Learning for Video Compression
One key challenge to learning-based video compression is that motion predictive coding, a very effective tool for video compression, can hardly be trained into a neural network. In this paper, we propose the concept of Pixel-MotionCNN (PMCNN) which includes motion extension and hybrid prediction net...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 30; no. 2; pp. 566 - 576 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One key challenge to learning-based video compression is that motion predictive coding, a very effective tool for video compression, can hardly be trained into a neural network. In this paper, we propose the concept of Pixel-MotionCNN (PMCNN) which includes motion extension and hybrid prediction networks. PMCNN can model spatiotemporal coherence to effectively perform predictive coding inside the learning network. On the basis of PMCNN, we further explore a learning-based framework for video compression with additional components of iterative analysis/synthesis and binarization. The experimental results demonstrate the effectiveness of the proposed scheme. Although entropy coding and complex configurations are not employed in this paper, we still demonstrate superior performance compared with MPEG-2 and achieve comparable results with H.264 codec. The proposed learning-based scheme provides a possible new direction to further improve compression efficiency and functionalities of future video coding. |
---|---|
AbstractList | One key challenge to learning-based video compression is that motion predictive coding, a very effective tool for video compression, can hardly be trained into a neural network. In this paper, we propose the concept of Pixel-MotionCNN (PMCNN) which includes motion extension and hybrid prediction networks. PMCNN can model spatiotemporal coherence to effectively perform predictive coding inside the learning network. On the basis of PMCNN, we further explore a learning-based framework for video compression with additional components of iterative analysis/synthesis and binarization. The experimental results demonstrate the effectiveness of the proposed scheme. Although entropy coding and complex configurations are not employed in this paper, we still demonstrate superior performance compared with MPEG-2 and achieve comparable results with H.264 codec. The proposed learning-based scheme provides a possible new direction to further improve compression efficiency and functionalities of future video coding. One key challenge to learning-based video compression is that motion predictive coding, a very effective tool for video compression, can hardly be trained into a neural network. In this paper, we propose the concept of PixelMotionCNN (PMCNN) which includes motion extension and hybrid prediction networks. PMCNN can model spatiotemporal coherence to effectively perform predictive coding inside the learning network. On the basis of PMCNN, we further explore a learning-based framework for video compression with additional components of iterative analysis/synthesis and binarization. The experimental results demonstrate the effectiveness of the proposed scheme. Although entropy coding and complex configurations are not employed in this paper, we still demonstrate superior performance compared with MPEG-2 and achieve comparable results with H.264 codec. The proposed learning-based scheme provides a possible new direction to further improve compression efficiency and functionalities of future video coding. |
Author | He, Tianyu Chen, Zhibo Wu, Feng Jin, Xin |
Author_xml | – sequence: 1 givenname: Zhibo orcidid: 0000-0002-8525-5066 surname: Chen fullname: Chen, Zhibo email: chenzhibo@ustc.edu.cn organization: CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China – sequence: 2 givenname: Tianyu orcidid: 0000-0002-4828-3228 surname: He fullname: He, Tianyu email: hetianyu@mail.ustc.edu.cn organization: CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China – sequence: 3 givenname: Xin surname: Jin fullname: Jin, Xin email: jinxustc@mail.ustc.edu.cn organization: CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China – sequence: 4 givenname: Feng surname: Wu fullname: Wu, Feng email: fengwu@ustc.edu.cn organization: CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China |
BookMark | eNp9kE1LAzEQhoNUsK3-AQUpeN6amd2syVEWv6DgwdprSJOJbGk3Ndke_Pemtnjw4GVmDu8zwzwjNuhCR4xdAp8CcHU7b94W8ylyUFOUCmsuT9gQhJAFIheDPHMBhUQQZ2yU0opzqGR1N2TXMzKxa7uPiQ9xsmgdhUkTNttIKbWhO2en3qwTXRz7mL0_Psyb52L2-vTS3M8Ki0r0hbEerUAhDPdIUIGvlyStLOtSOEtK1A5IKQlL4yxKdM4q4kJadF5RTo3ZzWHvNobPHaVer8IudvmkxlJUNeRa5hQeUjaGlCJ5vY3txsQvDVzvPegfD3rvQR89ZEj-gWzbmz4_10fTrv9Hrw5oS0S_t2QNvMSy_AYA22wx |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_3390_e26121110 crossref_primary_10_1109_ACCESS_2023_3303510 crossref_primary_10_1109_ACCESS_2024_3350643 crossref_primary_10_1117_1_JRS_16_036516 crossref_primary_10_1007_s12652_023_04748_w crossref_primary_10_1109_TCSVT_2022_3157074 crossref_primary_10_1007_s11760_020_01751_y crossref_primary_10_1016_j_image_2022_116633 crossref_primary_10_1016_j_jvcir_2022_103737 crossref_primary_10_1109_JSTSP_2020_3034501 crossref_primary_10_1109_TCSVT_2020_2965055 crossref_primary_10_3390_electronics9010156 crossref_primary_10_1109_TPAMI_2020_2974472 crossref_primary_10_1109_TCSVT_2023_3247944 crossref_primary_10_1109_TCSVT_2020_3027741 crossref_primary_10_1145_3431768 crossref_primary_10_3390_bdcc6020044 crossref_primary_10_1016_j_ins_2019_07_096 crossref_primary_10_1109_TCSVT_2023_3332911 crossref_primary_10_1109_TCSVT_2019_2954474 crossref_primary_10_1016_j_jvcir_2023_103816 crossref_primary_10_1109_TCSVT_2021_3133859 crossref_primary_10_5594_JMI_2023_3245675 crossref_primary_10_1109_ACCESS_2024_3435144 crossref_primary_10_1109_TCSVT_2019_2945057 crossref_primary_10_1109_TCSVT_2023_3287684 crossref_primary_10_1109_TCSVT_2024_3411061 crossref_primary_10_1007_s11042_019_08572_3 crossref_primary_10_1109_JETCAS_2024_3403524 crossref_primary_10_1109_TPAMI_2023_3260684 crossref_primary_10_1109_TCSVT_2024_3427426 crossref_primary_10_1109_TCSVT_2021_3107135 crossref_primary_10_1007_s00371_023_03242_w crossref_primary_10_1007_s11042_022_11955_8 crossref_primary_10_4218_etrij_2022_0063 crossref_primary_10_1109_TCSVT_2024_3360248 crossref_primary_10_1109_TIP_2022_3140608 crossref_primary_10_2139_ssrn_4186554 crossref_primary_10_1109_JSTSP_2020_3043590 crossref_primary_10_1109_TIP_2023_3287495 crossref_primary_10_1109_TCSVT_2023_3301016 crossref_primary_10_1109_TCSS_2022_3213832 crossref_primary_10_1109_TCSVT_2021_3119660 crossref_primary_10_1109_TPAMI_2020_2988453 crossref_primary_10_1109_TIP_2019_2960869 crossref_primary_10_1007_s11042_025_20722_4 crossref_primary_10_1007_s44267_023_00018_7 crossref_primary_10_1016_j_jnca_2022_103564 crossref_primary_10_1109_TCSVT_2022_3197145 crossref_primary_10_1109_TCSVT_2022_3213515 crossref_primary_10_1007_s11042_022_12528_5 crossref_primary_10_1109_TPAMI_2020_3001644 crossref_primary_10_1109_TAES_2024_3409524 crossref_primary_10_1109_TMM_2022_3220421 |
Cites_doi | 10.1109/TCSVT.2003.815175 10.1109/VCIP.2017.8305104 10.1109/CVPR.2017.577 10.1109/TCSVT.2012.2221191 10.1007/978-3-030-03398-9_38 10.1109/ISCAS.2017.8050458 10.1109/DCC.2017.42 10.1109/ICASSP.1987.1169563 10.1002/j.1538-7305.1966.tb01052.x 10.1109/JPROC.2004.839617 10.1109/ICCV.2015.73 10.1109/ICIP.2015.7351007 10.1109/CVPR.2016.90 10.1109/ICME.2017.8019316 10.1109/ACSSC.2003.1292216 10.1016/j.jvcir.2004.12.002 10.1109/TCOM.1974.1092258 10.1109/TCSVT.2017.2727682 10.1109/ICCV.2015.123 10.1109/TCSVT.2017.2734838 10.1109/ICCV.2015.316 10.1007/978-3-319-51811-4_3 10.1109/TCSVT.2003.815165 10.1109/DCC.2017.56 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2019.2892608 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 576 |
ExternalDocumentID | 10_1109_TCSVT_2019_2892608 8610323 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2016YFC0801001 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 61571413; 61632001; 61390514 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-acf2c5255a0f2e141f6be8c83635dce956d1e9981badc282ddc9e058c2df9e363 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 06:48:09 EDT 2025 Tue Jul 01 00:41:12 EDT 2025 Thu Apr 24 23:04:16 EDT 2025 Wed Aug 27 02:36:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-acf2c5255a0f2e141f6be8c83635dce956d1e9981badc282ddc9e058c2df9e363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8525-5066 0000-0002-4828-3228 |
PQID | 2354612353 |
PQPubID | 85433 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TCSVT_2019_2892608 proquest_journals_2354612353 ieee_primary_8610323 crossref_citationtrail_10_1109_TCSVT_2019_2892608 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ren (ref29) 2017; 3 lotter (ref26) 2017 ref11 ref10 (ref45) 1994 ref17 ref16 johnston (ref21) 2017 ref19 ref18 bjontegaard (ref48) 2001 kingma (ref42) 2015 gregor (ref20) 2016 raiko (ref38) 2015 santurkar (ref24) 2017 ref47 ref41 ref44 ref43 ref9 ref4 ioffe (ref36) 2015 shi (ref34) 2015 ref35 ref37 ref33 oord (ref32) 2017 chen (ref23) 2018 ballé (ref5) 2017 ref2 baig (ref22) 2017 ref39 toderici (ref7) 2016 sønderby (ref31) 2015 (ref1) 0 mathieu (ref25) 2016 sullivan (ref40) 2013 forchheimer (ref3) 1981 ref28 ref27 ohm (ref8) 2017 bjontegaard (ref49) 2008 wiegand (ref46) 2003; 13 theis (ref6) 2017 jaderberg (ref30) 2015 |
References_xml | – ident: ref44 doi: 10.1109/TCSVT.2003.815175 – year: 2016 ident: ref25 article-title: Deep multi-scale video prediction beyond mean square error publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref13 doi: 10.1109/VCIP.2017.8305104 – year: 2015 ident: ref38 article-title: Techniques for learning binary stochastic feedforward neural networks publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref4 doi: 10.1109/CVPR.2017.577 – start-page: 2 year: 2001 ident: ref48 publication-title: Calculation of Average PSNR Differences Between RD-Curves – year: 2016 ident: ref7 article-title: Variable rate image compression with recurrent neural networks publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref12 doi: 10.1109/TCSVT.2012.2221191 – start-page: 802 year: 2015 ident: ref34 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Proc Adv Neural Inf Process Syst (NIPS) – year: 1994 ident: ref45 publication-title: Generic coding of moving pictures and associated audio information-part 2 Video – ident: ref27 doi: 10.1007/978-3-030-03398-9_38 – ident: ref10 doi: 10.1109/ISCAS.2017.8050458 – ident: ref17 doi: 10.1109/DCC.2017.42 – ident: ref41 doi: 10.1109/ICASSP.1987.1169563 – ident: ref37 doi: 10.1002/j.1538-7305.1966.tb01052.x – ident: ref39 doi: 10.1109/JPROC.2004.839617 – ident: ref16 doi: 10.1109/ICCV.2015.73 – start-page: 2017 year: 2015 ident: ref30 article-title: Spatial transformer networks publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref15 doi: 10.1109/ICIP.2015.7351007 – ident: ref35 doi: 10.1109/CVPR.2016.90 – year: 2017 ident: ref24 publication-title: Generative compression – ident: ref14 doi: 10.1109/ICME.2017.8019316 – ident: ref47 doi: 10.1109/ACSSC.2003.1292216 – year: 2013 ident: ref40 publication-title: Common HM Test Conditions and Software Reference Configurations – ident: ref33 doi: 10.1016/j.jvcir.2004.12.002 – volume: 3 start-page: 7 year: 2017 ident: ref29 article-title: Unsupervised deep learning for optical flow estimation publication-title: Proc AAAI – year: 2017 ident: ref21 publication-title: Improved lossy image compression with priming and spatially adaptive bit rates for recurrent networks – year: 2018 ident: ref23 publication-title: Learning based facial image compression with semantic fidelity metric – start-page: 15 year: 1981 ident: ref3 article-title: Differential transform coding: A new hybrid coding scheme publication-title: Proc Picture Coding Symp (PCS) – year: 2015 ident: ref31 publication-title: Recurrent spatial transformer networks – ident: ref2 doi: 10.1109/TCOM.1974.1092258 – year: 2015 ident: ref42 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref19 doi: 10.1109/TCSVT.2017.2727682 – year: 2017 ident: ref8 article-title: Future video coding-tools and developments beyond HEVC publication-title: Proc ICIP – year: 0 ident: ref1 publication-title: Cisco Visual Networking Index Forecast and Methodology 2016-2021 – ident: ref43 doi: 10.1109/ICCV.2015.123 – start-page: 1747 year: 2017 ident: ref32 article-title: Pixel recurrent neural networks publication-title: Proc Int Conf Mach Learn (ICML) – start-page: 448 year: 2015 ident: ref36 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn (ICML) – ident: ref11 doi: 10.1109/TCSVT.2017.2734838 – year: 2017 ident: ref5 article-title: End-to-end optimized image compression publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref28 doi: 10.1109/ICCV.2015.316 – start-page: 1246 year: 2017 ident: ref22 article-title: Learning to inpaint for image compression publication-title: Proc Adv Neural Inf Process Syst (NIPS) – start-page: 3549 year: 2016 ident: ref20 article-title: Towards conceptual compression publication-title: Proc Adv Neural Inf Process Syst (NIPS) – year: 2017 ident: ref26 article-title: Deep predictive coding networks for video prediction and unsupervised learning publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref18 doi: 10.1007/978-3-319-51811-4_3 – year: 2008 ident: ref49 publication-title: Improvements of the BD-PSNR Model VCEG-AI11 – year: 2017 ident: ref6 article-title: Lossy image compression with compressive autoencoders publication-title: Proc Int Conf Learn Represent (ICLR) – volume: 13 start-page: 560 year: 2003 ident: ref46 article-title: overview of the h.264/avc video coding standard publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2003.815165 – ident: ref9 doi: 10.1109/DCC.2017.56 |
SSID | ssj0014847 |
Score | 2.6020217 |
Snippet | One key challenge to learning-based video compression is that motion predictive coding, a very effective tool for video compression, can hardly be trained into... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 566 |
SubjectTerms | Codec Codecs Coding Image coding Image reconstruction Iterative methods Learning Neural networks Performance prediction PixelMotionCNN Spatiotemporal phenomena Transform coding Video coding Video compression |
Title | Learning for Video Compression |
URI | https://ieeexplore.ieee.org/document/8610323 https://www.proquest.com/docview/2354612353 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRDlUWVgA6eJ4zTOiCqqCqkstFW3KH4hBGoRpAu_nrPzEC8htgznyPpi--6L774DuBCKsYgJTbihEWEqFiTNE0aoyCPOpIqEa-czvRtO5ux2GS9bcNXUwmitXfKZ9u2ju8tXa7mxv8oGfGjl36I2tJG4lbVazY0B466ZGIYLIeHox-oCmSAdzEb3i5nN4kp9pBcYwPMvTsh1VflxFDv_Mt6FaT2zMq3kyd8Uwpfv30Qb_zv1PdipAk3vulwZ-9DSqwPY_iQ_2IV-Ja764GHk6i0elV579nwoU2NXhzAf38xGE1L1SyCSpnFBcmmojJEj5IGhOmShGQrNJY8wqFBSIxNSoUZ6FYpcSaRaSslUBzGXVJlUo9URdFbrlT4Gj0qucacnRpkcOVGIsNnqLHyBSXKjkh6ENYCZrMTEbU-L58yRiiDNHOiZBT2rQO_BZTPmpZTS-NO6a1FsLCsAe3BWf6es2m1vGY1iZmVk4ujk91GnsEUtT3bZ1mfQKV43-hyDiUL03Sr6AA-6w_I |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB2xHIADO6KsOcAJpTSO0zoHDohFBdpeaBG3ENtjhEAtglYIvoVf4d8YO0nFJm5I3HIYW5HfaGaePQvAltSch1yiLwwLfa4j6cdpjftMpqHgSofSjfNptqr1Dj-9jC5H4HVYC4OILvkMy_bTveXrnhrYq7JdUbXt34pR1Wf4_EQE7XHv5JDQ3Gbs-Kh9UPfzGQK-YnHU91NlmIoobk4rhmHAA1OVKJQIydFqhcQOdIBEOQKZakX0Q2sVYyUSimkTI0nRvqMwTnFGxLLqsOEbBRdufBkFKIEvyHMWJTmVeLd9cH7RtnljcZkIDVEG8cntuTku34y_82jHM_BWnEWWyHJbHvRlWb18aRP5Xw9rFqbzUNrbz3R_DkawOw9THxosLsBG3j722qPY3Lu40djzrAXMkn-7i9D5kx9cgrFur4vL4DElkGxZzWiTEusLCCZbf0YbmFpqdK0EQQFYovJ26XZqx13iaFMlThzIiQU5yUEuwc5wzX3WLORX6QWL2lAyB6wEa4VeJLk9eUxYGHHbKCcKV35etQkT9XazkTROWmerMMnsrYDLLV-Dsf7DANcpdOrLDafBHlz9tRa8AzPVI58 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+for+Video+Compression&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Chen%2C+Zhibo&rft.au=He%2C+Tianyu&rft.au=Jin%2C+Xin&rft.au=Wu%2C+Feng&rft.date=2020-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=30&rft.issue=2&rft.spage=566&rft_id=info:doi/10.1109%2FTCSVT.2019.2892608&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |