Distributed Algorithm for Nonsmooth Resource Allocation Problems With Nonlinear Constraints and Its Application to Smart Grids
In this article, we study nondifferentiable resource allocation problems (RAPs). In our problem, the decisions of agents are subject to coupling inequality constraints, local inequality constraints, and local convex set constraints. In contrast to existing RAPs, the cost functions are nonsmooth and...
Saved in:
Published in | IEEE systems journal Vol. 17; no. 2; pp. 1 - 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we study nondifferentiable resource allocation problems (RAPs). In our problem, the decisions of agents are subject to coupling inequality constraints, local inequality constraints, and local convex set constraints. In contrast to existing RAPs, the cost functions are nonsmooth and the inequality constraints are nonsmooth and nonlinear in our problem. Based on differential inclusions and projection methods, we exploit a fully distributed subgradient-based resource allocation algorithm to optimally allocate the network resources. With the help of the set-valued LaSalle invariance principle, we prove the global convergence of the algorithm to the optimal resource allocation of our problem. Finally, our method is applied to the economic dispatch problems of smart grids. With our method, the generations of generating units converge to the optimal power generation. |
---|---|
AbstractList | In this article, we study nondifferentiable resource allocation problems (RAPs). In our problem, the decisions of agents are subject to coupling inequality constraints, local inequality constraints, and local convex set constraints. In contrast to existing RAPs, the cost functions are nonsmooth and the inequality constraints are nonsmooth and nonlinear in our problem. Based on differential inclusions and projection methods, we exploit a fully distributed subgradient-based resource allocation algorithm to optimally allocate the network resources. With the help of the set-valued LaSalle invariance principle, we prove the global convergence of the algorithm to the optimal resource allocation of our problem. Finally, our method is applied to the economic dispatch problems of smart grids. With our method, the generations of generating units converge to the optimal power generation. |
Author | Chen, Tao Zhao, Yan Deng, Zhenhua |
Author_xml | – sequence: 1 givenname: Zhenhua orcidid: 0000-0001-7225-5238 surname: Deng fullname: Deng, Zhenhua organization: School of Automation, Central South University, Changsha, China – sequence: 2 givenname: Tao surname: Chen fullname: Chen, Tao organization: School of Automation, Central South University, Changsha, China – sequence: 3 givenname: Yan surname: Zhao fullname: Zhao, Yan organization: School of Automation, Central South University, Changsha, China |
BookMark | eNp9kL1OwzAURi1UJKDwArBYYk6Jr5PaHqsCBVQBoiDEFNmuA67SuNjuwMKz47QVAwPTvcN37s85Qr3WtQahU5IPCMnFxd3sbfY8gBxgQAE4FLCHDomgLBNAi96mh4wTXhygoxAWeV7ykolD9H1pQ_RWraOZ41Hz7ryNH0tcO4_vXRuWzsUP_GSCW3ttUqBxWkbrWvzonWrMMuDXBHTZxrZGejxOVPTStjFg2c7xbaqj1aqxOy46PFtKH_HE23k4Rvu1bII52dU-erm-eh7fZNOHye14NM00iDJmStdD4JqDHirNQILKS5prLjUlhSRzLlldcgKCEaFA0WFNCwVclAwUo6KmfXS-nbvy7nNtQqwW6aM2raw6WyShwFMKtintXQje1NXK23TsV0XyqvNcbTxXnedq5zlB_A-kbdz82mlo_kfPtqg1xvzuEkLwgjH6Axtnj2c |
CODEN | ISJEB2 |
CitedBy_id | crossref_primary_10_1002_asjc_3555 crossref_primary_10_1109_TNSE_2024_3443864 |
Cites_doi | 10.1109/TAC.2022.3161876 10.1109/TPWRS.2014.2299436 10.1016/j.automatica.2022.110492 10.2307/2324660 10.1109/TSP.2020.3007313 10.1109/JSYST.2022.3181937 10.1109/JSYST.2021.3128737 10.1109/TSP.2013.2278149 10.1109/TPWRS.2021.3086101 10.1109/TSG.2017.2720471 10.1109/JSYST.2020.2990633 10.1109/TNNLS.2017.2691760 10.1109/TCYB.2017.2759141 10.1109/TSG.2020.2999383 10.1109/TIE.2019.2891406 10.1109/TSMC.2019.2930672 10.1109/TPWRS.2012.2188912 10.1016/j.automatica.2020.109180 10.1137/060662228 10.1007/978-1-4613-0163-9 10.1016/j.automatica.2021.109794 10.1109/TCNS.2021.3089137 10.1109/59.485992 10.1109/TWC.2015.2506561 10.1109/JSYST.2018.2859755 10.1016/j.ijepes.2018.07.056 10.1007/s10957-006-9080-1 10.1109/TAC.2013.2253218 10.1109/TPWRS.2014.2376935 10.1109/TSMC.2015.2392719 10.1109/TSG.2021.3063128 10.1016/j.automatica.2019.01.025 10.1016/j.automatica.2019.108538 10.1109/TII.2021.3062040 10.1109/TAC.2013.2293221 10.1109/TAC.2016.2610945 10.1016/j.automatica.2020.109356 10.1109/TSG.2014.2317744 10.1109/TCYB.2015.2464255 10.1109/TPWRS.2004.831275 10.1137/1.9780898719451 10.1007/978-3-642-69512-4 10.1109/TPWRS.2013.2271640 10.1109/TSG.2021.3063712 10.1109/TCNS.2015.2399191 10.1515/9781400841059 10.1109/TSG.2021.3089421 10.1016/j.orl.2006.02.005 10.1109/TNSE.2022.3174098 10.1017/CBO9780511804441 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/JSYST.2022.3228242 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1937-9234 |
EndPage | 10 |
ExternalDocumentID | 10_1109_JSYST_2022_3228242 9998477 |
Genre | orig-research |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX AETIX AGSQL CITATION EJD RIG |
ID | FETCH-LOGICAL-c295t-bcf628c82c6bc72a2b0530c8ac314a1d8a7f58129719b2b36f34b289572b739f3 |
IEDL.DBID | RIE |
ISSN | 1932-8184 |
IngestDate | Mon Jun 30 08:40:11 EDT 2025 Thu Apr 24 23:08:50 EDT 2025 Tue Jul 01 01:43:40 EDT 2025 Wed Aug 27 02:18:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-bcf628c82c6bc72a2b0530c8ac314a1d8a7f58129719b2b36f34b289572b739f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7225-5238 |
PQID | 2824112928 |
PQPubID | 85494 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_JSYST_2022_3228242 proquest_journals_2824112928 crossref_citationtrail_10_1109_JSYST_2022_3228242 ieee_primary_9998477 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE systems journal |
PublicationTitleAbbrev | JSYST |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 godsil (ref32) 2001 auslender (ref29) 1976 |
References_xml | – ident: ref24 doi: 10.1109/TAC.2022.3161876 – ident: ref50 doi: 10.1109/TPWRS.2014.2299436 – ident: ref16 doi: 10.1016/j.automatica.2022.110492 – ident: ref34 doi: 10.2307/2324660 – ident: ref4 doi: 10.1109/TSP.2020.3007313 – ident: ref36 doi: 10.1109/JSYST.2022.3181937 – ident: ref37 doi: 10.1109/JSYST.2021.3128737 – ident: ref11 doi: 10.1109/TSP.2013.2278149 – ident: ref47 doi: 10.1109/TPWRS.2021.3086101 – ident: ref51 doi: 10.1109/TSG.2017.2720471 – ident: ref2 doi: 10.1109/JSYST.2020.2990633 – ident: ref8 doi: 10.1109/TNNLS.2017.2691760 – ident: ref7 doi: 10.1109/TCYB.2017.2759141 – ident: ref26 doi: 10.1109/TSG.2020.2999383 – ident: ref9 doi: 10.1109/TIE.2019.2891406 – ident: ref15 doi: 10.1109/TSMC.2019.2930672 – ident: ref25 doi: 10.1109/TPWRS.2012.2188912 – ident: ref10 doi: 10.1016/j.automatica.2020.109180 – ident: ref5 doi: 10.1137/060662228 – year: 2001 ident: ref32 publication-title: Algebraic Graph Theory doi: 10.1007/978-1-4613-0163-9 – ident: ref23 doi: 10.1016/j.automatica.2021.109794 – ident: ref42 doi: 10.1109/TCNS.2021.3089137 – ident: ref18 doi: 10.1109/59.485992 – ident: ref3 doi: 10.1109/TWC.2015.2506561 – ident: ref35 doi: 10.1109/JSYST.2018.2859755 – ident: ref39 doi: 10.1016/j.ijepes.2018.07.056 – ident: ref6 doi: 10.1007/s10957-006-9080-1 – ident: ref14 doi: 10.1109/TAC.2013.2253218 – ident: ref49 doi: 10.1109/TPWRS.2014.2376935 – ident: ref19 doi: 10.1109/TSMC.2015.2392719 – ident: ref46 doi: 10.1109/TSG.2021.3063128 – year: 1976 ident: ref29 publication-title: Optimisation Méthodes Numériques – ident: ref22 doi: 10.1016/j.automatica.2019.01.025 – ident: ref12 doi: 10.1016/j.automatica.2019.108538 – ident: ref45 doi: 10.1109/TII.2021.3062040 – ident: ref13 doi: 10.1109/TAC.2013.2293221 – ident: ref31 doi: 10.1109/TAC.2016.2610945 – ident: ref40 doi: 10.1016/j.automatica.2020.109356 – ident: ref1 doi: 10.1109/TSG.2014.2317744 – ident: ref21 doi: 10.1109/TCYB.2015.2464255 – ident: ref17 doi: 10.1109/TPWRS.2004.831275 – ident: ref28 doi: 10.1137/1.9780898719451 – ident: ref30 doi: 10.1007/978-3-642-69512-4 – ident: ref44 doi: 10.1109/TPWRS.2013.2271640 – ident: ref43 doi: 10.1109/TSG.2021.3063712 – ident: ref48 doi: 10.1109/TCNS.2015.2399191 – ident: ref33 doi: 10.1515/9781400841059 – ident: ref38 doi: 10.1109/TSG.2021.3089421 – ident: ref20 doi: 10.1016/j.orl.2006.02.005 – ident: ref41 doi: 10.1109/TNSE.2022.3174098 – ident: ref27 doi: 10.1017/CBO9780511804441 |
SSID | ssj0058579 |
Score | 2.321249 |
Snippet | In this article, we study nondifferentiable resource allocation problems (RAPs). In our problem, the decisions of agents are subject to coupling inequality... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Computational geometry Convergence Convexity Cost function Costs Distributed algorithms Graph theory Inclusions multiagent systems nonlinear constraints nonsmooth analysis Optimization Power dispatch Resource allocation Resource management Smart grid Smart grids |
Title | Distributed Algorithm for Nonsmooth Resource Allocation Problems With Nonlinear Constraints and Its Application to Smart Grids |
URI | https://ieeexplore.ieee.org/document/9998477 https://www.proquest.com/docview/2824112928 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB3BnugBKLRiYal84NZmydpOYh9XUEqRQEgLKpyi2HEAwW7QbvbCgd_OjJNsS4sqTslhRrL0xp43_pgHsBeqgjJpHOSFFoE0cREomSdBqDOupTA68loEp2fx8aU8uYquluDb4i2Mc85fPnN9-vVn-Xlp57RVto9kBhfTZBmWsXCr32q1qy6yXt9Xj_hIgElItg9kQr1_MroeXWApyHkfw1dxyV8lIa-q8s9S7PPL0RqctiOrr5Xc9-eV6dunv5o2vnfo67DaEE02rCPjIyy5yQZ8-KP94CY8H1LXXBK8cjkbPtyU07vqdsyQxrIzDMZxiSiydn8fDSjvEY7svFahmbFf6EC2xFWzKSP1T685Uc1YNsnZT_wOf5-Qs6pkozHGKvsxvctnn-Dy6PvFwXHQ6DEEluuoCowtYq6s4jY2NuEZNziDQ6syKwYyG-QqS4oICYNOBtpwI-JCSIMFXZRwkwhdiM_QmZQTtwVMaCupMY60AgsgK1Wm4lgL7awQBilqFwYtQKltmpXT-B9SX7SEOvWgpgRq2oDaha8Ln8e6Vcd_rTcJpYVlA1AXem0cpM1snqXkQLyUq-23vXZghWTo6ytkPehU07nbRbJSmS8-Sl8A1oTl3Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V9gA9QKEgFkrxgRtkm9hOYh9XhXZbuiuk3YpyimLHgardDdrNXjjw2zvjJMtXhXpKDjOSpTf2vPHHPIA3oSopkyZBUWoRSJOUgZJFGoQ651oKo2OvRTAaJ8NzeXoRX2zAu_VbGOecv3zm-vTrz_KLyq5oq-wAyQwupuk92MK8H0fNa61u3UXe6zvrESMJMA3J7olMqA9OJ18mUywGOe9jACsu-R9pyOuq_LMY-wxz9AhG3diaiyVX_VVt-vbHX20b7zr4HXjYUk02aGLjMWy4-RPY_q0B4S78fE99c0nyyhVscP21WlzW32YMiSwbYzjOKsSRdTv8aECZj5BknxodmiX7jA5kS2w1XzDS__SqE_WS5fOCneB38OuMnNUVm8wwWtnx4rJYPoXzow_Tw2HQKjIEluu4DowtE66s4jYxNuU5NziHQ6tyKyKZR4XK0zJGyqDTSBtuRFIKabCki1NuUqFL8Qw259XcPQcmtJXUGkdagSWQlSpXSaKFdlYIgyS1B1EHUGbbduU0_uvMly2hzjyoGYGataD24O3a53vTrOO_1ruE0tqyBagHe10cZO18XmbkQMyUqxe3e72G-8Pp6Cw7Oxl_fAkPSJS-uVC2B5v1YuVeIXWpzb6P2Bv5TOkm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Algorithm+for+Nonsmooth+Resource+Allocation+Problems+With+Nonlinear+Constraints+and+Its+Application+to+Smart+Grids&rft.jtitle=IEEE+systems+journal&rft.au=Deng%2C+Zhenhua&rft.au=Chen%2C+Tao&rft.au=Zhao%2C+Yan&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=1932-8184&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FJSYST.2022.3228242&rft.externalDocID=9998477 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon |