– ident: ref22
  doi: 10.1109/TIP.2022.3216208
– ident: ref34
  doi: 10.1109/LSP.2018.2792050
– ident: ref73
  doi: 10.1109/TPAMI.2014.2345401
– ident: ref63
  doi: 10.1109/ICSMC.2010.5642311
– ident: ref15
  doi: 10.1109/CVPR.2019.00178
– ident: ref39
  doi: 10.1109/TCSVT.2022.3174817
– ident: ref30
  doi: 10.1109/LSP.2021.3072563
– ident: ref58
  doi: 10.1109/TIP.2016.2612882
– ident: ref2
  doi: 10.1109/ACCESS.2019.2932611
– ident: ref70
  doi: 10.1016/j.image.2021.116218
– ident: ref7
  doi: 10.1109/TIP.2022.3177129
– ident: ref35
  doi: 10.1109/JOE.2019.2911447
– ident: ref46
  doi: 10.1109/TCSVT.2021.3055197
– ident: ref79
  doi: 10.1109/CVPR46437.2021.01041
– ident: ref16
  doi: 10.1016/j.patcog.2019.107038
– ident: ref18
  doi: 10.1109/TIP.2019.2955241
– ident: ref55
  doi: 10.1109/ACCESS.2019.2932130
– ident: ref62
  doi: 10.1109/ISPACS.2017.8266583
– ident: ref48
  doi: 10.1109/TCSVT.2016.2543099
– ident: ref19
  doi: 10.1109/TIP.2021.3076367
– ident: ref37
  doi: 10.1007/978-3-030-00764-5_47
– ident: ref59
  doi: 10.1109/ACCESS.2020.3034275
– ident: ref51
  doi: 10.1109/TIP.2021.3061932
– ident: ref44
  doi: 10.1109/TCSVT.2018.2886771
– ident: ref71
  doi: 10.1002/col.20070
– ident: ref38
  doi: 10.1109/LRA.2020.2974710
SSID ssj0014847
Score 2.6145337
Snippet Due to the wavelength-dependent light absorption and scattering, the raw underwater images are usually inevitably degraded. Underwater image enhancement (UIE)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2561
SubjectTerms blind image quality assessment
comparative learning
convolutional neural network
Deep learning
Electromagnetic absorption
Generators
Image degradation
Image enhancement
Oceans
Semi-supervised learning
Task analysis
Training
Underwater
Underwater image enhancement
Visualization
Title Beyond Single Reference for Training: Underwater Image Enhancement via Comparative Learning
URI https://ieeexplore.ieee.org/document/9965419
https://www.proquest.com/docview/2823193964
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2Qkx78QiOKpgdvusAuLW29GQJBE7ywGBIPm20Z1IhgEDTx1zvtfkjUGG_dpE2bvmn7Ztt5Q8ipELEZK248n8MYHRQ-8mLha1zxo7G24rfMRbn2bprdAbse8mGBnOexMADgHp9B1RbdXf5oZpb2V1kNuTlnVuNzDR23JFYrvzFg0iUTQ7rgexLPsSxApq5qYat_G6IrGARVa74Nqy-ycgi5rCo_tmJ3vnS2SC8bWfKs5Km6XOiq-fgm2vjfoW-TzZRo0svEMnZIAaa7ZGNFfrBE7pLwFdrHrwnQXHOWIpGlYZo74oK61EjvyEnn9OoZtx_anj5YW7E90rfHmLa-FMRpqtd6v0cGnXbY6nppsgXPBIovPA1axVxqkCIGxE1YpTskF7op9EizwEgIsBALqRB1wSSAYjw2ksumDtDV3SfF6WwKB4RyZG1MC_CNxoagpWgYqQXOu-QqkLxM_Gz2I5MqkduEGJPIeSR1FTnEIotYlCJWJmd5m5dEh-PP2iULQV4znf0yqWQgR-lSfY0CexGqGqrJDn9vdUTWbY755H1YhRQX8yUcIxNZ6BNngp8AVto7
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NThsxEB4BPQCHthQQaWnxAU5oQ9axYxuphyoFJfxdWCqkHpa1M4GqEBAkRfRZ-ip9t469zha1iBsSN6-03l17xp5v1jPfAKwqVbi-kS5JJfbJQZG9pFCppRXf61tPfitCluv-QatzJHaO5fEE_KpyYRAxBJ9h3TfDWX7v0o38r7INwuZSpCaGUO7i3S05aDcfu59Jmmucb29l7U4Sawgkjhs5TCxaU0htUasC6XOUJ3Ajm2lbyvas4E4jp0ahtKHBKKERjZCF01K3LCcPjp47CS8IZ0heZodVZxRCh_JlBFDSRJPlHKfkNMxG1j78kpHzyXndL5imZzS5Z_ZCHZf_Nv9g0bZfwe_xXJSBLN_ro6Gtu5__0EQ-18l6DS8jlGafSt2fgwkcvIHZewSL8_C1TNBhh3R1jqxi1WUE1VkWq2NsslD86ZZQ9zXrXtAGy7YGZ341-BGyH98K1v7Lkc4iI-3pAhw9yegWYWpwOcAlYJJwqbAKU2epI1qtmk5bRXLW0nAta5COpZ27yLXuS36c58Hnapg8aEjuNSSPGlKD9arPVck08ujd817k1Z1R2jVYHitVHjejm5z7o17TNC3x9uFeKzDdyfb38r3uwe47mKH3NMtouGWYGl6P8D3hrqH9ENSfwclTq9AfP2w6LQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Single+Reference+for+Training%3A+Underwater+Image+Enhancement+via+Comparative+Learning&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Li%2C+Kunqian&rft.au=Wu%2C+Li&rft.au=Qi%2C+Qi&rft.au=Liu%2C+Wenjie&rft.date=2023-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=33&rft.issue=6&rft.spage=2561&rft_id=info:doi/10.1109%2FTCSVT.2022.3225376&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon