Learning for Video Compression

One key challenge to learning-based video compression is that motion predictive coding, a very effective tool for video compression, can hardly be trained into a neural network. In this paper, we propose the concept of Pixel-MotionCNN (PMCNN) which includes motion extension and hybrid prediction net...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 30; no. 2; pp. 566 - 576
Main Authors Chen, Zhibo, He, Tianyu, Jin, Xin, Wu, Feng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One key challenge to learning-based video compression is that motion predictive coding, a very effective tool for video compression, can hardly be trained into a neural network. In this paper, we propose the concept of Pixel-MotionCNN (PMCNN) which includes motion extension and hybrid prediction networks. PMCNN can model spatiotemporal coherence to effectively perform predictive coding inside the learning network. On the basis of PMCNN, we further explore a learning-based framework for video compression with additional components of iterative analysis/synthesis and binarization. The experimental results demonstrate the effectiveness of the proposed scheme. Although entropy coding and complex configurations are not employed in this paper, we still demonstrate superior performance compared with MPEG-2 and achieve comparable results with H.264 codec. The proposed learning-based scheme provides a possible new direction to further improve compression efficiency and functionalities of future video coding.
AbstractList One key challenge to learning-based video compression is that motion predictive coding, a very effective tool for video compression, can hardly be trained into a neural network. In this paper, we propose the concept of Pixel-MotionCNN (PMCNN) which includes motion extension and hybrid prediction networks. PMCNN can model spatiotemporal coherence to effectively perform predictive coding inside the learning network. On the basis of PMCNN, we further explore a learning-based framework for video compression with additional components of iterative analysis/synthesis and binarization. The experimental results demonstrate the effectiveness of the proposed scheme. Although entropy coding and complex configurations are not employed in this paper, we still demonstrate superior performance compared with MPEG-2 and achieve comparable results with H.264 codec. The proposed learning-based scheme provides a possible new direction to further improve compression efficiency and functionalities of future video coding.
One key challenge to learning-based video compression is that motion predictive coding, a very effective tool for video compression, can hardly be trained into a neural network. In this paper, we propose the concept of PixelMotionCNN (PMCNN) which includes motion extension and hybrid prediction networks. PMCNN can model spatiotemporal coherence to effectively perform predictive coding inside the learning network. On the basis of PMCNN, we further explore a learning-based framework for video compression with additional components of iterative analysis/synthesis and binarization. The experimental results demonstrate the effectiveness of the proposed scheme. Although entropy coding and complex configurations are not employed in this paper, we still demonstrate superior performance compared with MPEG-2 and achieve comparable results with H.264 codec. The proposed learning-based scheme provides a possible new direction to further improve compression efficiency and functionalities of future video coding.
Author He, Tianyu
Chen, Zhibo
Wu, Feng
Jin, Xin
Author_xml – sequence: 1
  givenname: Zhibo
  orcidid: 0000-0002-8525-5066
  surname: Chen
  fullname: Chen, Zhibo
  email: chenzhibo@ustc.edu.cn
  organization: CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Tianyu
  orcidid: 0000-0002-4828-3228
  surname: He
  fullname: He, Tianyu
  email: hetianyu@mail.ustc.edu.cn
  organization: CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Xin
  surname: Jin
  fullname: Jin, Xin
  email: jinxustc@mail.ustc.edu.cn
  organization: CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China
– sequence: 4
  givenname: Feng
  surname: Wu
  fullname: Wu, Feng
  email: fengwu@ustc.edu.cn
  organization: CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China
BookMark eNp9kE1LAzEQhoNUsK3-AQUpeN6amd2syVEWv6DgwdprSJOJbGk3Ndke_Pemtnjw4GVmDu8zwzwjNuhCR4xdAp8CcHU7b94W8ylyUFOUCmsuT9gQhJAFIheDPHMBhUQQZ2yU0opzqGR1N2TXMzKxa7uPiQ9xsmgdhUkTNttIKbWhO2en3qwTXRz7mL0_Psyb52L2-vTS3M8Ki0r0hbEerUAhDPdIUIGvlyStLOtSOEtK1A5IKQlL4yxKdM4q4kJadF5RTo3ZzWHvNobPHaVer8IudvmkxlJUNeRa5hQeUjaGlCJ5vY3txsQvDVzvPegfD3rvQR89ZEj-gWzbmz4_10fTrv9Hrw5oS0S_t2QNvMSy_AYA22wx
CODEN ITCTEM
CitedBy_id crossref_primary_10_3390_e26121110
crossref_primary_10_1109_ACCESS_2023_3303510
crossref_primary_10_1109_ACCESS_2024_3350643
crossref_primary_10_1117_1_JRS_16_036516
crossref_primary_10_1007_s12652_023_04748_w
crossref_primary_10_1109_TCSVT_2022_3157074
crossref_primary_10_1007_s11760_020_01751_y
crossref_primary_10_1016_j_image_2022_116633
crossref_primary_10_1016_j_jvcir_2022_103737
crossref_primary_10_1109_JSTSP_2020_3034501
crossref_primary_10_1109_TCSVT_2020_2965055
crossref_primary_10_3390_electronics9010156
crossref_primary_10_1109_TPAMI_2020_2974472
crossref_primary_10_1109_TCSVT_2023_3247944
crossref_primary_10_1109_TCSVT_2020_3027741
crossref_primary_10_1145_3431768
crossref_primary_10_3390_bdcc6020044
crossref_primary_10_1016_j_ins_2019_07_096
crossref_primary_10_1109_TCSVT_2023_3332911
crossref_primary_10_1109_TCSVT_2019_2954474
crossref_primary_10_1016_j_jvcir_2023_103816
crossref_primary_10_1109_TCSVT_2021_3133859
crossref_primary_10_5594_JMI_2023_3245675
crossref_primary_10_1109_ACCESS_2024_3435144
crossref_primary_10_1109_TCSVT_2019_2945057
crossref_primary_10_1109_TCSVT_2023_3287684
crossref_primary_10_1109_TCSVT_2024_3411061
crossref_primary_10_1007_s11042_019_08572_3
crossref_primary_10_1109_JETCAS_2024_3403524
crossref_primary_10_1109_TPAMI_2023_3260684
crossref_primary_10_1109_TCSVT_2024_3427426
crossref_primary_10_1109_TCSVT_2021_3107135
crossref_primary_10_1007_s00371_023_03242_w
crossref_primary_10_1007_s11042_022_11955_8
crossref_primary_10_4218_etrij_2022_0063
crossref_primary_10_1109_TCSVT_2024_3360248
crossref_primary_10_1109_TIP_2022_3140608
crossref_primary_10_2139_ssrn_4186554
crossref_primary_10_1109_JSTSP_2020_3043590
crossref_primary_10_1109_TIP_2023_3287495
crossref_primary_10_1109_TCSVT_2023_3301016
crossref_primary_10_1109_TCSS_2022_3213832
crossref_primary_10_1109_TCSVT_2021_3119660
crossref_primary_10_1109_TPAMI_2020_2988453
crossref_primary_10_1109_TIP_2019_2960869
crossref_primary_10_1007_s11042_025_20722_4
crossref_primary_10_1007_s44267_023_00018_7
crossref_primary_10_1016_j_jnca_2022_103564
crossref_primary_10_1109_TCSVT_2022_3197145
crossref_primary_10_1109_TCSVT_2022_3213515
crossref_primary_10_1007_s11042_022_12528_5
crossref_primary_10_1109_TPAMI_2020_3001644
crossref_primary_10_1109_TAES_2024_3409524
crossref_primary_10_1109_TMM_2022_3220421
Cites_doi 10.1109/TCSVT.2003.815175
10.1109/VCIP.2017.8305104
10.1109/CVPR.2017.577
10.1109/TCSVT.2012.2221191
10.1007/978-3-030-03398-9_38
10.1109/ISCAS.2017.8050458
10.1109/DCC.2017.42
10.1109/ICASSP.1987.1169563
10.1002/j.1538-7305.1966.tb01052.x
10.1109/JPROC.2004.839617
10.1109/ICCV.2015.73
10.1109/ICIP.2015.7351007
10.1109/CVPR.2016.90
10.1109/ICME.2017.8019316
10.1109/ACSSC.2003.1292216
10.1016/j.jvcir.2004.12.002
10.1109/TCOM.1974.1092258
10.1109/TCSVT.2017.2727682
10.1109/ICCV.2015.123
10.1109/TCSVT.2017.2734838
10.1109/ICCV.2015.316
10.1007/978-3-319-51811-4_3
10.1109/TCSVT.2003.815165
10.1109/DCC.2017.56
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2019.2892608
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 576
ExternalDocumentID 10_1109_TCSVT_2019_2892608
8610323
Genre orig-research
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2016YFC0801001
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 61571413; 61632001; 61390514
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-acf2c5255a0f2e141f6be8c83635dce956d1e9981badc282ddc9e058c2df9e363
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 06:48:09 EDT 2025
Tue Jul 01 00:41:12 EDT 2025
Thu Apr 24 23:04:16 EDT 2025
Wed Aug 27 02:36:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-acf2c5255a0f2e141f6be8c83635dce956d1e9981badc282ddc9e058c2df9e363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8525-5066
0000-0002-4828-3228
PQID 2354612353
PQPubID 85433
PageCount 11
ParticipantIDs crossref_primary_10_1109_TCSVT_2019_2892608
proquest_journals_2354612353
ieee_primary_8610323
crossref_citationtrail_10_1109_TCSVT_2019_2892608
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ren (ref29) 2017; 3
lotter (ref26) 2017
ref11
ref10
(ref45) 1994
ref17
ref16
johnston (ref21) 2017
ref19
ref18
bjontegaard (ref48) 2001
kingma (ref42) 2015
gregor (ref20) 2016
raiko (ref38) 2015
santurkar (ref24) 2017
ref47
ref41
ref44
ref43
ref9
ref4
ioffe (ref36) 2015
shi (ref34) 2015
ref35
ref37
ref33
oord (ref32) 2017
chen (ref23) 2018
ballé (ref5) 2017
ref2
baig (ref22) 2017
ref39
toderici (ref7) 2016
sønderby (ref31) 2015
(ref1) 0
mathieu (ref25) 2016
sullivan (ref40) 2013
forchheimer (ref3) 1981
ref28
ref27
ohm (ref8) 2017
bjontegaard (ref49) 2008
wiegand (ref46) 2003; 13
theis (ref6) 2017
jaderberg (ref30) 2015
References_xml – ident: ref44
  doi: 10.1109/TCSVT.2003.815175
– year: 2016
  ident: ref25
  article-title: Deep multi-scale video prediction beyond mean square error
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref13
  doi: 10.1109/VCIP.2017.8305104
– year: 2015
  ident: ref38
  article-title: Techniques for learning binary stochastic feedforward neural networks
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref4
  doi: 10.1109/CVPR.2017.577
– start-page: 2
  year: 2001
  ident: ref48
  publication-title: Calculation of Average PSNR Differences Between RD-Curves
– year: 2016
  ident: ref7
  article-title: Variable rate image compression with recurrent neural networks
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref12
  doi: 10.1109/TCSVT.2012.2221191
– start-page: 802
  year: 2015
  ident: ref34
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– year: 1994
  ident: ref45
  publication-title: Generic coding of moving pictures and associated audio information-part 2 Video
– ident: ref27
  doi: 10.1007/978-3-030-03398-9_38
– ident: ref10
  doi: 10.1109/ISCAS.2017.8050458
– ident: ref17
  doi: 10.1109/DCC.2017.42
– ident: ref41
  doi: 10.1109/ICASSP.1987.1169563
– ident: ref37
  doi: 10.1002/j.1538-7305.1966.tb01052.x
– ident: ref39
  doi: 10.1109/JPROC.2004.839617
– ident: ref16
  doi: 10.1109/ICCV.2015.73
– start-page: 2017
  year: 2015
  ident: ref30
  article-title: Spatial transformer networks
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref15
  doi: 10.1109/ICIP.2015.7351007
– ident: ref35
  doi: 10.1109/CVPR.2016.90
– year: 2017
  ident: ref24
  publication-title: Generative compression
– ident: ref14
  doi: 10.1109/ICME.2017.8019316
– ident: ref47
  doi: 10.1109/ACSSC.2003.1292216
– year: 2013
  ident: ref40
  publication-title: Common HM Test Conditions and Software Reference Configurations
– ident: ref33
  doi: 10.1016/j.jvcir.2004.12.002
– volume: 3
  start-page: 7
  year: 2017
  ident: ref29
  article-title: Unsupervised deep learning for optical flow estimation
  publication-title: Proc AAAI
– year: 2017
  ident: ref21
  publication-title: Improved lossy image compression with priming and spatially adaptive bit rates for recurrent networks
– year: 2018
  ident: ref23
  publication-title: Learning based facial image compression with semantic fidelity metric
– start-page: 15
  year: 1981
  ident: ref3
  article-title: Differential transform coding: A new hybrid coding scheme
  publication-title: Proc Picture Coding Symp (PCS)
– year: 2015
  ident: ref31
  publication-title: Recurrent spatial transformer networks
– ident: ref2
  doi: 10.1109/TCOM.1974.1092258
– year: 2015
  ident: ref42
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref19
  doi: 10.1109/TCSVT.2017.2727682
– year: 2017
  ident: ref8
  article-title: Future video coding-tools and developments beyond HEVC
  publication-title: Proc ICIP
– year: 0
  ident: ref1
  publication-title: Cisco Visual Networking Index Forecast and Methodology 2016-2021
– ident: ref43
  doi: 10.1109/ICCV.2015.123
– start-page: 1747
  year: 2017
  ident: ref32
  article-title: Pixel recurrent neural networks
  publication-title: Proc Int Conf Mach Learn (ICML)
– start-page: 448
  year: 2015
  ident: ref36
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref11
  doi: 10.1109/TCSVT.2017.2734838
– year: 2017
  ident: ref5
  article-title: End-to-end optimized image compression
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref28
  doi: 10.1109/ICCV.2015.316
– start-page: 1246
  year: 2017
  ident: ref22
  article-title: Learning to inpaint for image compression
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– start-page: 3549
  year: 2016
  ident: ref20
  article-title: Towards conceptual compression
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– year: 2017
  ident: ref26
  article-title: Deep predictive coding networks for video prediction and unsupervised learning
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref18
  doi: 10.1007/978-3-319-51811-4_3
– year: 2008
  ident: ref49
  publication-title: Improvements of the BD-PSNR Model VCEG-AI11
– year: 2017
  ident: ref6
  article-title: Lossy image compression with compressive autoencoders
  publication-title: Proc Int Conf Learn Represent (ICLR)
– volume: 13
  start-page: 560
  year: 2003
  ident: ref46
  article-title: overview of the h.264/avc video coding standard
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2003.815165
– ident: ref9
  doi: 10.1109/DCC.2017.56
SSID ssj0014847
Score 2.6020217
Snippet One key challenge to learning-based video compression is that motion predictive coding, a very effective tool for video compression, can hardly be trained into...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 566
SubjectTerms Codec
Codecs
Coding
Image coding
Image reconstruction
Iterative methods
Learning
Neural networks
Performance prediction
PixelMotionCNN
Spatiotemporal phenomena
Transform coding
Video coding
Video compression
Title Learning for Video Compression
URI https://ieeexplore.ieee.org/document/8610323
https://www.proquest.com/docview/2354612353
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRDlUWVgA6eJ4zTOiCqqCqkstFW3KH4hBGoRpAu_nrPzEC8htgznyPpi--6L774DuBCKsYgJTbihEWEqFiTNE0aoyCPOpIqEa-czvRtO5ux2GS9bcNXUwmitXfKZ9u2ju8tXa7mxv8oGfGjl36I2tJG4lbVazY0B466ZGIYLIeHox-oCmSAdzEb3i5nN4kp9pBcYwPMvTsh1VflxFDv_Mt6FaT2zMq3kyd8Uwpfv30Qb_zv1PdipAk3vulwZ-9DSqwPY_iQ_2IV-Ja764GHk6i0elV579nwoU2NXhzAf38xGE1L1SyCSpnFBcmmojJEj5IGhOmShGQrNJY8wqFBSIxNSoUZ6FYpcSaRaSslUBzGXVJlUo9URdFbrlT4Gj0qucacnRpkcOVGIsNnqLHyBSXKjkh6ENYCZrMTEbU-L58yRiiDNHOiZBT2rQO_BZTPmpZTS-NO6a1FsLCsAe3BWf6es2m1vGY1iZmVk4ujk91GnsEUtT3bZ1mfQKV43-hyDiUL03Sr6AA-6w_I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB2xHIADO6KsOcAJpTSO0zoHDohFBdpeaBG3ENtjhEAtglYIvoVf4d8YO0nFJm5I3HIYW5HfaGaePQvAltSch1yiLwwLfa4j6cdpjftMpqHgSofSjfNptqr1Dj-9jC5H4HVYC4OILvkMy_bTveXrnhrYq7JdUbXt34pR1Wf4_EQE7XHv5JDQ3Gbs-Kh9UPfzGQK-YnHU91NlmIoobk4rhmHAA1OVKJQIydFqhcQOdIBEOQKZakX0Q2sVYyUSimkTI0nRvqMwTnFGxLLqsOEbBRdufBkFKIEvyHMWJTmVeLd9cH7RtnljcZkIDVEG8cntuTku34y_82jHM_BWnEWWyHJbHvRlWb18aRP5Xw9rFqbzUNrbz3R_DkawOw9THxosLsBG3j722qPY3Lu40djzrAXMkn-7i9D5kx9cgrFur4vL4DElkGxZzWiTEusLCCZbf0YbmFpqdK0EQQFYovJ26XZqx13iaFMlThzIiQU5yUEuwc5wzX3WLORX6QWL2lAyB6wEa4VeJLk9eUxYGHHbKCcKV35etQkT9XazkTROWmerMMnsrYDLLV-Dsf7DANcpdOrLDafBHlz9tRa8AzPVI58
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+for+Video+Compression&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Chen%2C+Zhibo&rft.au=He%2C+Tianyu&rft.au=Jin%2C+Xin&rft.au=Wu%2C+Feng&rft.date=2020-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=30&rft.issue=2&rft.spage=566&rft_id=info:doi/10.1109%2FTCSVT.2019.2892608&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon