A Unified Metric Learning-Based Framework for Co-Saliency Detection
Co-saliency detection, which focuses on extracting commonly salient objects in a group of relevant images, has been attracting research interest because of its broad applications. In practice, the relevant images in a group may have a wide range of variations, and the salient objects may also have l...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 28; no. 10; pp. 2473 - 2483 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Co-saliency detection, which focuses on extracting commonly salient objects in a group of relevant images, has been attracting research interest because of its broad applications. In practice, the relevant images in a group may have a wide range of variations, and the salient objects may also have large appearance changes. Such wide variations usually bring about large intra-co-salient objects (intra-COs) diversity and high similarity between COs and background, which makes the co-saliency detection task more difficult. To address these problems, we make the earliest effort to introduce metric learning to co-saliency detection. Specifically, we propose a unified metric learning-based framework to jointly learn discriminative feature representation and co-salient object detector. This is achieved by optimizing a new objective function that explicitly embeds a metric learning regularization term into support vector machine (SVM) training. Here, the metric learning regularization term is used to learn a powerful feature representation that has small intra-COs scatter, but big separation between background and COs and the SVM classifier is used for subsequent co-saliency detection. In the experiments, we comprehensively evaluate the proposed method on two commonly used benchmark data sets. The state-of-the-art results are achieved in comparison with the existing co-saliency detection methods. |
---|---|
AbstractList | Co-saliency detection, which focuses on extracting commonly salient objects in a group of relevant images, has been attracting research interest because of its broad applications. In practice, the relevant images in a group may have a wide range of variations, and the salient objects may also have large appearance changes. Such wide variations usually bring about large intra-co-salient objects (intra-COs) diversity and high similarity between COs and background, which makes the co-saliency detection task more difficult. To address these problems, we make the earliest effort to introduce metric learning to co-saliency detection. Specifically, we propose a unified metric learning-based framework to jointly learn discriminative feature representation and co-salient object detector. This is achieved by optimizing a new objective function that explicitly embeds a metric learning regularization term into support vector machine (SVM) training. Here, the metric learning regularization term is used to learn a powerful feature representation that has small intra-COs scatter, but big separation between background and COs and the SVM classifier is used for subsequent co-saliency detection. In the experiments, we comprehensively evaluate the proposed method on two commonly used benchmark data sets. The state-of-the-art results are achieved in comparison with the existing co-saliency detection methods. |
Author | Zhang, Dingwen Cheng, Gong Li, Zhenpeng Han, Junwei |
Author_xml | – sequence: 1 givenname: Junwei orcidid: 0000-0001-5545-7217 surname: Han fullname: Han, Junwei organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Gong orcidid: 0000-0001-5030-0683 surname: Cheng fullname: Cheng, Gong email: gcheng@nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Zhenpeng surname: Li fullname: Li, Zhenpeng organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Dingwen orcidid: 0000-0001-8369-8886 surname: Zhang fullname: Zhang, Dingwen email: zdw2006yyy@mail.nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an, China |
BookMark | eNp9kE1PAjEQQBuDiYD-Ab1s4nmxM7ttd4-4ippgPABem9LtmiK02C0x_HsXMR48eJrJZN58vAHpOe8MIZdARwC0vJlXs9f5CCmIEQrKkecnpA-MFSkiZb0upwzSAoGdkUHbriiFvMhFn1TjZOFsY02dPJsYrE6mRgVn3Vt6q9quOglqYz59eE8aH5LKpzO1tsbpfXJnotHRendOThu1bs3FTxySxeR-Xj2m05eHp2o8TTWWLKaqbgoULBOipmIJTHOa84ZnimqkIq8ZckOhFloJBpyyJdNaI3ABoEXNimxIro9zt8F_7Ewb5crvgutWSoTuZY6ixK6rOHbp4Ns2mEZqG9XhzhiUXUug8qBMfiuTB2XyR1mH4h90G-xGhf3_0NURssaYX0CUGULJsi-uwHd9 |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1016_j_cviu_2022_103611 crossref_primary_10_1109_TCSVT_2021_3099120 crossref_primary_10_1109_TNNLS_2019_2927719 crossref_primary_10_1109_TCSVT_2018_2883558 crossref_primary_10_1109_TCSVT_2021_3069034 crossref_primary_10_3390_rs13245065 crossref_primary_10_1016_j_neucom_2019_02_041 crossref_primary_10_1109_TMM_2022_3167805 crossref_primary_10_1016_j_neucom_2022_03_029 crossref_primary_10_1109_TCDS_2021_3078824 crossref_primary_10_1109_TCSVT_2021_3095843 crossref_primary_10_1016_j_neucom_2018_01_076 crossref_primary_10_1109_TIP_2019_2941663 crossref_primary_10_1109_TPAMI_2019_2913863 crossref_primary_10_1109_TKDE_2019_2904256 crossref_primary_10_1007_s00138_018_0927_x crossref_primary_10_1016_j_neucom_2019_05_009 crossref_primary_10_1109_TIP_2021_3087401 crossref_primary_10_1109_TCYB_2018_2806381 crossref_primary_10_1109_TCYB_2019_2914351 crossref_primary_10_1109_TGRS_2020_3030990 crossref_primary_10_1007_s00138_023_01462_7 crossref_primary_10_1109_TGRS_2020_2991657 crossref_primary_10_1109_TIP_2017_2760512 crossref_primary_10_1080_01431161_2018_1479791 crossref_primary_10_3233_JIFS_172039 crossref_primary_10_1007_s00530_024_01656_7 crossref_primary_10_1016_j_jvcir_2018_11_023 crossref_primary_10_1109_TCSVT_2019_2906246 crossref_primary_10_1007_s10489_022_03165_4 crossref_primary_10_1016_j_neucom_2018_09_048 crossref_primary_10_1016_j_neucom_2018_12_053 crossref_primary_10_1109_TNNLS_2019_2917524 crossref_primary_10_1109_TIP_2020_3034498 crossref_primary_10_1016_j_knosys_2024_112852 crossref_primary_10_1109_TCSVT_2021_3093890 crossref_primary_10_1109_JSTARS_2020_3046838 crossref_primary_10_1016_j_neucom_2019_09_010 crossref_primary_10_1109_TGRS_2020_2991545 crossref_primary_10_1109_TCSVT_2022_3225865 crossref_primary_10_1016_j_jvcir_2019_102579 crossref_primary_10_1016_j_jvcir_2019_102578 crossref_primary_10_1109_TGRS_2020_2985989 crossref_primary_10_1109_ACCESS_2020_3006202 crossref_primary_10_1109_TMM_2022_3210389 crossref_primary_10_1109_TNNLS_2021_3053266 crossref_primary_10_1007_s00138_018_0993_0 crossref_primary_10_1109_TGRS_2019_2907310 crossref_primary_10_1109_TCSVT_2019_2963318 crossref_primary_10_1109_TIM_2024_3368421 crossref_primary_10_1016_j_jvcir_2019_102580 crossref_primary_10_1109_TMM_2018_2884481 crossref_primary_10_1007_s13042_020_01188_2 crossref_primary_10_1109_TCSVT_2019_2897604 crossref_primary_10_1016_j_jvcir_2019_102581 crossref_primary_10_1109_TCYB_2018_2886012 crossref_primary_10_1007_s10489_023_04838_4 crossref_primary_10_1145_3313874 crossref_primary_10_1109_TCYB_2020_3008248 crossref_primary_10_1049_iet_cvi_2018_5717 crossref_primary_10_1016_j_jvcir_2018_12_049 crossref_primary_10_1016_j_knosys_2022_109356 crossref_primary_10_3390_s24103222 crossref_primary_10_1016_j_neucom_2017_12_014 crossref_primary_10_1109_TGRS_2019_2925070 crossref_primary_10_1109_TIP_2022_3184813 crossref_primary_10_1016_j_ins_2021_04_077 crossref_primary_10_1016_j_neucom_2018_03_014 crossref_primary_10_1109_TPAMI_2023_3234586 crossref_primary_10_1016_j_neucom_2018_11_111 crossref_primary_10_1016_j_neucom_2019_05_024 crossref_primary_10_1007_s11192_021_03909_y crossref_primary_10_1007_s10851_019_00882_3 crossref_primary_10_1109_TMM_2023_3249481 crossref_primary_10_1109_TCSVT_2018_2884173 crossref_primary_10_1109_TCYB_2022_3169431 crossref_primary_10_1109_TGRS_2021_3123231 crossref_primary_10_1016_j_jvcir_2019_102599 crossref_primary_10_1109_TNNLS_2023_3317091 crossref_primary_10_1016_j_cviu_2024_103932 crossref_primary_10_1109_TSMC_2025_3526234 crossref_primary_10_1109_LGRS_2019_2961502 crossref_primary_10_3390_app9102110 crossref_primary_10_1016_j_neucom_2020_02_024 crossref_primary_10_1109_TNNLS_2020_2967471 crossref_primary_10_1016_j_patrec_2018_04_023 crossref_primary_10_1109_TCSVT_2022_3150923 crossref_primary_10_1109_TCYB_2020_2969255 crossref_primary_10_1109_TIP_2019_2962688 crossref_primary_10_1109_TMM_2021_3125195 crossref_primary_10_1016_j_neucom_2018_11_044 crossref_primary_10_1109_TCSVT_2018_2869841 crossref_primary_10_1111_exsy_13508 crossref_primary_10_1007_s00607_023_01213_6 crossref_primary_10_1109_TAI_2020_3026982 crossref_primary_10_1016_j_neucom_2020_08_038 crossref_primary_10_1109_TPAMI_2021_3060412 crossref_primary_10_1109_ACCESS_2018_2873327 crossref_primary_10_1109_TGRS_2021_3079441 crossref_primary_10_1155_2021_8956396 crossref_primary_10_1049_iet_cvi_2018_5814 crossref_primary_10_1016_j_neucom_2018_02_070 crossref_primary_10_1109_TCSVT_2018_2881842 crossref_primary_10_1007_s00371_021_02231_1 crossref_primary_10_1109_TCSVT_2021_3127149 crossref_primary_10_1109_TCYB_2018_2804326 crossref_primary_10_1007_s11760_020_01683_7 crossref_primary_10_1109_TIP_2017_2781424 crossref_primary_10_1016_j_image_2019_08_006 crossref_primary_10_1016_j_neucom_2024_128114 crossref_primary_10_1109_TMM_2019_2936803 crossref_primary_10_1007_s12559_021_09896_9 crossref_primary_10_1016_j_engappai_2019_07_018 crossref_primary_10_1016_j_jvcir_2019_102591 crossref_primary_10_1109_ACCESS_2020_3032346 crossref_primary_10_1109_TCSVT_2018_2870832 crossref_primary_10_1007_s11042_020_08849_y crossref_primary_10_1109_TGRS_2018_2869004 crossref_primary_10_1109_TPAMI_2019_2900649 crossref_primary_10_1109_TIP_2022_3212906 crossref_primary_10_1109_TMM_2021_3054526 crossref_primary_10_1109_JSTARS_2020_3041344 crossref_primary_10_3390_s18124241 crossref_primary_10_1109_LSP_2021_3049997 crossref_primary_10_1109_TGRS_2019_2951820 crossref_primary_10_3390_app13148007 crossref_primary_10_1016_j_engappai_2019_103419 crossref_primary_10_1109_TCSVT_2022_3213680 crossref_primary_10_1016_j_knosys_2021_106772 crossref_primary_10_1109_TCSVT_2020_2992054 crossref_primary_10_1109_TCSVT_2021_3069812 crossref_primary_10_1109_TGRS_2019_2893180 crossref_primary_10_1109_TPAMI_2023_3336015 crossref_primary_10_1016_j_imavis_2025_105414 crossref_primary_10_3390_rs11020150 crossref_primary_10_1109_ACCESS_2018_2885507 crossref_primary_10_1109_JSTARS_2019_2917703 crossref_primary_10_1109_TKDE_2020_2999504 crossref_primary_10_1109_TCSVT_2019_2896438 crossref_primary_10_1109_TMM_2022_3198848 crossref_primary_10_1109_TIP_2019_2897966 crossref_primary_10_1109_TNNLS_2020_2986823 crossref_primary_10_1007_s13042_022_01531_9 crossref_primary_10_1007_s00371_020_01842_4 crossref_primary_10_1016_j_compeleceng_2021_107006 crossref_primary_10_1016_j_infrared_2023_105107 crossref_primary_10_1016_j_knosys_2022_109791 crossref_primary_10_1109_TGRS_2018_2841823 crossref_primary_10_1007_s11042_018_5793_z crossref_primary_10_1049_cit2_12020 crossref_primary_10_1109_TCSVT_2018_2879626 crossref_primary_10_1080_01431161_2024_2359734 crossref_primary_10_1109_TGRS_2018_2802785 crossref_primary_10_1109_TIP_2019_2910377 crossref_primary_10_1109_TIP_2019_2903294 crossref_primary_10_1016_j_neucom_2018_12_073 crossref_primary_10_1109_TCSVT_2022_3185252 crossref_primary_10_1109_TPAMI_2023_3264571 |
Cites_doi | 10.1109/ICCV.2011.6126415 10.1109/TCSVT.2014.2381471 10.1109/CVPR.2015.7298995 10.1007/s11263-016-0907-4 10.1109/TGRS.2014.2374218 10.1109/CVPR.2013.407 10.1109/CVPR.2015.7298609 10.1109/ICCV.2013.221 10.1109/TNNLS.2015.2440430 10.1109/TMM.2013.2271476 10.1109/TIP.2013.2260166 10.1109/CVPR.2015.7298629 10.1109/TPAMI.2011.272 10.1109/TMM.2012.2237023 10.1109/CVPR.2014.242 10.1016/j.isprsjprs.2016.03.014 10.1109/LSP.2013.2292873 10.1109/CVPR.2014.190 10.1016/j.isprsjprs.2014.10.002 10.1109/TIP.2011.2156803 10.1109/TPAMI.2016.2567386 10.1109/CVPR.2016.235 10.1109/TIP.2015.2442915 10.1016/j.image.2016.03.005 10.1109/ICCV.2005.171 10.1145/1015330.1015360 10.1109/TIP.2015.2438550 10.1109/ICCV.2013.331 10.1109/CVPR.2015.7298717 10.1109/TGRS.2016.2523563 10.1109/TGRS.2016.2601622 10.1109/TPAMI.2012.120 10.1109/TCSVT.2013.2242594 10.1109/TIP.2017.2652730 10.1109/TNNLS.2015.2495161 10.1109/JPROC.2017.2675998 10.1109/TIP.2016.2607421 10.1109/TIP.2014.2332399 10.1109/TMM.2016.2545409 10.1109/CVPR.2015.7298961 10.1109/TPAMI.2011.170 10.1109/TNNLS.2014.2361142 10.1109/CVPR.2015.7298918 10.1016/j.patrec.2013.04.009 10.1109/LSP.2014.2364896 10.1109/TIP.2012.2216276 10.1007/s11045-015-0370-3 10.1109/TGRS.2015.2393857 10.1007/s00138-013-0558-1 10.1109/TIP.2017.2694222 10.1109/TIP.2015.2456636 10.1109/ICCV.2015.75 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2017.2706264 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 2483 |
ExternalDocumentID | 10_1109_TCSVT_2017_2706264 7932195 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 3102016ZY023 – fundername: National Natural Science Foundation of China grantid: 61473231; 61522207; 61401357 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-adf8275377d07b15c6046f63a0c2074d526e01d7ca751605b5ccc216711c7d583 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 04:07:12 EDT 2025 Tue Jul 01 00:41:10 EDT 2025 Thu Apr 24 23:03:33 EDT 2025 Wed Aug 27 02:52:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-adf8275377d07b15c6046f63a0c2074d526e01d7ca751605b5ccc216711c7d583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8369-8886 0000-0001-5030-0683 0000-0001-5545-7217 |
PQID | 2126462792 |
PQPubID | 85433 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TCSVT_2017_2706264 ieee_primary_7932195 crossref_primary_10_1109_TCSVT_2017_2706264 proquest_journals_2126462792 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref10 weinberger (ref35) 2009; 10 ref16 ref18 ref51 ref50 joulin (ref19) 2014 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref30 ref33 ref32 wang (ref17) 0 han (ref25) 2015; 25 ref2 ref1 ref39 ref38 chatfield (ref54) 2014 xie (ref26) 2013; 22 ref24 shen (ref27) 2012 ref23 ref20 ref22 ref21 ref28 ref29 |
References_xml | – ident: ref33 doi: 10.1109/ICCV.2011.6126415 – volume: 25 start-page: 1309 year: 2015 ident: ref25 article-title: Background prior-based salient object detection via deep reconstruction residual publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2014.2381471 – ident: ref32 doi: 10.1109/CVPR.2015.7298995 – ident: ref8 doi: 10.1007/s11263-016-0907-4 – volume: 10 start-page: 207 year: 2009 ident: ref35 article-title: Distance metric learning for large margin nearest neighbor classification publication-title: J Mach Learn Res – ident: ref56 doi: 10.1109/TGRS.2014.2374218 – ident: ref21 doi: 10.1109/CVPR.2013.407 – ident: ref30 doi: 10.1109/CVPR.2015.7298609 – ident: ref49 doi: 10.1109/ICCV.2013.221 – ident: ref40 doi: 10.1109/TNNLS.2015.2440430 – year: 0 ident: ref17 article-title: A unified spatiotemporal prior based on geodesic distance for video object segmentation publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref3 doi: 10.1109/TMM.2013.2271476 – ident: ref5 doi: 10.1109/TIP.2013.2260166 – ident: ref29 doi: 10.1109/CVPR.2015.7298629 – ident: ref20 doi: 10.1109/TPAMI.2011.272 – ident: ref44 doi: 10.1109/TMM.2012.2237023 – ident: ref28 doi: 10.1109/CVPR.2014.242 – ident: ref53 doi: 10.1016/j.isprsjprs.2016.03.014 – ident: ref7 doi: 10.1109/LSP.2013.2292873 – ident: ref18 doi: 10.1109/CVPR.2014.190 – ident: ref57 doi: 10.1016/j.isprsjprs.2014.10.002 – ident: ref1 doi: 10.1109/TIP.2011.2156803 – ident: ref37 doi: 10.1109/TPAMI.2016.2567386 – start-page: 253 year: 2014 ident: ref19 article-title: Efficient image and video co-localization with frank-wolfe algorithm publication-title: Proc Eur Conf Comput Vis – ident: ref38 doi: 10.1109/CVPR.2016.235 – ident: ref12 doi: 10.1109/TIP.2015.2442915 – ident: ref43 doi: 10.1016/j.image.2016.03.005 – ident: ref48 doi: 10.1109/ICCV.2005.171 – ident: ref34 doi: 10.1145/1015330.1015360 – ident: ref14 doi: 10.1109/TIP.2015.2438550 – ident: ref36 doi: 10.1109/ICCV.2013.331 – ident: ref31 doi: 10.1109/CVPR.2015.7298717 – year: 2014 ident: ref54 publication-title: Return of the devil in the details Delving deep into convolutional nets – ident: ref46 doi: 10.1109/TGRS.2016.2523563 – ident: ref50 doi: 10.1109/TGRS.2016.2601622 – ident: ref47 doi: 10.1109/TPAMI.2012.120 – start-page: 853 year: 2012 ident: ref27 article-title: A unified approach to salient object detection via low rank matrix recovery publication-title: Proc IEEE Int Conf Comput Vis Pattern Recognit – ident: ref24 doi: 10.1109/TCSVT.2013.2242594 – ident: ref45 doi: 10.1109/TIP.2017.2652730 – ident: ref6 doi: 10.1109/TNNLS.2015.2495161 – ident: ref52 doi: 10.1109/JPROC.2017.2675998 – ident: ref42 doi: 10.1109/TIP.2016.2607421 – ident: ref9 doi: 10.1109/TIP.2014.2332399 – ident: ref15 doi: 10.1109/TMM.2016.2545409 – ident: ref13 doi: 10.1109/CVPR.2015.7298961 – ident: ref41 doi: 10.1109/TPAMI.2011.170 – ident: ref39 doi: 10.1109/TNNLS.2014.2361142 – ident: ref2 doi: 10.1109/CVPR.2015.7298918 – ident: ref22 doi: 10.1016/j.patrec.2013.04.009 – ident: ref10 doi: 10.1109/LSP.2014.2364896 – volume: 22 start-page: 1689 year: 2013 ident: ref26 article-title: Bayesian saliency via low and mid level cues publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2012.2216276 – ident: ref51 doi: 10.1007/s11045-015-0370-3 – ident: ref55 doi: 10.1109/TGRS.2015.2393857 – ident: ref23 doi: 10.1007/s00138-013-0558-1 – ident: ref11 doi: 10.1109/TIP.2017.2694222 – ident: ref16 doi: 10.1109/TIP.2015.2456636 – ident: ref4 doi: 10.1109/ICCV.2015.75 |
SSID | ssj0014847 |
Score | 2.6184008 |
Snippet | Co-saliency detection, which focuses on extracting commonly salient objects in a group of relevant images, has been attracting research interest because of its... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2473 |
SubjectTerms | Co-saliency detection Detectors Feature extraction feature learning Learning Learning systems Measurement metric learning Object recognition Regularization Representations Salience State of the art Support vector machines Training |
Title | A Unified Metric Learning-Based Framework for Co-Saliency Detection |
URI | https://ieeexplore.ieee.org/document/7932195 https://www.proquest.com/docview/2126462792 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED7YntKhebhBnRc4ZGtpi5L40Ji4NYwA7hKn8CZIRypDCjtI5CW_PkdKMtqkKLppIAmCd8f7Trz7DuCyRLrjkAxJRmh46irLTWELbiSZHl3KsbU-UFz8UPO79GYlVz34uquFcc6F5DM39p_hLd9ucOt_lU1Il8jAZB_6FLg1tVq7F4PUhGZiBBcEN-THugKZKJssp7c_lz6LS49jHRGCT_9wQqGryrurOPiX2T4sup01aSUP421djvHlDWnj_279AD62QJNdNZpxCD23PoIPv9EPDmF6xQhyVgRC2cI31kLWsq3e82tybpbNuswtRtCWTTf8llC7r9Vk31wdcrjWn-Bu9n05nfO2qQInqciaF7YyMcUoWttIl0Kiogi5UkkRYUxwwspYuUhYjYWWgmKdUiJiLJQWArWVJjmGwXqzdp-BJcqWZabRFKlKsxiNTTIbo7MiKbRJqhGI7pRzbBnHfeOLX3mIPKIsD5LJvWTyVjIj-LKb89jwbfxz9NAf9W5ke8ojOOuEmbcm-ZyTj1ap8nyJJ3-fdQp7tHZDdivOYFA_bd05IY66vAiq9gp5EdA7 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOFCgVCy34ACfkbezEjxx6aLestrTbS7eot5CMHQ6gXdRmVcFv4a_w3xg7yYqXuFXiloOdh-fzzDfxPABeVkg6DmkjqQQtz3ztuC1dya2irUdKWToXHMXpqZ6cZ28v1MUafFvlwnjvY_CZH4bLeJbvFrgMv8p2CUu0wfoQymP_5ZoctKu9o0OS5ispx29mownveghwegnV8NLVVhIlN8YlphIKNTmEtU7LBCVZT6ek9olwBkujBFH7SiGiFNoIgcYpm9J9b8Ft4hlKttlhqzOKzMb2ZURQBLdkOfuUnCTfnY3O3s1C3JgZSpOQz5D9YvZiH5c_lH-0aOMN-N6vRRvI8nG4bKohfv2tTOT_ulgP4H5Hpdl-i_2HsObnj-DeTwUWN2G0z4hU10Sz2TS0DkPW1ZP9wA_IfDs27mPTGJF3NlrwM_JLQjYqO_RNjFKbP4bzG_mKLVifL-b-CbBUu6rKDdoy01ku0bo0dxK9E2lpbFoPQPRSLbCrqR5ae3wqom-V5EVEQhGQUHRIGMDr1ZzPbUWRf47eDKJdjeykOoDtHjxFp3SuCmIhOtOhIuTTv896AXcms-lJcXJ0evwM7tJz2tK-YhvWm8ul3yF-1VTPI8wZvL9pqPwAYZwrCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Metric+Learning-Based+Framework+for+Co-Saliency+Detection&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Han%2C+Junwei&rft.au=Cheng%2C+Gong&rft.au=Li%2C+Zhenpeng&rft.au=Zhang%2C+Dingwen&rft.date=2018-10-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=28&rft.issue=10&rft.spage=2473&rft.epage=2483&rft_id=info:doi/10.1109%2FTCSVT.2017.2706264&rft.externalDocID=7932195 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |