Context-Aware Human Trajectories Prediction via Latent Variational Model
Understanding human-contextual interaction to predict human trajectories is a challenging problem. Most of previous trajectory prediction approaches focused on modeling the human-human interaction located in a near neighborhood and neglected the influence of individuals which are farther in the scen...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 31; no. 5; pp. 1876 - 1889 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1051-8215 1558-2205 |
DOI | 10.1109/TCSVT.2020.3014869 |
Cover
Loading…
Abstract | Understanding human-contextual interaction to predict human trajectories is a challenging problem. Most of previous trajectory prediction approaches focused on modeling the human-human interaction located in a near neighborhood and neglected the influence of individuals which are farther in the scene as well as the scene layout. To alleviate these limitations, in this article we propose a model to address pedestrian trajectory prediction using a latent variable model aware of the human-contextual interaction. Our proposal relies on contextual information that influences the trajectory of pedestrians to encode human-contextual interaction. We model the uncertainty about future trajectories via latent variational model and captures relative interpersonal influences among all the subjects within the scene and their interaction with the scene layout to decode their trajectories. In extensive experiments, on publicly available datasets, it is shown that using contextual information and latent variational model, our trajectory prediction model achieves competitive results compared to state-of-the-art models. |
---|---|
AbstractList | Understanding human-contextual interaction to predict human trajectories is a challenging problem. Most of previous trajectory prediction approaches focused on modeling the human-human interaction located in a near neighborhood and neglected the influence of individuals which are farther in the scene as well as the scene layout. To alleviate these limitations, in this article we propose a model to address pedestrian trajectory prediction using a latent variable model aware of the human-contextual interaction. Our proposal relies on contextual information that influences the trajectory of pedestrians to encode human-contextual interaction. We model the uncertainty about future trajectories via latent variational model and captures relative interpersonal influences among all the subjects within the scene and their interaction with the scene layout to decode their trajectories. In extensive experiments, on publicly available datasets, it is shown that using contextual information and latent variational model, our trajectory prediction model achieves competitive results compared to state-of-the-art models. |
Author | Alioscha-Perez, Mitchel Oveneke, Meshia Cedric Sahli, Hichem Diaz Berenguer, Abel |
Author_xml | – sequence: 1 givenname: Abel orcidid: 0000-0003-4970-6517 surname: Diaz Berenguer fullname: Diaz Berenguer, Abel email: aberengu@etrovub.be organization: Electronics and Informatics Department (ETRO), VUB-NPU Joint Audio-Visual SignalProcessing (AVSP) Research Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium – sequence: 2 givenname: Mitchel orcidid: 0000-0002-8488-5824 surname: Alioscha-Perez fullname: Alioscha-Perez, Mitchel email: maperezg@etrovub.be organization: Electronics and Informatics Department (ETRO), VUB-NPU Joint Audio-Visual SignalProcessing (AVSP) Research Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium – sequence: 3 givenname: Meshia Cedric orcidid: 0000-0003-4076-4614 surname: Oveneke fullname: Oveneke, Meshia Cedric email: mcovenek@etrovub.be organization: Electronics and Informatics Department (ETRO), VUB-NPU Joint Audio-Visual SignalProcessing (AVSP) Research Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium – sequence: 4 givenname: Hichem orcidid: 0000-0002-1774-2970 surname: Sahli fullname: Sahli, Hichem email: hsahli@etrovub.be organization: Electronics and Informatics Department (ETRO), VUB-NPU Joint Audio-Visual SignalProcessing (AVSP) Research Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium |
BookMark | eNp9kE9PwzAMxSMEEtvgC8ClEueOxGna5DhNwJCGQKLsGqWtK2Xq2pFk_Pn2tNvEgQMnW9b72X5vTE7brkVCrhidMkbVbT5_XeVToECnnLJEpuqEjJgQMgag4rTvqWCxBCbOydj7NR1ESTYii3nXBvwK8ezTOIwWu41po9yZNZahcxZ99OKwsmWwXRt9WBMtTcA2RCvjrBmGpomeugqbC3JWm8bj5bFOyNv9XT5fxMvnh8f5bBmXoESIjUpSLgtTmKrgUCXAVMZ5zWpRJ5hmNAMJUGVCFJABxRoNlzJJsSp7qIaMT8jNYe_Wde879EGvu53r3_AaBEDvEFLVq-CgKl3nvcNab53dGPetGdVDYnqfmB4S08fEekj-gUob9iaDM7b5H70-oBYRf28pllIlgf8ANth7Cw |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TCSVT_2021_3076078 crossref_primary_10_1007_s10489_022_03524_1 crossref_primary_10_1109_TITS_2023_3274777 crossref_primary_10_1016_j_measurement_2023_112675 crossref_primary_10_1016_j_patcog_2023_109633 crossref_primary_10_1109_TCSVT_2023_3298755 crossref_primary_10_1007_s00521_022_07562_1 crossref_primary_10_1109_TITS_2023_3345296 crossref_primary_10_1016_j_patcog_2022_108552 crossref_primary_10_3390_electronics12030611 crossref_primary_10_3390_act11080237 crossref_primary_10_1109_TCSVT_2023_3314895 crossref_primary_10_1109_TCSVT_2024_3400391 crossref_primary_10_1109_TCSVT_2022_3229694 crossref_primary_10_1109_TCSVT_2024_3493966 crossref_primary_10_1109_TITS_2024_3509954 crossref_primary_10_1109_TCSVT_2023_3307442 crossref_primary_10_1109_TITS_2023_3342040 crossref_primary_10_1109_TCSVT_2023_3324868 crossref_primary_10_1109_TCSVT_2024_3439128 crossref_primary_10_1007_s11277_023_10753_1 crossref_primary_10_3390_act11090247 |
Cites_doi | 10.1109/CVPR.2009.5206848 10.1109/TPAMI.2016.2599174 10.1109/ICCV.2019.00246 10.1016/j.neunet.2018.09.002 10.1109/TIV.2017.2788193 10.1109/TCSVT.2018.2857489 10.1109/CVPR.2017.667 10.1007/978-3-319-91131-1_4 10.1109/CVPR.2017.233 10.1109/CVPR.2019.01240 10.1109/ICPR.2018.8545447 10.1109/ROBOT.2010.5509779 10.1109/CVPR.2011.5995468 10.1109/CVPR.2019.01236 10.1109/CVPR.2016.110 10.1109/ICRA.2018.8460504 10.1111/j.1467-8659.2007.01089.x 10.1109/CVPR.2019.00587 10.1038/nature01852 10.1109/TCSVT.2014.2358029 10.1007/978-3-642-11261-4_11 10.1109/CVPR.2014.283 10.1609/aaai.v33i01.33015885 10.1109/TMM.2018.2834873 10.1109/ICRA.2017.7989199 10.1109/CVPR.2018.00240 10.1103/PhysRevE.51.4282 10.18653/v1/D15-1166 10.1016/j.neucom.2011.12.038 10.1109/CVPR.2019.00664 10.1109/CVPR.2019.00144 10.1109/WACV.2018.00135 10.1109/CVPR.2017.493 10.1109/TCSVT.2008.927109 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2020.3014869 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 1889 |
ExternalDocumentID | 10_1109_TCSVT_2020_3014869 9160982 |
Genre | orig-research |
GrantInformation_xml | – fundername: VUB-IRMO Joint Ph.D. Grant – fundername: INNOVIRIS Project ADVISE–Anomaly Detection in Video Security Footage funderid: 10.13039/501100004744 – fundername: Flemish Government (AI Research Program) |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-a94638babadb32d4219733f1f5f4e67072822d755b2720efea38846edc8baf273 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 04:29:14 EDT 2025 Tue Jul 01 00:41:13 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 Wed Aug 27 02:30:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-a94638babadb32d4219733f1f5f4e67072822d755b2720efea38846edc8baf273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8488-5824 0000-0003-4076-4614 0000-0003-4970-6517 0000-0002-1774-2970 |
PQID | 2522215269 |
PQPubID | 85433 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TCSVT_2020_3014869 ieee_primary_9160982 proquest_journals_2522215269 crossref_citationtrail_10_1109_TCSVT_2020_3014869 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref14 ref11 ref10 murphy (ref42) 2012 ref17 ref19 ref18 kingma (ref45) 2014 ref50 ref46 sutskever (ref30) 2014 ref48 ref47 ref41 ref43 ref8 ref7 ref4 ref3 ref6 ref5 robicquet (ref21) 2016 pellegrini (ref16) 2009 kendon (ref40) 1990; 7 ref35 ref34 ref37 ref31 becker (ref15) 2019 chung (ref33) 2015 gerazov (ref44) 2018 ballan (ref12) 2016 murino (ref49) 2017 ref2 ref1 ref39 simonyan (ref36) 2015 srivastava (ref32) 2015; 37 ref23 ref26 ref25 ref20 ref22 bahdanau (ref38) 2015 ref28 ref27 ref29 rudenko (ref9) 2019 radwan (ref24) 2018 |
References_xml | – ident: ref37 doi: 10.1109/CVPR.2009.5206848 – ident: ref31 doi: 10.1109/TPAMI.2016.2599174 – ident: ref34 doi: 10.1109/ICCV.2019.00246 – ident: ref23 doi: 10.1016/j.neunet.2018.09.002 – year: 2019 ident: ref9 article-title: Human motion trajectory prediction: A survey publication-title: arXiv 1905 06113 – start-page: 3104 year: 2014 ident: ref30 article-title: Sequence to sequence learning with neural networks publication-title: Neural Information Processing Systems – ident: ref1 doi: 10.1109/TIV.2017.2788193 – ident: ref7 doi: 10.1109/TCSVT.2018.2857489 – ident: ref39 doi: 10.1109/CVPR.2017.667 – ident: ref10 doi: 10.1007/978-3-319-91131-1_4 – start-page: 1 year: 2015 ident: ref38 article-title: Neural machine translation by jointly learning to align and translate publication-title: Proc 3rd Int Conf Learn Represent (ICLR) – volume: 7 year: 1990 ident: ref40 publication-title: Conducting InteractionPatterns of Behavior in Focused Encounters – ident: ref14 doi: 10.1109/CVPR.2017.233 – ident: ref28 doi: 10.1109/CVPR.2019.01240 – ident: ref26 doi: 10.1109/ICPR.2018.8545447 – ident: ref2 doi: 10.1109/ROBOT.2010.5509779 – ident: ref20 doi: 10.1109/CVPR.2011.5995468 – ident: ref27 doi: 10.1109/CVPR.2019.01236 – ident: ref22 doi: 10.1109/CVPR.2016.110 – ident: ref5 doi: 10.1109/ICRA.2018.8460504 – ident: ref46 doi: 10.1111/j.1467-8659.2007.01089.x – ident: ref29 doi: 10.1109/CVPR.2019.00587 – start-page: 138 year: 2019 ident: ref15 article-title: Red: A simple but effective baseline predictor for the trajnet benchmark publication-title: Computer Vision – ident: ref18 doi: 10.1038/nature01852 – ident: ref17 doi: 10.1109/TCSVT.2014.2358029 – start-page: 697 year: 2016 ident: ref12 article-title: Knowledge transfer for scene-specific motion prediction publication-title: Computer Vision – start-page: 261 year: 2009 ident: ref16 article-title: You'll never walk alone: Modeling social behavior for multi-target tracking publication-title: Proc IEEE 12th Int Conf Comput Vis – start-page: 1 year: 2015 ident: ref36 article-title: Very deep convolutional networks for large-scale image recognition publication-title: 3rd Int Conf Learn Repr (ICLR) – start-page: 1 year: 2014 ident: ref45 article-title: Auto-encoding variational Bayes publication-title: Proc Int Conf Learn Represent (ICLR) – start-page: 2980 year: 2015 ident: ref33 article-title: A recurrent latent variable model for sequential data publication-title: Proc Adv Neural Inf Process Syst – start-page: 1 year: 2018 ident: ref24 article-title: Effective interaction-aware trajectory prediction using temporal convolutional neural networks publication-title: Proc IEEE/RSJ Int Conf Intell Robot Syst (IROS) – ident: ref48 doi: 10.1007/978-3-642-11261-4_11 – year: 2017 ident: ref49 publication-title: Group and Crowd Behavior for Computer Vision – ident: ref4 doi: 10.1109/CVPR.2014.283 – ident: ref43 doi: 10.1609/aaai.v33i01.33015885 – ident: ref50 doi: 10.1109/TMM.2018.2834873 – volume: 37 start-page: 843 year: 2015 ident: ref32 article-title: Unsupervised learning of video representations using LSTMs publication-title: Proc 32nd Int Conf Mach Learn – ident: ref3 doi: 10.1109/ICRA.2017.7989199 – start-page: 549 year: 2016 ident: ref21 article-title: Learning social etiquette: Human trajectory understanding in crowded scenes publication-title: Computer Vision – ident: ref11 doi: 10.1109/CVPR.2018.00240 – ident: ref19 doi: 10.1103/PhysRevE.51.4282 – year: 2012 ident: ref42 publication-title: Machine Learning A Probabilistic Perspective – ident: ref35 doi: 10.18653/v1/D15-1166 – ident: ref41 doi: 10.1016/j.neucom.2011.12.038 – ident: ref47 doi: 10.1109/CVPR.2019.00664 – ident: ref13 doi: 10.1109/CVPR.2019.00144 – ident: ref25 doi: 10.1109/WACV.2018.00135 – ident: ref6 doi: 10.1109/CVPR.2017.493 – year: 2018 ident: ref44 article-title: A variational prosody model for mapping the context-sensitive variation of functional prosodic prototypes publication-title: arXiv 1806 08685 – ident: ref8 doi: 10.1109/TCSVT.2008.927109 |
SSID | ssj0014847 |
Score | 2.4539654 |
Snippet | Understanding human-contextual interaction to predict human trajectories is a challenging problem. Most of previous trajectory prediction approaches focused on... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1876 |
SubjectTerms | Attention mechanisms Computational modeling Context modeling convolutional neural networks Decoding human trajectory prediction Layouts Pedestrians Prediction models Predictive models Proposals recurrent neural networks Stochastic processes Trajectory variational model |
Title | Context-Aware Human Trajectories Prediction via Latent Variational Model |
URI | https://ieeexplore.ieee.org/document/9160982 https://www.proquest.com/docview/2522215269 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED7mnvTBX1OcTsmDb9qtTZp2fRzDMcSJ4Db2VpI2AXV0MjsF_3ovaVeGivjWh4SG3CX3fXeXO4BLT2u0y2nkJMiVHR8tjoM8hDquTJA0CyaU9XeM7oPhxL-d8VkNrqu3MEopm3ym2ubTxvLTRbIyrrIOQhk36uKFu4XErXirVUUM_K5tJoZwwfzN4-sHMm7UGfcfp2OkghQZqhlokps3jJDtqvLjKrb2ZbAHo_XKirSSl_Yql-3k81vRxv8ufR92S6BJeoVmHEBNZYews1F-sAFDW5oKmW_vQywVsf58gsbr2XrykUKTh6WJ4xjZkfcnQe4QmGY5mSK_Ln2IxPRSmx_BZHAz7g-dsrOCk9CI546IfDx3UkiRSkZTH6-tkDHtaa59FYRuaJJL05BzacK0SivBughUVJrgJI2I5xjq2SJTJ0ColB6TAR5zFvqcauGnNOCca8mQOXLVBG-91XFSlh033S_msaUfbhRb8cRGPHEpniZcVXNei6Ibf45umP2uRpZb3YTWWqJxeS7fYlRDajr5BtHp77POYJuarBWb0tiCer5cqXOEHbm8sPr2BUJX0bk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT8IwEL4QfFAf_IVGFLUPvulg69qNPRIiQQViIhDelnZrE5WAwaGJf73XMghRY3zbQ9s1vbb3fXfXO4BLT2vUy2nkJMiVHYYax0EeQh1XJkiahS-UtXd0e0F7wO5GfFSA69VbGKWUDT5TVfNpffnpNJkbU1kNoYwb1fHC3cDxWbR4rbXyGbC6LSeGgMH8z-PLJzJuVOs3H4d9JIMUOappaMKb19SQravy4zK2Gqa1C93l3BaBJS_VeSaryee3tI3_nfwe7ORQkzQWe2MfCmpyANtrCQhL0LbJqZD7Nj7ETBFr0Seovp6tLR9JNHmYGU-OkR55fxKkg9B0kpEhMuzcikhMNbXxIQxaN_1m28lrKzgJjXjmiIjhyZNCilT6NGV4cYW-rz3NNVNB6IYmvDQNOZfGUau0En4doYpKE-ykEfMcQXEynahjIFRKz5cBHnQ_ZJxqwVIacM619JE7clUGb7nUcZInHjf1L8axJSBuFFvxxEY8cS6eMlyt-rwu0m782bpk1nvVMl_qMlSWEo3zk_kW40akppZvEJ383usCNtv9bifu3PbuT2GLmhgWG-BYgWI2m6szBCGZPLd77wtxGNUJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Context-Aware+Human+Trajectories+Prediction+via+Latent+Variational+Model&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Diaz+Berenguer%2C+Abel&rft.au=Alioscha-Perez%2C+Mitchel&rft.au=Oveneke%2C+Meshia+Cedric&rft.au=Sahli%2C+Hichem&rft.date=2021-05-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=31&rft.issue=5&rft.spage=1876&rft.epage=1889&rft_id=info:doi/10.1109%2FTCSVT.2020.3014869&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2020_3014869 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |