Expansion-Squeeze-Excitation Fusion Network for Elderly Activity Recognition

This work focuses on the task of elderly activity recognition, which is a challenging task due to the existence of individual actions and human-object interactions in elderly activities. Thus, we attempt to effectively aggregate the discriminative information of actions and interactions from both RG...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 8; pp. 5281 - 5292
Main Authors Shu, Xiangbo, Yang, Jiawen, Yan, Rui, Song, Yan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work focuses on the task of elderly activity recognition, which is a challenging task due to the existence of individual actions and human-object interactions in elderly activities. Thus, we attempt to effectively aggregate the discriminative information of actions and interactions from both RGB videos and skeleton sequences by attentively fusing multi-modal features. Recently, some nonlinear multi-modal fusion approaches are proposed by utilizing nonlinear attention mechanism that is extended from Squeeze-and-Excitation Networks (SENet). Inspired by this, we propose a novel Expansion-Squeeze-Excitation Fusion Network (ESE-FN) to effectively address the problem of elderly activity recognition, which learns modal and channel-wise Expansion-Squeeze-Excitation (ESE) attentions for attentively fusing the multi-modal features in the modal and channel-wise ways. Specifically, ESE-FN firstly implements the modal-wise fusion with the Modal-wise ESE Attention (M-ESEA) to aggregate discriminative information in modal-wise way, and then implements the channel-wise fusion with the Channel-wise ESE Attention (C-ESEA) to aggregate the multi-channel discriminative information in channel-wise way (referring to <xref rid="fig1" ref-type="fig">Figure 1 ). Furthermore, we design a new Multi-modal Loss (ML) to keep the consistency between the single-modal features and the fused multi-modal features by adding the penalty of difference between the minimum prediction losses on single modalities and the prediction loss on the fused modality. Finally, we conduct experiments on a largest-scale elderly activity dataset, i.e., ETRI-Activity3D (including 110,000+ videos, and 50+ categories), to demonstrate that the proposed ESE-FN achieves the best accuracy compared with the state-of-the-art methods. In addition, more extensive experimental results show that the proposed ESE-FN is also comparable to the other methods in terms of normal action recognition task.
AbstractList This work focuses on the task of elderly activity recognition, which is a challenging task due to the existence of individual actions and human-object interactions in elderly activities. Thus, we attempt to effectively aggregate the discriminative information of actions and interactions from both RGB videos and skeleton sequences by attentively fusing multi-modal features. Recently, some nonlinear multi-modal fusion approaches are proposed by utilizing nonlinear attention mechanism that is extended from Squeeze-and-Excitation Networks (SENet). Inspired by this, we propose a novel Expansion-Squeeze-Excitation Fusion Network (ESE-FN) to effectively address the problem of elderly activity recognition, which learns modal and channel-wise Expansion-Squeeze-Excitation (ESE) attentions for attentively fusing the multi-modal features in the modal and channel-wise ways. Specifically, ESE-FN firstly implements the modal-wise fusion with the Modal-wise ESE Attention (M-ESEA) to aggregate discriminative information in modal-wise way, and then implements the channel-wise fusion with the Channel-wise ESE Attention (C-ESEA) to aggregate the multi-channel discriminative information in channel-wise way (referring to <xref rid="fig1" ref-type="fig">Figure 1 ). Furthermore, we design a new Multi-modal Loss (ML) to keep the consistency between the single-modal features and the fused multi-modal features by adding the penalty of difference between the minimum prediction losses on single modalities and the prediction loss on the fused modality. Finally, we conduct experiments on a largest-scale elderly activity dataset, i.e., ETRI-Activity3D (including 110,000+ videos, and 50+ categories), to demonstrate that the proposed ESE-FN achieves the best accuracy compared with the state-of-the-art methods. In addition, more extensive experimental results show that the proposed ESE-FN is also comparable to the other methods in terms of normal action recognition task.
This work focuses on the task of elderly activity recognition, which is a challenging task due to the existence of individual actions and human-object interactions in elderly activities. Thus, we attempt to effectively aggregate the discriminative information of actions and interactions from both RGB videos and skeleton sequences by attentively fusing multi-modal features. Recently, some nonlinear multi-modal fusion approaches are proposed by utilizing nonlinear attention mechanism that is extended from Squeeze-and-Excitation Networks (SENet). Inspired by this, we propose a novel Expansion-Squeeze-Excitation Fusion Network (ESE-FN) to effectively address the problem of elderly activity recognition, which learns modal and channel-wise Expansion-Squeeze-Excitation (ESE) attentions for attentively fusing the multi-modal features in the modal and channel-wise ways. Specifically, ESE-FN firstly implements the modal-wise fusion with the Modal-wise ESE Attention (M-ESEA) to aggregate discriminative information in modal-wise way, and then implements the channel-wise fusion with the Channel-wise ESE Attention (C-ESEA) to aggregate the multi-channel discriminative information in channel-wise way (referring to Figure 1 ). Furthermore, we design a new Multi-modal Loss (ML) to keep the consistency between the single-modal features and the fused multi-modal features by adding the penalty of difference between the minimum prediction losses on single modalities and the prediction loss on the fused modality. Finally, we conduct experiments on a largest-scale elderly activity dataset, i.e., ETRI-Activity3D (including 110,000+ videos, and 50+ categories), to demonstrate that the proposed ESE-FN achieves the best accuracy compared with the state-of-the-art methods. In addition, more extensive experimental results show that the proposed ESE-FN is also comparable to the other methods in terms of normal action recognition task.
Author Yan, Rui
Song, Yan
Yang, Jiawen
Shu, Xiangbo
Author_xml – sequence: 1
  givenname: Xiangbo
  orcidid: 0000-0003-4902-4663
  surname: Shu
  fullname: Shu, Xiangbo
  email: shuxb@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Jiawen
  surname: Yang
  fullname: Yang, Jiawen
  email: owen@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 3
  givenname: Rui
  orcidid: 0000-0002-0694-9458
  surname: Yan
  fullname: Yan, Rui
  email: ruiyan@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 4
  givenname: Yan
  orcidid: 0000-0001-8431-7037
  surname: Song
  fullname: Song, Yan
  email: songyan@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
BookMark eNp9kMtOwzAQRS1UJNrCD8AmEusUP-LXsqpaQKpAooWt5SQ2cglxcVxo-XoSWliwYDWjmXvmcQegV_vaAHCO4AghKK-Wk8XTcoQhxiOCMsw5OgJ9RKlIMYa01-aQolRgRE_AoGlWEKJMZLwP5tPtWteN83W6eNsY82nS6bZwUce2lMw2XSe5M_HDh5fE-pBMq9KEapeMi-jeXdwlD6bwz7Xr9Kfg2OqqMWeHOASPs-lycpPO769vJ-N5WmBJY6qFLnUpBbOlNkJzkROdW5IjZgmGOtdUUiwZKVhJEcmtkcjy9nQrRWZhycgQXO7nroNvj26iWvlNqNuVCjPJKceSy1Yl9qoi-KYJxqqfv2LQrlIIqs479e2d6rxTB-9aFP9B18G96rD7H7rYQ84Y8wtIJiDjjHwBR_9-CQ
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2022_3178173
crossref_primary_10_1109_TNNLS_2022_3202724
crossref_primary_10_1109_TNNLS_2023_3289971
crossref_primary_10_1109_TMM_2023_3271811
crossref_primary_10_3390_futuretransp3020041
crossref_primary_10_1109_TCSVT_2022_3218790
crossref_primary_10_1016_j_ins_2023_02_047
crossref_primary_10_3390_app14093637
crossref_primary_10_1109_TCSVT_2023_3272375
crossref_primary_10_3390_rs14225678
crossref_primary_10_1049_ell2_12744
crossref_primary_10_1038_s41598_024_70695_x
crossref_primary_10_1109_TCSVT_2022_3193574
crossref_primary_10_1109_TCSVT_2023_3284405
crossref_primary_10_1109_TCSII_2023_3318814
crossref_primary_10_1007_s00371_023_02819_9
crossref_primary_10_1016_j_compeleceng_2024_109231
crossref_primary_10_1007_s13042_024_02245_w
crossref_primary_10_1109_TCSVT_2023_3248782
crossref_primary_10_1007_s10489_023_05259_z
crossref_primary_10_1109_TIP_2022_3207006
crossref_primary_10_1155_2022_1645658
crossref_primary_10_1109_TCE_2024_3386773
crossref_primary_10_1109_TCSVT_2023_3317486
crossref_primary_10_1109_TCSVT_2024_3391415
crossref_primary_10_1109_TCSVT_2022_3169842
crossref_primary_10_1109_TMM_2023_3318325
crossref_primary_10_1109_TIP_2023_3243525
crossref_primary_10_1155_2022_8324438
crossref_primary_10_1016_j_ins_2022_07_138
crossref_primary_10_1109_TCSVT_2023_3254665
crossref_primary_10_1109_JPHOT_2023_3326305
crossref_primary_10_3390_app13042475
crossref_primary_10_1016_j_eswa_2023_122776
crossref_primary_10_1155_2022_4767437
crossref_primary_10_1109_TCSVT_2022_3186880
crossref_primary_10_1109_TNNLS_2023_3276796
crossref_primary_10_1109_TNNLS_2024_3377636
crossref_primary_10_1109_LSP_2022_3215611
crossref_primary_10_1109_LSP_2022_3180668
crossref_primary_10_1109_TCSVT_2024_3395463
crossref_primary_10_1016_j_neucom_2024_127905
crossref_primary_10_1109_TCSVT_2022_3176055
crossref_primary_10_1109_TNNLS_2022_3221745
crossref_primary_10_1109_TMM_2022_3214102
crossref_primary_10_1109_TNNLS_2023_3269789
crossref_primary_10_32604_cmes_2023_031040
crossref_primary_10_1016_j_knosys_2024_111852
crossref_primary_10_1109_TCSVT_2022_3220297
crossref_primary_10_1109_TCSVT_2022_3175923
crossref_primary_10_1080_17538947_2024_2447347
crossref_primary_10_1109_TCSVT_2023_3325001
crossref_primary_10_1109_TMI_2023_3275592
crossref_primary_10_1109_LSP_2022_3229594
crossref_primary_10_1109_TNNLS_2023_3264647
crossref_primary_10_26599_TST_2023_9010022
crossref_primary_10_1109_TCSVT_2022_3233069
crossref_primary_10_1007_s11227_023_05533_4
crossref_primary_10_1007_s00371_023_02797_y
crossref_primary_10_1109_TAI_2023_3323272
crossref_primary_10_1109_TCSVT_2024_3382322
crossref_primary_10_1109_TCSVT_2022_3211734
crossref_primary_10_1007_s00371_022_02485_3
crossref_primary_10_1016_j_oceaneng_2025_121002
crossref_primary_10_1016_j_patcog_2024_110481
crossref_primary_10_3390_s23156804
crossref_primary_10_1007_s00530_024_01358_0
crossref_primary_10_1109_TNNLS_2023_3250485
crossref_primary_10_1016_j_eswa_2025_126646
crossref_primary_10_1007_s11042_023_16766_z
crossref_primary_10_1109_LSP_2022_3211199
crossref_primary_10_1016_j_neucom_2022_03_066
crossref_primary_10_1109_TCSVT_2023_3296668
crossref_primary_10_1007_s11042_023_15343_8
crossref_primary_10_1109_TIP_2022_3226418
crossref_primary_10_1109_ACCESS_2023_3292539
crossref_primary_10_1049_ipr2_13183
crossref_primary_10_1145_3655025
crossref_primary_10_1109_LSP_2022_3199145
crossref_primary_10_1007_s00371_023_02926_7
crossref_primary_10_1007_s11042_023_17916_z
crossref_primary_10_1109_TMECH_2022_3188011
crossref_primary_10_1016_j_asoc_2023_111166
crossref_primary_10_1016_j_imavis_2024_105234
crossref_primary_10_1016_j_bspc_2023_105316
crossref_primary_10_1109_ACCESS_2023_3242556
crossref_primary_10_3390_s22124588
crossref_primary_10_1109_TCSVT_2022_3202563
crossref_primary_10_1109_TCSVT_2023_3249796
crossref_primary_10_1155_2022_6257658
crossref_primary_10_1016_j_measurement_2024_114654
crossref_primary_10_1109_TCSVT_2023_3240472
crossref_primary_10_1109_TCSVT_2022_3227737
crossref_primary_10_1109_TCSVT_2023_3274228
crossref_primary_10_1109_TMM_2023_3252271
crossref_primary_10_3390_app13032007
crossref_primary_10_1109_JSEN_2023_3252178
crossref_primary_10_3390_diagnostics12051283
crossref_primary_10_1109_TNNLS_2023_3247103
crossref_primary_10_1145_3587253
crossref_primary_10_1016_j_neucom_2022_10_037
crossref_primary_10_1016_j_neucom_2022_06_034
crossref_primary_10_1142_S0218126623502031
crossref_primary_10_1016_j_neucom_2024_127389
crossref_primary_10_1016_j_aej_2024_11_053
crossref_primary_10_1109_TCSVT_2022_3202574
crossref_primary_10_1109_TNNLS_2023_3311820
crossref_primary_10_1016_j_compbiomed_2023_107390
crossref_primary_10_1016_j_ins_2022_06_038
crossref_primary_10_1109_TCSVT_2024_3402247
crossref_primary_10_1117_1_JEI_32_4_043021
crossref_primary_10_1109_JSEN_2024_3511087
crossref_primary_10_1007_s00371_022_02672_2
crossref_primary_10_1109_TCSVT_2022_3172971
crossref_primary_10_3390_math12193003
crossref_primary_10_1007_s00371_023_02870_6
crossref_primary_10_1109_TCSS_2022_3207479
crossref_primary_10_1109_ACCESS_2022_3205602
crossref_primary_10_1177_14727978241299239
crossref_primary_10_26599_TST_2024_9010041
crossref_primary_10_1016_j_ijcce_2024_10_001
crossref_primary_10_1109_TMM_2023_3313256
crossref_primary_10_1016_j_eswa_2024_124917
crossref_primary_10_1109_TIFS_2023_3301728
crossref_primary_10_1109_TCSVT_2022_3216663
crossref_primary_10_1109_TCSVT_2022_3194350
crossref_primary_10_1145_3565028
crossref_primary_10_3390_app13042058
crossref_primary_10_1007_s00371_022_02461_x
crossref_primary_10_1155_2022_9126044
crossref_primary_10_3390_electronics12081915
crossref_primary_10_1109_TCSVT_2023_3250646
crossref_primary_10_1109_TNNLS_2023_3253557
crossref_primary_10_1109_TMM_2023_3301279
crossref_primary_10_1109_TCSVT_2022_3229059
Cites_doi 10.1145/2993148.2993176
10.1109/TCSVT.2021.3082939
10.1109/AVSS.2017.8078548
10.1109/ICCVW.2019.00233
10.1609/aaai.v32i1.12228
10.1109/CVPR.2017.502
10.1109/CVPR.2018.00127
10.1109/TIP.2018.2837386
10.1109/ICASSP.2016.7472170
10.1109/ICCV.2017.590
10.1109/CVPR42600.2020.00022
10.1162/neco.1997.9.8.1735
10.1109/ICME.2019.00279
10.1109/CVPR.2019.00810
10.1109/CVPR.2018.00572
10.1109/TNNLS.2021.3061115
10.1109/ICCV.2017.450
10.1109/LSP.2018.2841649
10.1109/ICEngTechnol.2017.8308186
10.1007/978-3-030-01228-1_25
10.1109/CVPR.2019.00806
10.1007/978-3-319-46484-8_2
10.1109/LSENS.2020.3041585
10.1109/TCSVT.2021.3077058
10.1109/CVPR.2019.00368
10.1109/TCSVT.2019.2940647
10.1109/TPAMI.2019.2896631
10.1109/TPAMI.2019.2942030
10.24963/ijcai.2018/109
10.1109/CVPR42600.2020.00026
10.1109/ICMEW.2017.8026285
10.1609/aaai.v33i01.33018561
10.1109/CVPR.2016.115
10.1109/IROS40897.2019.8967570
10.1145/3343031.3351001
10.1109/TCSVT.2018.2875441
10.1109/TMM.2020.2991523
10.1109/TCSVT.2020.2965574
10.1109/TMM.2020.2974323
10.1109/IROS45743.2020.9341160
10.1109/TCSVT.2020.3019293
10.1109/CVPR.2017.634
10.1145/3343031.3356067
10.1109/CVPR.2018.00745
10.1109/TPAMI.2021.3050918
10.1109/CVPR.2019.01230
10.1609/aaai.v33i01.33018989
10.1007/978-3-030-01234-2_21
10.18653/v1/P18-1209
10.1109/ICCV.2015.510
10.1109/ICCV.2019.00718
10.1109/CVPR.2019.00807
10.1109/TCSVT.2020.3014663
10.1109/ICCV.2019.00630
10.1109/TCSVT.2021.3098839
10.1109/TNNLS.2020.2978942
10.1109/TPAMI.2019.2928540
10.1109/CVPRW.2017.270
10.1109/TCSVT.2021.3056725
10.1109/TCSVT.2020.3046625
10.1609/aaai.v32i1.12328
10.1109/CVPR42600.2020.01330
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3142771
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 5292
ExternalDocumentID 10_1109_TCSVT_2022_3142771
9680676
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018AAA0102001
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 62072245; 61932020
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20211520
  funderid: 10.13039/501100004608
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-a8adad986fdae8a78b3abf3b16f320aba5952963c6d513bfe91f7215f984f0d63
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 03:21:26 EDT 2025
Thu Apr 24 22:55:43 EDT 2025
Wed Jul 16 16:48:01 EDT 2025
Wed Aug 27 02:14:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-a8adad986fdae8a78b3abf3b16f320aba5952963c6d513bfe91f7215f984f0d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0694-9458
0000-0003-4902-4663
0000-0001-8431-7037
PQID 2697572979
PQPubID 85433
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2022_3142771
ieee_primary_9680676
crossref_primary_10_1109_TCSVT_2022_3142771
proquest_journals_2697572979
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
He (ref36) 2018
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref17
ref18
Fooladgar (ref38) 2019
ref51
ref50
ref46
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Simonyan (ref40) 2014
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
Tran (ref45) 2017
Wang (ref23); 33
Su (ref54) 2020
ref71
ref70
ref24
ref68
ref67
ref26
Kipf (ref19) 2016
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
Diba (ref44) 2017
ref65
ref28
ref27
ref29
Zaremba (ref16) 2014
ref60
ref62
ref61
References_xml – ident: ref22
  doi: 10.1145/2993148.2993176
– ident: ref28
  doi: 10.1109/TCSVT.2021.3082939
– ident: ref21
  doi: 10.1109/AVSS.2017.8078548
– ident: ref32
  doi: 10.1109/ICCVW.2019.00233
– ident: ref59
  doi: 10.1609/aaai.v32i1.12228
– ident: ref7
  doi: 10.1109/CVPR.2017.502
– ident: ref57
  doi: 10.1109/CVPR.2018.00127
– volume-title: arXiv:1711.08200
  year: 2017
  ident: ref44
  article-title: Temporal 3D ConvNets: New architecture and transfer learning for video classification
– ident: ref61
  doi: 10.1109/TIP.2018.2837386
– ident: ref52
  doi: 10.1109/ICASSP.2016.7472170
– volume-title: arXiv:1708.05038
  year: 2017
  ident: ref45
  article-title: ConvNet architecture search for spatiotemporal feature learning
– ident: ref46
  doi: 10.1109/ICCV.2017.590
– ident: ref70
  doi: 10.1109/CVPR42600.2020.00022
– volume-title: arXiv:1609.02907
  year: 2016
  ident: ref19
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref18
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref49
  doi: 10.1109/ICME.2019.00279
– ident: ref69
  doi: 10.1109/CVPR.2019.00810
– ident: ref60
  doi: 10.1109/CVPR.2018.00572
– ident: ref65
  doi: 10.1109/TNNLS.2021.3061115
– ident: ref33
  doi: 10.1109/ICCV.2017.450
– ident: ref64
  doi: 10.1109/LSP.2018.2841649
– volume-title: arXiv:1406.2199
  year: 2014
  ident: ref40
  article-title: Two-stream convolutional networks for action recognition in videos
– volume-title: arXiv:1806.10319
  year: 2018
  ident: ref36
  article-title: Exploiting spatial-temporal modelling and multi-modal fusion for human action recognition
– ident: ref15
  doi: 10.1109/ICEngTechnol.2017.8308186
– ident: ref4
  doi: 10.1007/978-3-030-01228-1_25
– volume-title: arXiv:1409.2329
  year: 2014
  ident: ref16
  article-title: Recurrent neural network regularization
– ident: ref2
  doi: 10.1109/CVPR.2019.00806
– ident: ref41
  doi: 10.1007/978-3-319-46484-8_2
– ident: ref53
  doi: 10.1109/LSENS.2020.3041585
– ident: ref30
  doi: 10.1109/TCSVT.2021.3077058
– volume-title: arXiv:1912.11691
  year: 2019
  ident: ref38
  article-title: Multi-modal attention-based fusion model for semantic segmentation of RGB-depth images
– ident: ref42
  doi: 10.1109/CVPR.2019.00368
– ident: ref27
  doi: 10.1109/TCSVT.2019.2940647
– ident: ref10
  doi: 10.1109/TPAMI.2019.2896631
– ident: ref8
  doi: 10.1109/TPAMI.2019.2942030
– ident: ref66
  doi: 10.24963/ijcai.2018/109
– ident: ref13
  doi: 10.1109/CVPR42600.2020.00026
– ident: ref62
  doi: 10.1109/ICMEW.2017.8026285
– ident: ref67
  doi: 10.1609/aaai.v33i01.33018561
– ident: ref71
  doi: 10.1109/CVPR.2016.115
– ident: ref20
  doi: 10.1109/IROS40897.2019.8967570
– ident: ref37
  doi: 10.1145/3343031.3351001
– ident: ref25
  doi: 10.1109/TCSVT.2018.2875441
– ident: ref39
  doi: 10.1109/TMM.2020.2991523
– ident: ref47
  doi: 10.1109/TCSVT.2020.2965574
– ident: ref48
  doi: 10.1109/TMM.2020.2974323
– ident: ref56
  doi: 10.1109/IROS45743.2020.9341160
– ident: ref11
  doi: 10.1109/TCSVT.2020.3019293
– ident: ref55
  doi: 10.1109/CVPR.2017.634
– ident: ref51
  doi: 10.1145/3343031.3356067
– ident: ref35
  doi: 10.1109/CVPR.2018.00745
– ident: ref14
  doi: 10.1109/TPAMI.2021.3050918
– ident: ref68
  doi: 10.1109/CVPR.2019.01230
– volume-title: arXiv:2012.07175
  year: 2020
  ident: ref54
  article-title: MSAF: Multimodal split attention fusion
– ident: ref63
  doi: 10.1609/aaai.v33i01.33018989
– ident: ref58
  doi: 10.1007/978-3-030-01234-2_21
– ident: ref34
  doi: 10.18653/v1/P18-1209
– ident: ref17
  doi: 10.1109/ICCV.2015.510
– ident: ref6
  doi: 10.1109/ICCV.2019.00718
– volume: 33
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref23
  article-title: Deep multimodal fusion by channel exchanging
– ident: ref43
  doi: 10.1109/CVPR.2019.00807
– ident: ref31
  doi: 10.1109/TCSVT.2020.3014663
– ident: ref3
  doi: 10.1109/ICCV.2019.00630
– ident: ref24
  doi: 10.1109/TCSVT.2021.3098839
– ident: ref1
  doi: 10.1109/TNNLS.2020.2978942
– ident: ref5
  doi: 10.1109/TPAMI.2019.2928540
– ident: ref9
  doi: 10.1109/CVPRW.2017.270
– ident: ref50
  doi: 10.1109/TCSVT.2021.3056725
– ident: ref29
  doi: 10.1109/TCSVT.2020.3046625
– ident: ref12
  doi: 10.1609/aaai.v32i1.12328
– ident: ref26
  doi: 10.1109/CVPR42600.2020.01330
SSID ssj0014847
Score 2.6818902
Snippet This work focuses on the task of elderly activity recognition, which is a challenging task due to the existence of individual actions and human-object...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5281
SubjectTerms Activity recognition
Elderly activity recognition
Excitation
Feature extraction
Fuses
fusion network
Hair
multi-modal fusion
Older adults
Older people
Skeleton
Task analysis
Video
Videos
Title Expansion-Squeeze-Excitation Fusion Network for Elderly Activity Recognition
URI https://ieeexplore.ieee.org/document/9680676
https://www.proquest.com/docview/2697572979
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8BTnrwC40omh28aWHrtq49EjJCjHAQMNyWbm0vEjA6EuSvt-024leMtyV7Xd76-vF-7XvvB3ATCZYFnusjwiVDgaAu0rOIIk6Ii00mJbfRhKMxGc6C-3k4r8HdLhdGSmmDz2THPNq7fLHK1uaorMsI1YsrqUNdA7ciV2t3YxBQSyam3QUPUb2PVQkyLutO-5OnqYaCGGuEGuAo8r5sQpZV5cdSbPeXwSGMKs2KsJLnzjpPO9n2W9HG_6p-BAelo-n0ipFxDDW5PIH9T-UHm_AQb_RaYI7L0MQA2q1E8SYri3Y7g7V544yLOHFHO7dObCi9F-9OLys4J5zHKvxotTyF2SCe9oeoZFdAGWZhjjjlggtGiRJcUh7R1Oep8lOPKB-7POUhM3eyfkZE6PmpksxTGi6GitFAuYL4Z9BYrpbyHBwt6WKliBCEB9SLOFaUCu05KMIiEaQt8KruTqq_MAwYi8RCEJcl1kSJMVFSmqgFt7s2L0XhjT-lm6bPd5Jld7egXVk1KefmW4K1UqHGFBG7-L3VJeyZbxdhfm1o5K9reaVdjzy9tmPuAzOg1YU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTuMwEB6xcNjdA7CwiPLrA5yQS-Ikjn3ggKBVWUoPUBC3rBPbF1C7Wlot8Cy8Cu_G2EkqflbckLhFip3Eni_jGfubGYCtVMsiDoOIcmUkjbUIKP5FgirOA-YiKZVnE570eOc8_nWZXE7BwyQWxhjjyWem6S79Wb4eFmO3VbYruUDlyisK5bG5-4cO2s3e0SFKc5uxdqt_0KFVDQFaMJmMqBJKKy0Ft1oZoVKRRyq3UR5yG7FA5SqR7uQxKrhOwii3RoYWnaLEShHbQPMIn_sFZtDOSFgZHTY5o4iFL1-GBkpIBXapQ3ICuds_OLvoo_PJGPrEMUvT8MWy5-u4vFH-fkVrz8FjPRclkeWqOR7lzeL-VZrIzzpZ8zBbmdJkv8T-D5gygwX4_izB4iJ0W7eo7dyGID1zLvu9oa3bokpLTtpjd4f0SiY8QfOdtFzR8us7sl-UVTXIaU2wGg5-wvmHDGcJpgfDgVkGgi0DZi3XmqtYhKliVgiNtpHlMtVx3oCwFm9Wj8LV-LjOvJMVyMxDInOQyCpINGBn0udPmVrk3daLTsaTlpV4G7BWoyirtM9NxvCjEvSaUrny_16b8LXTP-lm3aPe8Sp8c-8pSY1rMD36OzbraGiN8g2PdwK_PxozT7bFNSk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expansion-Squeeze-Excitation+Fusion+Network+for+Elderly+Activity+Recognition&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Shu%2C+Xiangbo&rft.au=Yang%2C+Jiawen&rft.au=Yan%2C+Rui&rft.au=Song%2C+Yan&rft.date=2022-08-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=8&rft.spage=5281&rft.epage=5292&rft_id=info:doi/10.1109%2FTCSVT.2022.3142771&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2022_3142771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon