A Method for Representing Non-Standard Waveform in Factory Tests Using Impulse Waveforms
The standard 1.2/50 lightning impulse test has been important for factory testing equipment and evaluating their performance in electrical systems. In practice, however, such equipment is subject to non-standard waveform (NSW) of high frequencies, which may not be covered by standard tests. To overc...
Saved in:
Published in | IEEE transactions on power delivery Vol. 37; no. 5; pp. 3491 - 3500 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The standard 1.2/50 lightning impulse test has been important for factory testing equipment and evaluating their performance in electrical systems. In practice, however, such equipment is subject to non-standard waveform (NSW) of high frequencies, which may not be covered by standard tests. To overcome this difficulty, the present article outlines a method that simulates NSW in laboratory tests. Based on multiresolution wavelet analysis, the method considers the correlation between amplitude and entropy in the decomposition levels between waveforms. To that end, changes are proposed to the following parameters of standard impulse tests: amplitude, cut-off instant, and front time. The results show that, mostly, the combination of a lightning impulse waveform (LIW) with impulse waves cut at different times, sufficiently represent the NSW. Only when the NSW's density falls predominantly in a frequency range above 3.125 MHz, will there be need for a complementary LIW with a steep front time. The method's application allows manufacturers and concessionaires to subject the equipment to conditions that properly represent the NSW effects, through lightning impulse tests carried out at the factory. |
---|---|
AbstractList | The standard 1.2/50 lightning impulse test has been important for factory testing equipment and evaluating their performance in electrical systems. In practice, however, such equipment is subject to non-standard waveform (NSW) of high frequencies, which may not be covered by standard tests. To overcome this difficulty, the present article outlines a method that simulates NSW in laboratory tests. Based on multiresolution wavelet analysis, the method considers the correlation between amplitude and entropy in the decomposition levels between waveforms. To that end, changes are proposed to the following parameters of standard impulse tests: amplitude, cut-off instant, and front time. The results show that, mostly, the combination of a lightning impulse waveform (LIW) with impulse waves cut at different times, sufficiently represent the NSW. Only when the NSW's density falls predominantly in a frequency range above 3.125 MHz, will there be need for a complementary LIW with a steep front time. The method's application allows manufacturers and concessionaires to subject the equipment to conditions that properly represent the NSW effects, through lightning impulse tests carried out at the factory. |
Author | Wickert, Humberto Margel Marchesan, Tiago Bandeira |
Author_xml | – sequence: 1 givenname: Humberto Margel orcidid: 0000-0001-7768-4023 surname: Wickert fullname: Wickert, Humberto Margel email: humbertomw@hotmail.com organization: Electric Power Company (CPFL Transmission) and Federal University of Santa Maria (UFSM), Santa Maria, Brazil – sequence: 2 givenname: Tiago Bandeira surname: Marchesan fullname: Marchesan, Tiago Bandeira email: tiago@ufsm.br organization: Federal University of Santa Maria (UFSM), Santa Maria, Brazil |
BookMark | eNp9kE1PAjEURRuDiYj-Ad00cT3Yz-l0SVCUBD-CENw1ZdrRIdBiW0z49w5CWLhw9ZKXe967Oeeg5byzAFxh1MUYydvJ62x81yWI4C7FROaInoA2llRkjKCiBdqoKHhWSCHOwHmMC4QQQxK1wXsPPtn06Q2sfIBjuw42Wpdq9wGfvcveknZGBwNn-ts2iRWsHRzoMvmwhRMbU4TTuAsPV-vNMtpjLl6A00o3m8vD7IDp4H7Sf8xGLw_Dfm-UlUTylGkrjJAkNwzlVnCGreZ5U5aV1MxzrRnX3PBibkRJMdXMIKQprSqGKjM3mtAOuNnfXQf_tWkaqYXfBNe8VERggbmUDdgBxT5VBh9jsJUq66RT7V0Kul4qjNTOo_r1qHYe1cFjg5I_6DrUKx22_0PXe6i21h4BmRPKcEF_AJsJgRc |
CODEN | ITPDE5 |
CitedBy_id | crossref_primary_10_1007_s00202_022_01616_2 |
Cites_doi | 10.1109/TDEI.2015.004707 10.1109/ICPST.2006.321939 10.1109/TDEI.2008.4656236 10.1109/TDEI.2008.4543128 10.1109/61.489367 10.1109/TDEI.2009.5361591 10.1109/TDEI.2020.008892 10.1109/MEI.2016.7527121 10.1109/TDEI.2015.005115 10.1109/14.2377 10.1049/ip-c.1992.0042 10.1109/TDEI.2011.5704515 10.1109/TPWRD.2007.905452 10.1016/B978-075063634-6/50006-X 10.1109/TDEI.2019.008343 10.3403/00000781u 10.1109/61.714484 10.1201/9781420065305c-1 10.1109/TPWRD.2012.2228012 10.1109/34.192463 10.1109/PESS.2002.1043437 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TPWRD.2021.3129603 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1937-4208 |
EndPage | 3500 |
ExternalDocumentID | 10_1109_TPWRD_2021_3129603 9623418 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c295t-ae7d7926d406e7541ea560884c3db6aa45a5d58bd7c313a4d00a33ff40fdbda23 |
IEDL.DBID | RIE |
ISSN | 0885-8977 |
IngestDate | Mon Jun 30 04:27:33 EDT 2025 Tue Jul 01 00:24:20 EDT 2025 Thu Apr 24 22:51:50 EDT 2025 Wed Aug 27 02:18:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-ae7d7926d406e7541ea560884c3db6aa45a5d58bd7c313a4d00a33ff40fdbda23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7768-4023 |
PQID | 2717159931 |
PQPubID | 85445 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_TPWRD_2021_3129603 crossref_primary_10_1109_TPWRD_2021_3129603 ieee_primary_9623418 proquest_journals_2717159931 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on power delivery |
PublicationTitleAbbrev | TPWRD |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref17 ref16 Garnacho (ref27) 2002; 204 ref19 ref18 (ref1) 2010 (ref4) 2010 ref23 (ref24) 2004 ref25 ref20 ref22 ref28 ref8 ref7 ref9 (ref3) 2014 ref6 Misti (ref21) 1996 ref5 (ref26) 2009 |
References_xml | – ident: ref7 doi: 10.1109/TDEI.2015.004707 – ident: ref20 doi: 10.1109/ICPST.2006.321939 – ident: ref10 doi: 10.1109/TDEI.2008.4656236 – year: 2014 ident: ref3 article-title: Electrical transient interaction between transformers and the power system. Part 1Expertise – year: 2010 ident: ref4 publication-title: High - Voltage Test Techniques - Part 1: General Definitions and Test Requirements – ident: ref15 doi: 10.1109/TDEI.2008.4543128 – ident: ref16 doi: 10.1109/61.489367 – ident: ref2 doi: 10.1109/TDEI.2009.5361591 – year: 2004 ident: ref24 publication-title: Insulation Co-ordination - Part 4: Computational Guide to Insulation Co-ordination and Modelling of Electrical Networks – ident: ref28 doi: 10.1109/TDEI.2020.008892 – ident: ref11 doi: 10.1109/MEI.2016.7527121 – ident: ref13 doi: 10.1109/TDEI.2015.005115 – ident: ref9 doi: 10.1109/14.2377 – ident: ref23 doi: 10.1049/ip-c.1992.0042 – volume-title: IPST - Int. Conf. Power Syst. Transients year: 2009 ident: ref26 article-title: Electrical transient interaction between transformers and power systems - Brazilian experience – ident: ref12 doi: 10.1109/TDEI.2011.5704515 – ident: ref8 doi: 10.1109/TPWRD.2007.905452 – ident: ref22 doi: 10.1016/B978-075063634-6/50006-X – year: 2010 ident: ref1 publication-title: Insulation Co-ordination - Part 1: Definitions, Principles and Rules – ident: ref14 doi: 10.1109/TDEI.2019.008343 – ident: ref5 doi: 10.3403/00000781u – volume: 204 start-page: 31 year: 2002 ident: ref27 article-title: Evaluation of lightning impulse voltages based on experimental results publication-title: Electra. – ident: ref19 doi: 10.1109/61.714484 – ident: ref25 doi: 10.1201/9781420065305c-1 – ident: ref6 doi: 10.1109/TPWRD.2012.2228012 – ident: ref17 doi: 10.1109/34.192463 – volume-title: Wavelet Toolbox Manual - Users Guide year: 1996 ident: ref21 – ident: ref18 doi: 10.1109/PESS.2002.1043437 |
SSID | ssj0004090 |
Score | 2.3933825 |
Snippet | The standard 1.2/50 lightning impulse test has been important for factory testing equipment and evaluating their performance in electrical systems. In... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3491 |
SubjectTerms | Amplitudes Entropy Frequency ranges high-voltage techniques impulse testing Laboratory tests Lightning Multiresolution analysis non-standard waveform power system transients Test equipment Transient analysis Voltage control voltage peak amplitude Waveforms Wavelet analysis Wavelet transforms |
Title | A Method for Representing Non-Standard Waveform in Factory Tests Using Impulse Waveforms |
URI | https://ieeexplore.ieee.org/document/9623418 https://www.proquest.com/docview/2717159931 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VJhh4I8pLHtjAbRI7tTMioAKkIgSt2i2yY1tCQIpoiwS_nouTlqcQW4az5Pgc3_c5d_cBHOCh55QUEVXCacp1ElDFrKDOZC1uhVbO66d0rlrnPX45iAc1OJrVwlhrffKZbRSP_l--GWaT4qqsmWCs5qGcgzkkbmWt1kcNZFDep0gZU4mgZlogEyTN7nX_5hSpYBQiQ40QsrMvQcirqvw4in18aS9DZzqzMq3kvjEZ60b29q1p43-nvgJLFdAkx-XOWIWazddg8VP7wXUYHJOOF5AmiFzJjc-JtV45glwNc3pb3TKQvnqxBbYldzlpe32eV9LFVxgRn3BALh6fJhhhZ3ajDei1z7on57RSWqBZlMRjqqwwIolaBsO7FTEPrUIkJCXPmNEtpXisYhNLbUTGQqa4CQLFmHM8cEYbFbFNmM-Hud0CYh23jqGdRqaiivbuziFKEMhLZCwzU4dwuvRpVrUhL9QwHlJPR4Ik9e5KC3ellbvqcDgb81Q24fjTer1Y_5lltfR12J16OK2-01EaIZtFQJewcPv3UTuwEBUFDz59bxfmx88Tu4cwZKz3_f57BzvV2W8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LbxMxEB5V5QAcKFAQoQV8gBNyuutH7D1wqChRQpsIlVTNbbHXtoSATUUSqva38Ff4b4y9m_AUt0rc9jB7WM-nme_zzgPgKQa9YLRi1KhgqbBFRg33igZX9YRX1oS0P2U07g1OxOupnG7A13UvjPc-FZ_5bnxM__LdrFrGq7K9AnO1yHVbQnnoL85RoM1fDA_Qm88Y67-avBzQdocArVghF9R45VTBeg4Tl1dS5N5gjtdaVNzZnjFCGumktk5VPOdGuCwznIcgsuCsM3GsAQb4a8gzJGu6w350XWbNDY7WkmqkUauWnKzYm7w5PT5A8cly1MQMRQL_Je2lPS5_BP-U0fpb8G11Fk0hy4fucmG71eVvYyL_18O6DbdaKk32G-zfgQ1f34WbPw1Y3IbpPhmlFdkEuTk5TlW_Pu3GIONZTd-29yjk1Hzxkb2T9zXppw1EF2SCRzYnqaSCDD-dLZFDrO3m9-DkSj7tPmzWs9o_AOKD8IGjnUUtZuIA-xCQBylUXlrqynUgX7m6rNpB63Hfx8cyCa6sKBM8ygiPsoVHB56v3zlrxoz803o7-ntt2bq6A7srRJVtJJqXDPU6UtaC5w___tYTuD6YjI7Ko-H4cAdusNjekYoVd2Fz8XnpHyHpWtjHCfsE3l01fr4D_Cg4Jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Representing+Non-Standard+Waveform+in+Factory+Tests+Using+Impulse+Waveforms&rft.jtitle=IEEE+transactions+on+power+delivery&rft.au=Wickert%2C+Humberto+Margel&rft.au=Marchesan%2C+Tiago+Bandeira&rft.date=2022-10-01&rft.issn=0885-8977&rft.eissn=1937-4208&rft.volume=37&rft.issue=5&rft.spage=3491&rft.epage=3500&rft_id=info:doi/10.1109%2FTPWRD.2021.3129603&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRD_2021_3129603 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8977&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8977&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8977&client=summon |