Expansion-Squeeze-Excitation Fusion Network for Elderly Activity Recognition
This work focuses on the task of elderly activity recognition, which is a challenging task due to the existence of individual actions and human-object interactions in elderly activities. Thus, we attempt to effectively aggregate the discriminative information of actions and interactions from both RG...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 8; pp. 5281 - 5292 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work focuses on the task of elderly activity recognition, which is a challenging task due to the existence of individual actions and human-object interactions in elderly activities. Thus, we attempt to effectively aggregate the discriminative information of actions and interactions from both RGB videos and skeleton sequences by attentively fusing multi-modal features. Recently, some nonlinear multi-modal fusion approaches are proposed by utilizing nonlinear attention mechanism that is extended from Squeeze-and-Excitation Networks (SENet). Inspired by this, we propose a novel Expansion-Squeeze-Excitation Fusion Network (ESE-FN) to effectively address the problem of elderly activity recognition, which learns modal and channel-wise Expansion-Squeeze-Excitation (ESE) attentions for attentively fusing the multi-modal features in the modal and channel-wise ways. Specifically, ESE-FN firstly implements the modal-wise fusion with the Modal-wise ESE Attention (M-ESEA) to aggregate discriminative information in modal-wise way, and then implements the channel-wise fusion with the Channel-wise ESE Attention (C-ESEA) to aggregate the multi-channel discriminative information in channel-wise way (referring to <xref rid="fig1" ref-type="fig">Figure 1 ). Furthermore, we design a new Multi-modal Loss (ML) to keep the consistency between the single-modal features and the fused multi-modal features by adding the penalty of difference between the minimum prediction losses on single modalities and the prediction loss on the fused modality. Finally, we conduct experiments on a largest-scale elderly activity dataset, i.e., ETRI-Activity3D (including 110,000+ videos, and 50+ categories), to demonstrate that the proposed ESE-FN achieves the best accuracy compared with the state-of-the-art methods. In addition, more extensive experimental results show that the proposed ESE-FN is also comparable to the other methods in terms of normal action recognition task. |
---|---|
AbstractList | This work focuses on the task of elderly activity recognition, which is a challenging task due to the existence of individual actions and human-object interactions in elderly activities. Thus, we attempt to effectively aggregate the discriminative information of actions and interactions from both RGB videos and skeleton sequences by attentively fusing multi-modal features. Recently, some nonlinear multi-modal fusion approaches are proposed by utilizing nonlinear attention mechanism that is extended from Squeeze-and-Excitation Networks (SENet). Inspired by this, we propose a novel Expansion-Squeeze-Excitation Fusion Network (ESE-FN) to effectively address the problem of elderly activity recognition, which learns modal and channel-wise Expansion-Squeeze-Excitation (ESE) attentions for attentively fusing the multi-modal features in the modal and channel-wise ways. Specifically, ESE-FN firstly implements the modal-wise fusion with the Modal-wise ESE Attention (M-ESEA) to aggregate discriminative information in modal-wise way, and then implements the channel-wise fusion with the Channel-wise ESE Attention (C-ESEA) to aggregate the multi-channel discriminative information in channel-wise way (referring to <xref rid="fig1" ref-type="fig">Figure 1 ). Furthermore, we design a new Multi-modal Loss (ML) to keep the consistency between the single-modal features and the fused multi-modal features by adding the penalty of difference between the minimum prediction losses on single modalities and the prediction loss on the fused modality. Finally, we conduct experiments on a largest-scale elderly activity dataset, i.e., ETRI-Activity3D (including 110,000+ videos, and 50+ categories), to demonstrate that the proposed ESE-FN achieves the best accuracy compared with the state-of-the-art methods. In addition, more extensive experimental results show that the proposed ESE-FN is also comparable to the other methods in terms of normal action recognition task. This work focuses on the task of elderly activity recognition, which is a challenging task due to the existence of individual actions and human-object interactions in elderly activities. Thus, we attempt to effectively aggregate the discriminative information of actions and interactions from both RGB videos and skeleton sequences by attentively fusing multi-modal features. Recently, some nonlinear multi-modal fusion approaches are proposed by utilizing nonlinear attention mechanism that is extended from Squeeze-and-Excitation Networks (SENet). Inspired by this, we propose a novel Expansion-Squeeze-Excitation Fusion Network (ESE-FN) to effectively address the problem of elderly activity recognition, which learns modal and channel-wise Expansion-Squeeze-Excitation (ESE) attentions for attentively fusing the multi-modal features in the modal and channel-wise ways. Specifically, ESE-FN firstly implements the modal-wise fusion with the Modal-wise ESE Attention (M-ESEA) to aggregate discriminative information in modal-wise way, and then implements the channel-wise fusion with the Channel-wise ESE Attention (C-ESEA) to aggregate the multi-channel discriminative information in channel-wise way (referring to Figure 1 ). Furthermore, we design a new Multi-modal Loss (ML) to keep the consistency between the single-modal features and the fused multi-modal features by adding the penalty of difference between the minimum prediction losses on single modalities and the prediction loss on the fused modality. Finally, we conduct experiments on a largest-scale elderly activity dataset, i.e., ETRI-Activity3D (including 110,000+ videos, and 50+ categories), to demonstrate that the proposed ESE-FN achieves the best accuracy compared with the state-of-the-art methods. In addition, more extensive experimental results show that the proposed ESE-FN is also comparable to the other methods in terms of normal action recognition task. |
Author | Yan, Rui Song, Yan Yang, Jiawen Shu, Xiangbo |
Author_xml | – sequence: 1 givenname: Xiangbo orcidid: 0000-0003-4902-4663 surname: Shu fullname: Shu, Xiangbo email: shuxb@njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 2 givenname: Jiawen surname: Yang fullname: Yang, Jiawen email: owen@njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 3 givenname: Rui orcidid: 0000-0002-0694-9458 surname: Yan fullname: Yan, Rui email: ruiyan@njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 4 givenname: Yan orcidid: 0000-0001-8431-7037 surname: Song fullname: Song, Yan email: songyan@njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China |
BookMark | eNp9kMtOwzAQRS1UJNrCD8AmEusUP-LXsqpaQKpAooWt5SQ2cglxcVxo-XoSWliwYDWjmXvmcQegV_vaAHCO4AghKK-Wk8XTcoQhxiOCMsw5OgJ9RKlIMYa01-aQolRgRE_AoGlWEKJMZLwP5tPtWteN83W6eNsY82nS6bZwUce2lMw2XSe5M_HDh5fE-pBMq9KEapeMi-jeXdwlD6bwz7Xr9Kfg2OqqMWeHOASPs-lycpPO769vJ-N5WmBJY6qFLnUpBbOlNkJzkROdW5IjZgmGOtdUUiwZKVhJEcmtkcjy9nQrRWZhycgQXO7nroNvj26iWvlNqNuVCjPJKceSy1Yl9qoi-KYJxqqfv2LQrlIIqs479e2d6rxTB-9aFP9B18G96rD7H7rYQ84Y8wtIJiDjjHwBR_9-CQ |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TCSVT_2022_3178173 crossref_primary_10_1109_TNNLS_2022_3202724 crossref_primary_10_1109_TNNLS_2023_3289971 crossref_primary_10_1109_TMM_2023_3271811 crossref_primary_10_3390_futuretransp3020041 crossref_primary_10_1109_TCSVT_2022_3218790 crossref_primary_10_1016_j_ins_2023_02_047 crossref_primary_10_3390_app14093637 crossref_primary_10_1109_TCSVT_2023_3272375 crossref_primary_10_3390_rs14225678 crossref_primary_10_1049_ell2_12744 crossref_primary_10_1038_s41598_024_70695_x crossref_primary_10_1109_TCSVT_2022_3193574 crossref_primary_10_1109_TCSVT_2023_3284405 crossref_primary_10_1109_TCSII_2023_3318814 crossref_primary_10_1007_s00371_023_02819_9 crossref_primary_10_1016_j_compeleceng_2024_109231 crossref_primary_10_1007_s13042_024_02245_w crossref_primary_10_1109_TCSVT_2023_3248782 crossref_primary_10_1007_s10489_023_05259_z crossref_primary_10_1109_TIP_2022_3207006 crossref_primary_10_1155_2022_1645658 crossref_primary_10_1109_TCE_2024_3386773 crossref_primary_10_1109_TCSVT_2023_3317486 crossref_primary_10_1109_TCSVT_2024_3391415 crossref_primary_10_1109_TCSVT_2022_3169842 crossref_primary_10_1109_TMM_2023_3318325 crossref_primary_10_1109_TIP_2023_3243525 crossref_primary_10_1155_2022_8324438 crossref_primary_10_1016_j_ins_2022_07_138 crossref_primary_10_1109_TCSVT_2023_3254665 crossref_primary_10_1109_JPHOT_2023_3326305 crossref_primary_10_3390_app13042475 crossref_primary_10_1016_j_eswa_2023_122776 crossref_primary_10_1155_2022_4767437 crossref_primary_10_1109_TCSVT_2022_3186880 crossref_primary_10_1109_TNNLS_2023_3276796 crossref_primary_10_1109_TNNLS_2024_3377636 crossref_primary_10_1109_LSP_2022_3215611 crossref_primary_10_1109_LSP_2022_3180668 crossref_primary_10_1109_TCSVT_2024_3395463 crossref_primary_10_1016_j_neucom_2024_127905 crossref_primary_10_1109_TCSVT_2022_3176055 crossref_primary_10_1109_TNNLS_2022_3221745 crossref_primary_10_1109_TMM_2022_3214102 crossref_primary_10_1109_TNNLS_2023_3269789 crossref_primary_10_32604_cmes_2023_031040 crossref_primary_10_1016_j_knosys_2024_111852 crossref_primary_10_1109_TCSVT_2022_3220297 crossref_primary_10_1109_TCSVT_2022_3175923 crossref_primary_10_1080_17538947_2024_2447347 crossref_primary_10_1109_TCSVT_2023_3325001 crossref_primary_10_1109_TMI_2023_3275592 crossref_primary_10_1109_LSP_2022_3229594 crossref_primary_10_1109_TNNLS_2023_3264647 crossref_primary_10_26599_TST_2023_9010022 crossref_primary_10_1109_TCSVT_2022_3233069 crossref_primary_10_1007_s11227_023_05533_4 crossref_primary_10_1007_s00371_023_02797_y crossref_primary_10_1109_TAI_2023_3323272 crossref_primary_10_1109_TCSVT_2024_3382322 crossref_primary_10_1109_TCSVT_2022_3211734 crossref_primary_10_1007_s00371_022_02485_3 crossref_primary_10_1016_j_oceaneng_2025_121002 crossref_primary_10_1016_j_patcog_2024_110481 crossref_primary_10_3390_s23156804 crossref_primary_10_1007_s00530_024_01358_0 crossref_primary_10_1109_TNNLS_2023_3250485 crossref_primary_10_1016_j_eswa_2025_126646 crossref_primary_10_1007_s11042_023_16766_z crossref_primary_10_1109_LSP_2022_3211199 crossref_primary_10_1016_j_neucom_2022_03_066 crossref_primary_10_1109_TCSVT_2023_3296668 crossref_primary_10_1007_s11042_023_15343_8 crossref_primary_10_1109_TIP_2022_3226418 crossref_primary_10_1109_ACCESS_2023_3292539 crossref_primary_10_1049_ipr2_13183 crossref_primary_10_1145_3655025 crossref_primary_10_1109_LSP_2022_3199145 crossref_primary_10_1007_s00371_023_02926_7 crossref_primary_10_1007_s11042_023_17916_z crossref_primary_10_1109_TMECH_2022_3188011 crossref_primary_10_1016_j_asoc_2023_111166 crossref_primary_10_1016_j_imavis_2024_105234 crossref_primary_10_1016_j_bspc_2023_105316 crossref_primary_10_1109_ACCESS_2023_3242556 crossref_primary_10_3390_s22124588 crossref_primary_10_1109_TCSVT_2022_3202563 crossref_primary_10_1109_TCSVT_2023_3249796 crossref_primary_10_1155_2022_6257658 crossref_primary_10_1016_j_measurement_2024_114654 crossref_primary_10_1109_TCSVT_2023_3240472 crossref_primary_10_1109_TCSVT_2022_3227737 crossref_primary_10_1109_TCSVT_2023_3274228 crossref_primary_10_1109_TMM_2023_3252271 crossref_primary_10_3390_app13032007 crossref_primary_10_1109_JSEN_2023_3252178 crossref_primary_10_3390_diagnostics12051283 crossref_primary_10_1109_TNNLS_2023_3247103 crossref_primary_10_1145_3587253 crossref_primary_10_1016_j_neucom_2022_10_037 crossref_primary_10_1016_j_neucom_2022_06_034 crossref_primary_10_1142_S0218126623502031 crossref_primary_10_1016_j_neucom_2024_127389 crossref_primary_10_1016_j_aej_2024_11_053 crossref_primary_10_1109_TCSVT_2022_3202574 crossref_primary_10_1109_TNNLS_2023_3311820 crossref_primary_10_1016_j_compbiomed_2023_107390 crossref_primary_10_1016_j_ins_2022_06_038 crossref_primary_10_1109_TCSVT_2024_3402247 crossref_primary_10_1117_1_JEI_32_4_043021 crossref_primary_10_1109_JSEN_2024_3511087 crossref_primary_10_1007_s00371_022_02672_2 crossref_primary_10_1109_TCSVT_2022_3172971 crossref_primary_10_3390_math12193003 crossref_primary_10_1007_s00371_023_02870_6 crossref_primary_10_1109_TCSS_2022_3207479 crossref_primary_10_1109_ACCESS_2022_3205602 crossref_primary_10_1177_14727978241299239 crossref_primary_10_26599_TST_2024_9010041 crossref_primary_10_1016_j_ijcce_2024_10_001 crossref_primary_10_1109_TMM_2023_3313256 crossref_primary_10_1016_j_eswa_2024_124917 crossref_primary_10_1109_TIFS_2023_3301728 crossref_primary_10_1109_TCSVT_2022_3216663 crossref_primary_10_1109_TCSVT_2022_3194350 crossref_primary_10_1145_3565028 crossref_primary_10_3390_app13042058 crossref_primary_10_1007_s00371_022_02461_x crossref_primary_10_1155_2022_9126044 crossref_primary_10_3390_electronics12081915 crossref_primary_10_1109_TCSVT_2023_3250646 crossref_primary_10_1109_TNNLS_2023_3253557 crossref_primary_10_1109_TMM_2023_3301279 crossref_primary_10_1109_TCSVT_2022_3229059 |
Cites_doi | 10.1145/2993148.2993176 10.1109/TCSVT.2021.3082939 10.1109/AVSS.2017.8078548 10.1109/ICCVW.2019.00233 10.1609/aaai.v32i1.12228 10.1109/CVPR.2017.502 10.1109/CVPR.2018.00127 10.1109/TIP.2018.2837386 10.1109/ICASSP.2016.7472170 10.1109/ICCV.2017.590 10.1109/CVPR42600.2020.00022 10.1162/neco.1997.9.8.1735 10.1109/ICME.2019.00279 10.1109/CVPR.2019.00810 10.1109/CVPR.2018.00572 10.1109/TNNLS.2021.3061115 10.1109/ICCV.2017.450 10.1109/LSP.2018.2841649 10.1109/ICEngTechnol.2017.8308186 10.1007/978-3-030-01228-1_25 10.1109/CVPR.2019.00806 10.1007/978-3-319-46484-8_2 10.1109/LSENS.2020.3041585 10.1109/TCSVT.2021.3077058 10.1109/CVPR.2019.00368 10.1109/TCSVT.2019.2940647 10.1109/TPAMI.2019.2896631 10.1109/TPAMI.2019.2942030 10.24963/ijcai.2018/109 10.1109/CVPR42600.2020.00026 10.1109/ICMEW.2017.8026285 10.1609/aaai.v33i01.33018561 10.1109/CVPR.2016.115 10.1109/IROS40897.2019.8967570 10.1145/3343031.3351001 10.1109/TCSVT.2018.2875441 10.1109/TMM.2020.2991523 10.1109/TCSVT.2020.2965574 10.1109/TMM.2020.2974323 10.1109/IROS45743.2020.9341160 10.1109/TCSVT.2020.3019293 10.1109/CVPR.2017.634 10.1145/3343031.3356067 10.1109/CVPR.2018.00745 10.1109/TPAMI.2021.3050918 10.1109/CVPR.2019.01230 10.1609/aaai.v33i01.33018989 10.1007/978-3-030-01234-2_21 10.18653/v1/P18-1209 10.1109/ICCV.2015.510 10.1109/ICCV.2019.00718 10.1109/CVPR.2019.00807 10.1109/TCSVT.2020.3014663 10.1109/ICCV.2019.00630 10.1109/TCSVT.2021.3098839 10.1109/TNNLS.2020.2978942 10.1109/TPAMI.2019.2928540 10.1109/CVPRW.2017.270 10.1109/TCSVT.2021.3056725 10.1109/TCSVT.2020.3046625 10.1609/aaai.v32i1.12328 10.1109/CVPR42600.2020.01330 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2022.3142771 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 5292 |
ExternalDocumentID | 10_1109_TCSVT_2022_3142771 9680676 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018AAA0102001 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 62072245; 61932020 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20211520 funderid: 10.13039/501100004608 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-a8adad986fdae8a78b3abf3b16f320aba5952963c6d513bfe91f7215f984f0d63 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 03:21:26 EDT 2025 Thu Apr 24 22:55:43 EDT 2025 Wed Jul 16 16:48:01 EDT 2025 Wed Aug 27 02:14:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-a8adad986fdae8a78b3abf3b16f320aba5952963c6d513bfe91f7215f984f0d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0694-9458 0000-0003-4902-4663 0000-0001-8431-7037 |
PQID | 2697572979 |
PQPubID | 85433 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TCSVT_2022_3142771 ieee_primary_9680676 crossref_primary_10_1109_TCSVT_2022_3142771 proquest_journals_2697572979 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 He (ref36) 2018 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref17 ref18 Fooladgar (ref38) 2019 ref51 ref50 ref46 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Simonyan (ref40) 2014 ref35 ref34 ref37 ref31 ref30 ref33 ref32 ref2 ref1 ref39 Tran (ref45) 2017 Wang (ref23); 33 Su (ref54) 2020 ref71 ref70 ref24 ref68 ref67 ref26 Kipf (ref19) 2016 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 Diba (ref44) 2017 ref65 ref28 ref27 ref29 Zaremba (ref16) 2014 ref60 ref62 ref61 |
References_xml | – ident: ref22 doi: 10.1145/2993148.2993176 – ident: ref28 doi: 10.1109/TCSVT.2021.3082939 – ident: ref21 doi: 10.1109/AVSS.2017.8078548 – ident: ref32 doi: 10.1109/ICCVW.2019.00233 – ident: ref59 doi: 10.1609/aaai.v32i1.12228 – ident: ref7 doi: 10.1109/CVPR.2017.502 – ident: ref57 doi: 10.1109/CVPR.2018.00127 – volume-title: arXiv:1711.08200 year: 2017 ident: ref44 article-title: Temporal 3D ConvNets: New architecture and transfer learning for video classification – ident: ref61 doi: 10.1109/TIP.2018.2837386 – ident: ref52 doi: 10.1109/ICASSP.2016.7472170 – volume-title: arXiv:1708.05038 year: 2017 ident: ref45 article-title: ConvNet architecture search for spatiotemporal feature learning – ident: ref46 doi: 10.1109/ICCV.2017.590 – ident: ref70 doi: 10.1109/CVPR42600.2020.00022 – volume-title: arXiv:1609.02907 year: 2016 ident: ref19 article-title: Semi-supervised classification with graph convolutional networks – ident: ref18 doi: 10.1162/neco.1997.9.8.1735 – ident: ref49 doi: 10.1109/ICME.2019.00279 – ident: ref69 doi: 10.1109/CVPR.2019.00810 – ident: ref60 doi: 10.1109/CVPR.2018.00572 – ident: ref65 doi: 10.1109/TNNLS.2021.3061115 – ident: ref33 doi: 10.1109/ICCV.2017.450 – ident: ref64 doi: 10.1109/LSP.2018.2841649 – volume-title: arXiv:1406.2199 year: 2014 ident: ref40 article-title: Two-stream convolutional networks for action recognition in videos – volume-title: arXiv:1806.10319 year: 2018 ident: ref36 article-title: Exploiting spatial-temporal modelling and multi-modal fusion for human action recognition – ident: ref15 doi: 10.1109/ICEngTechnol.2017.8308186 – ident: ref4 doi: 10.1007/978-3-030-01228-1_25 – volume-title: arXiv:1409.2329 year: 2014 ident: ref16 article-title: Recurrent neural network regularization – ident: ref2 doi: 10.1109/CVPR.2019.00806 – ident: ref41 doi: 10.1007/978-3-319-46484-8_2 – ident: ref53 doi: 10.1109/LSENS.2020.3041585 – ident: ref30 doi: 10.1109/TCSVT.2021.3077058 – volume-title: arXiv:1912.11691 year: 2019 ident: ref38 article-title: Multi-modal attention-based fusion model for semantic segmentation of RGB-depth images – ident: ref42 doi: 10.1109/CVPR.2019.00368 – ident: ref27 doi: 10.1109/TCSVT.2019.2940647 – ident: ref10 doi: 10.1109/TPAMI.2019.2896631 – ident: ref8 doi: 10.1109/TPAMI.2019.2942030 – ident: ref66 doi: 10.24963/ijcai.2018/109 – ident: ref13 doi: 10.1109/CVPR42600.2020.00026 – ident: ref62 doi: 10.1109/ICMEW.2017.8026285 – ident: ref67 doi: 10.1609/aaai.v33i01.33018561 – ident: ref71 doi: 10.1109/CVPR.2016.115 – ident: ref20 doi: 10.1109/IROS40897.2019.8967570 – ident: ref37 doi: 10.1145/3343031.3351001 – ident: ref25 doi: 10.1109/TCSVT.2018.2875441 – ident: ref39 doi: 10.1109/TMM.2020.2991523 – ident: ref47 doi: 10.1109/TCSVT.2020.2965574 – ident: ref48 doi: 10.1109/TMM.2020.2974323 – ident: ref56 doi: 10.1109/IROS45743.2020.9341160 – ident: ref11 doi: 10.1109/TCSVT.2020.3019293 – ident: ref55 doi: 10.1109/CVPR.2017.634 – ident: ref51 doi: 10.1145/3343031.3356067 – ident: ref35 doi: 10.1109/CVPR.2018.00745 – ident: ref14 doi: 10.1109/TPAMI.2021.3050918 – ident: ref68 doi: 10.1109/CVPR.2019.01230 – volume-title: arXiv:2012.07175 year: 2020 ident: ref54 article-title: MSAF: Multimodal split attention fusion – ident: ref63 doi: 10.1609/aaai.v33i01.33018989 – ident: ref58 doi: 10.1007/978-3-030-01234-2_21 – ident: ref34 doi: 10.18653/v1/P18-1209 – ident: ref17 doi: 10.1109/ICCV.2015.510 – ident: ref6 doi: 10.1109/ICCV.2019.00718 – volume: 33 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS) ident: ref23 article-title: Deep multimodal fusion by channel exchanging – ident: ref43 doi: 10.1109/CVPR.2019.00807 – ident: ref31 doi: 10.1109/TCSVT.2020.3014663 – ident: ref3 doi: 10.1109/ICCV.2019.00630 – ident: ref24 doi: 10.1109/TCSVT.2021.3098839 – ident: ref1 doi: 10.1109/TNNLS.2020.2978942 – ident: ref5 doi: 10.1109/TPAMI.2019.2928540 – ident: ref9 doi: 10.1109/CVPRW.2017.270 – ident: ref50 doi: 10.1109/TCSVT.2021.3056725 – ident: ref29 doi: 10.1109/TCSVT.2020.3046625 – ident: ref12 doi: 10.1609/aaai.v32i1.12328 – ident: ref26 doi: 10.1109/CVPR42600.2020.01330 |
SSID | ssj0014847 |
Score | 2.6818902 |
Snippet | This work focuses on the task of elderly activity recognition, which is a challenging task due to the existence of individual actions and human-object... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5281 |
SubjectTerms | Activity recognition Elderly activity recognition Excitation Feature extraction Fuses fusion network Hair multi-modal fusion Older adults Older people Skeleton Task analysis Video Videos |
Title | Expansion-Squeeze-Excitation Fusion Network for Elderly Activity Recognition |
URI | https://ieeexplore.ieee.org/document/9680676 https://www.proquest.com/docview/2697572979 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8BTnrwC40omh28aWHrtq49EjJCjHAQMNyWbm0vEjA6EuSvt-024leMtyV7Xd76-vF-7XvvB3ATCZYFnusjwiVDgaAu0rOIIk6Ii00mJbfRhKMxGc6C-3k4r8HdLhdGSmmDz2THPNq7fLHK1uaorMsI1YsrqUNdA7ciV2t3YxBQSyam3QUPUb2PVQkyLutO-5OnqYaCGGuEGuAo8r5sQpZV5cdSbPeXwSGMKs2KsJLnzjpPO9n2W9HG_6p-BAelo-n0ipFxDDW5PIH9T-UHm_AQb_RaYI7L0MQA2q1E8SYri3Y7g7V544yLOHFHO7dObCi9F-9OLys4J5zHKvxotTyF2SCe9oeoZFdAGWZhjjjlggtGiRJcUh7R1Oep8lOPKB-7POUhM3eyfkZE6PmpksxTGi6GitFAuYL4Z9BYrpbyHBwt6WKliBCEB9SLOFaUCu05KMIiEaQt8KruTqq_MAwYi8RCEJcl1kSJMVFSmqgFt7s2L0XhjT-lm6bPd5Jld7egXVk1KefmW4K1UqHGFBG7-L3VJeyZbxdhfm1o5K9reaVdjzy9tmPuAzOg1YU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTuMwEB6xcNjdA7CwiPLrA5yQS-Ikjn3ggKBVWUoPUBC3rBPbF1C7Wlot8Cy8Cu_G2EkqflbckLhFip3Eni_jGfubGYCtVMsiDoOIcmUkjbUIKP5FgirOA-YiKZVnE570eOc8_nWZXE7BwyQWxhjjyWem6S79Wb4eFmO3VbYruUDlyisK5bG5-4cO2s3e0SFKc5uxdqt_0KFVDQFaMJmMqBJKKy0Ft1oZoVKRRyq3UR5yG7FA5SqR7uQxKrhOwii3RoYWnaLEShHbQPMIn_sFZtDOSFgZHTY5o4iFL1-GBkpIBXapQ3ICuds_OLvoo_PJGPrEMUvT8MWy5-u4vFH-fkVrz8FjPRclkeWqOR7lzeL-VZrIzzpZ8zBbmdJkv8T-D5gygwX4_izB4iJ0W7eo7dyGID1zLvu9oa3bokpLTtpjd4f0SiY8QfOdtFzR8us7sl-UVTXIaU2wGg5-wvmHDGcJpgfDgVkGgi0DZi3XmqtYhKliVgiNtpHlMtVx3oCwFm9Wj8LV-LjOvJMVyMxDInOQyCpINGBn0udPmVrk3daLTsaTlpV4G7BWoyirtM9NxvCjEvSaUrny_16b8LXTP-lm3aPe8Sp8c-8pSY1rMD36OzbraGiN8g2PdwK_PxozT7bFNSk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expansion-Squeeze-Excitation+Fusion+Network+for+Elderly+Activity+Recognition&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Shu%2C+Xiangbo&rft.au=Yang%2C+Jiawen&rft.au=Yan%2C+Rui&rft.au=Song%2C+Yan&rft.date=2022-08-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=8&rft.spage=5281&rft.epage=5292&rft_id=info:doi/10.1109%2FTCSVT.2022.3142771&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2022_3142771 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |