A Novel HVDC Double-Terminal Non-Synchronous Fault Location Method Based on Convolutional Neural Network
Due to the difficulty in locating high-resistance grounding faults, this paper proposes a novel fault location method for HVdc transmission lines by considering double-end unsynchronized using Hilbert-Huang transform and one-dimensional convolutional neural network (1D-CNN). After the fault signal i...
Saved in:
Published in | IEEE transactions on power delivery Vol. 34; no. 3; pp. 848 - 857 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the difficulty in locating high-resistance grounding faults, this paper proposes a novel fault location method for HVdc transmission lines by considering double-end unsynchronized using Hilbert-Huang transform and one-dimensional convolutional neural network (1D-CNN). After the fault signal is collected at both ends, the proposed method can achieve high-precision fault location, requiring only the two ends data transmission without time synchronization. After Empirical Mode Decomposition (EMD), the high-frequency components of the double-terminal fault signals are connected in series to make a characteristic waveform. This waveform contains characteristics of different fault types and distances, which can be learned by CNN. The trained CNN can then be used to achieve fault location effectively. As a comparison, two fault location methods based on traditional traveling wave and machine learning are introduced. Electromagnetic transient simulation software PSCAD/EMTDC has been used to carry out various types of fault simulation on the ± 500 kV HVdc transmission system. The results show that the proposed method can reliably and accurately locate line faults under fault resistance up to 5200 Ω. |
---|---|
AbstractList | Due to the difficulty in locating high-resistance grounding faults, this paper proposes a novel fault location method for HVdc transmission lines by considering double-end unsynchronized using Hilbert–Huang transform and one-dimensional convolutional neural network (1D-CNN). After the fault signal is collected at both ends, the proposed method can achieve high-precision fault location, requiring only the two ends data transmission without time synchronization. After Empirical Mode Decomposition (EMD), the high-frequency components of the double-terminal fault signals are connected in series to make a characteristic waveform. This waveform contains characteristics of different fault types and distances, which can be learned by CNN. The trained CNN can then be used to achieve fault location effectively. As a comparison, two fault location methods based on traditional traveling wave and machine learning are introduced. Electromagnetic transient simulation software PSCAD/EMTDC has been used to carry out various types of fault simulation on the ± 500 kV HVdc transmission system. The results show that the proposed method can reliably and accurately locate line faults under fault resistance up to 5200 Ω. |
Author | Lan, Sheng Chen, Duan-Yu Chen, Mou-Jie |
Author_xml | – sequence: 1 givenname: Sheng orcidid: 0000-0002-4946-8902 surname: Lan fullname: Lan, Sheng email: lansheng@fzu.edu.cn organization: College of Electrical Engineering and Automation and the Key Laboratory of Industrial Automation Control Technology and Information Processing, Fuzhou University, Fuzhou, China – sequence: 2 givenname: Mou-Jie surname: Chen fullname: Chen, Mou-Jie email: 78037002@qq.com organization: College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China – sequence: 3 givenname: Duan-Yu orcidid: 0000-0002-4607-0552 surname: Chen fullname: Chen, Duan-Yu email: dychen@saturn.yzu.edu.tw organization: Department of Electrical Engineering, Yuan Ze University, Chung Li, Taiwan |
BookMark | eNp9kEtPwzAQhC1UJNrCH4BLJM4paydO7GNpKUUqD0GBY-TEGzUljcFOivrvSR_iwIHTaDXzrXanRzqVqZCQcwoDSkFezZ_en8cDBlQOmATKZXhEulQGsR8yEB3SBSG4L2Qcn5Cec0sACEFClyyG3oNZY-lN38Yjb2yatER_jnZVVKpsrcp_2VTZwprKNM6bqKasvZnJVF2YyrvHemG0d60caq-dR6Zam7LZelsYG7uT-tvYj1NynKvS4dlB--R1cjMfTf3Z4-3daDjzMyZ57as40DqNQ6Y1cokaRRpAlksdaQ06xIAKFaZ5KHkOLFdRDhLTMFJRFGiIMQv65HK_99OarwZdnSxNY9t7XMJYADGPBPA2JfapzBrnLOZJVtS7p2qrijKhkGx7TXa9Jttek0OvLcr-oJ-2WCm7-R-62EMFIv4CIuKUcxb8AGWUh3M |
CODEN | ITPDE5 |
CitedBy_id | crossref_primary_10_1016_j_epsr_2021_107550 crossref_primary_10_1109_ACCESS_2021_3062703 crossref_primary_10_1109_TIM_2020_2965635 crossref_primary_10_1080_15325008_2020_1821836 crossref_primary_10_1016_j_epsr_2024_110880 crossref_primary_10_1109_ACCESS_2020_3006104 crossref_primary_10_1109_TPWRD_2021_3135429 crossref_primary_10_1109_TSG_2023_3277853 crossref_primary_10_1049_hve2_12033 crossref_primary_10_1109_TIA_2022_3146117 crossref_primary_10_1109_TEMC_2020_3014681 crossref_primary_10_1016_j_epsr_2021_107747 crossref_primary_10_1109_ACCESS_2020_3035905 crossref_primary_10_1109_TPWRD_2023_3248102 crossref_primary_10_1016_j_egyr_2024_11_016 crossref_primary_10_1016_j_epsr_2021_107105 crossref_primary_10_1016_j_ijepes_2024_110249 crossref_primary_10_1016_j_est_2022_105308 crossref_primary_10_1016_j_ijepes_2022_108310 crossref_primary_10_1049_gtd2_13156 crossref_primary_10_3389_fenrg_2023_1291382 crossref_primary_10_1108_WJE_09_2021_0526 crossref_primary_10_1109_TIM_2020_3047922 crossref_primary_10_3390_jsan14020029 crossref_primary_10_3390_pr10081655 crossref_primary_10_1016_j_ijepes_2021_106965 crossref_primary_10_3390_electronics10030255 crossref_primary_10_1016_j_apenergy_2020_115733 crossref_primary_10_1109_ACCESS_2021_3085298 crossref_primary_10_1049_iet_gtd_2020_0437 crossref_primary_10_2174_2213111607666191003105654 crossref_primary_10_1109_TPWRD_2023_3288158 crossref_primary_10_1016_j_epsr_2024_111146 crossref_primary_10_1016_j_epsr_2024_110496 crossref_primary_10_1109_TPWRD_2021_3083642 crossref_primary_10_1007_s11581_021_04169_9 crossref_primary_10_1002_tee_23290 crossref_primary_10_1016_j_egyr_2023_04_130 crossref_primary_10_1049_gtd2_12553 crossref_primary_10_3390_s20195633 crossref_primary_10_1049_gtd2_12115 crossref_primary_10_1049_gtd2_12995 crossref_primary_10_1016_j_epsr_2024_110943 crossref_primary_10_1016_j_epsr_2021_107054 crossref_primary_10_1049_iet_gtd_2019_0874 crossref_primary_10_48084_etasr_5107 crossref_primary_10_1109_TPWRD_2024_3471780 crossref_primary_10_1109_ACCESS_2020_2971582 crossref_primary_10_1109_ACCESS_2021_3107478 crossref_primary_10_3390_en14134046 crossref_primary_10_1109_ICJECE_2022_3217262 crossref_primary_10_1109_TPWRD_2020_3010160 crossref_primary_10_1109_TII_2022_3229497 crossref_primary_10_1109_ACCESS_2021_3076410 crossref_primary_10_1016_j_egyr_2022_02_275 crossref_primary_10_1016_j_epsr_2021_107768 crossref_primary_10_1109_ACCESS_2020_2974571 crossref_primary_10_1109_ACCESS_2020_2988909 crossref_primary_10_1002_cta_4274 crossref_primary_10_1016_j_epsr_2022_108213 crossref_primary_10_1049_gtd2_12324 crossref_primary_10_1016_j_ijepes_2022_108570 crossref_primary_10_3390_en16041827 crossref_primary_10_1049_tje2_12310 crossref_primary_10_1109_TPWRD_2024_3419034 crossref_primary_10_1109_TPWRD_2023_3262761 crossref_primary_10_1109_ACCESS_2021_3129838 crossref_primary_10_1109_TII_2020_3003476 crossref_primary_10_1016_j_epsr_2024_110598 crossref_primary_10_1016_j_ijepes_2020_106608 crossref_primary_10_3390_en16217317 crossref_primary_10_3390_pr9081436 crossref_primary_10_3389_fenrg_2024_1401285 crossref_primary_10_3934_mbe_2023650 crossref_primary_10_1109_ACCESS_2023_3313003 crossref_primary_10_1049_gtd2_13225 crossref_primary_10_1016_j_epsr_2022_107996 crossref_primary_10_1016_j_ijepes_2023_109131 |
Cites_doi | 10.1109/TPWRD.2015.2461450 10.1049/joe.2017.0744 10.14257/ijca.2016.9.2.25 10.1109/ICPST.2006.321669 10.1145/3065386 10.1109/ACCESS.2017.2707460 10.1109/TIE.2016.2582729 10.1049/iet-gtd.2016.0140 10.1109/IHMSC.2015.103 10.1109/TBME.2015.2468589 10.1049/el.2017.0023 10.1109/LGRS.2017.2765339 10.1049/iet-smt.2016.0244 10.1109/TPWRD.2013.2269769 10.1109/TSMC.2017.2705582 10.1109/JSEN.2017.2776238 10.1109/PESGM.2012.6343919 10.1109/MIE.2010.936104 10.1049/iet-gtd.2015.0247 10.1109/MCI.2010.938364 10.1109/TPWRD.2014.2335748 10.1109/TENCON.2016.7848050 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TPWRD.2019.2901594 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1937-4208 |
EndPage | 857 |
ExternalDocumentID | 10_1109_TPWRD_2019_2901594 8651552 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology grantid: MOST 108-2634-F-001-003 funderid: 10.13039/501100003711 – fundername: Project Program of Key Laboratory of Industrial Automation Control Technology and Information Processing (Fuzhou University) Fujian grantid: 2018-FZU-kf1 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c295t-a73ddb742dde59ede8b30cf9d6dd0d4e318a4bf495f02fa6f09eb46a663d07ec3 |
IEDL.DBID | RIE |
ISSN | 0885-8977 |
IngestDate | Mon Jun 30 10:26:48 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Tue Jul 01 00:24:14 EDT 2025 Wed Aug 27 02:46:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-a73ddb742dde59ede8b30cf9d6dd0d4e318a4bf495f02fa6f09eb46a663d07ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4607-0552 0000-0002-4946-8902 |
PQID | 2230756805 |
PQPubID | 85445 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8651552 crossref_citationtrail_10_1109_TPWRD_2019_2901594 crossref_primary_10_1109_TPWRD_2019_2901594 proquest_journals_2230756805 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on power delivery |
PublicationTitleAbbrev | TPWRD |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 an (ref2) 0 ref14 ref11 ref1 ref17 ref16 ref19 ref18 liao (ref9) 0 cui (ref13) 0 ref24 dong (ref26) 0 ref23 ref20 ref22 liang (ref10) 2015; 30 ref21 ref27 ref8 ref7 ref4 ref3 ref6 ref5 nielsen (ref25) 2015 |
References_xml | – year: 2015 ident: ref25 publication-title: Neural Networks and Deep Learning – ident: ref7 doi: 10.1109/TPWRD.2015.2461450 – start-page: 1 year: 0 ident: ref13 article-title: HVDC transmission line fault localization base on RBF neural network with wavelet packet decomposition publication-title: Proc Int Conf Service Syst Service Manage – ident: ref4 doi: 10.1049/joe.2017.0744 – ident: ref5 doi: 10.14257/ijca.2016.9.2.25 – ident: ref6 doi: 10.1109/ICPST.2006.321669 – ident: ref24 doi: 10.1145/3065386 – ident: ref18 doi: 10.1109/ACCESS.2017.2707460 – ident: ref23 doi: 10.1109/TIE.2016.2582729 – ident: ref27 doi: 10.1049/iet-gtd.2016.0140 – ident: ref14 doi: 10.1109/IHMSC.2015.103 – ident: ref16 doi: 10.1109/TBME.2015.2468589 – ident: ref15 doi: 10.1049/el.2017.0023 – ident: ref17 doi: 10.1109/LGRS.2017.2765339 – ident: ref11 doi: 10.1049/iet-smt.2016.0244 – ident: ref8 doi: 10.1109/TPWRD.2013.2269769 – ident: ref22 doi: 10.1109/TSMC.2017.2705582 – ident: ref19 doi: 10.1109/JSEN.2017.2776238 – ident: ref3 doi: 10.1109/PESGM.2012.6343919 – ident: ref1 doi: 10.1109/MIE.2010.936104 – start-page: 1 year: 0 ident: ref2 article-title: Reliability evaluation and comparison for different topologies of VSC-HVDC distribution networks using analytical and simulation methods publication-title: Proc 12th IET Int Conf AC DC Power Transm – ident: ref20 doi: 10.1049/iet-gtd.2015.0247 – ident: ref21 doi: 10.1109/MCI.2010.938364 – start-page: 5652 year: 0 ident: ref9 article-title: A fault location method based on traveling wave natural frequency used on ±800 kV UHVDC transmission lines publication-title: Proc Int Conf Elect Control Eng – start-page: 76 year: 0 ident: ref26 article-title: Study on fault location of transmission line based on transient current traveling wave publication-title: Proc CSEE – volume: 30 start-page: 1031 year: 2015 ident: ref10 article-title: Time-domain fault-location method on HVDC transmission lines under unsynchronized two-end measurement and uncertain line parameters publication-title: IEEE Trans Power Del doi: 10.1109/TPWRD.2014.2335748 – ident: ref12 doi: 10.1109/TENCON.2016.7848050 |
SSID | ssj0004090 |
Score | 2.5673552 |
Snippet | Due to the difficulty in locating high-resistance grounding faults, this paper proposes a novel fault location method for HVdc transmission lines by... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 848 |
SubjectTerms | 1-D CNN Artificial neural networks Computer simulation Convolution Convolutional neural networks Data transmission Electric power transmission Fault location Grounding high resistance fault Hilbert-Huang Transform HVdc system HVDC transmission Inverters Machine learning Neural networks Rectifiers Repair & maintenance Time synchronization Transmission lines Traveling waves unsynchronized two-end measurement |
Title | A Novel HVDC Double-Terminal Non-Synchronous Fault Location Method Based on Convolutional Neural Network |
URI | https://ieeexplore.ieee.org/document/8651552 https://www.proquest.com/docview/2230756805 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJzi0vKpuecgHbtSL2cSJfYSF1QqxCMHyuEV-TFSpUYIgQaK_vh4nu5SHqp6SKHZkaRx7vvE33xCyK22UChGlLE0AAQrEzAg7YEpq70BoY1OHAf3JeTK-jk_vxN0C-THPhQGAQD6DPt6Gs3xX2QZDZfsS63YLv-B-8sCtzdV6yYHkbTxFSsGkd2pmCTJc7U8vbi-PkcWl-nhqKFT8ahMKVVXeLcVhfxl9IZPZyFpaya9-U5u-_f1GtPF_h75CPneOJj1sZ8YqWYByjSz_JT-4Tn4e0vPqCQo6vjkeUu9KmwLYtGXHFP5Vya6eS4vquVXzSEe6KWp6VrUxPjoJpafpkd8FHfXPw6p86qYxdgaU8_CXQDLfINejk-lwzLrKC8wOlKiZTiPnjEfNfvETChxIE3GbK5c4x12McVMdm9yDq5wPcp3kXIGJE-3dF8dTsNFXslhWJXwj9EDlziYCIpt6MKaEjlDyxoMYnUoHkeyRg5kpMtvJkmN1jCIL8ISrLJgvQ_Nlnfl6ZG_e574V5fhn63W0x7xlZ4oe2ZpZPOv-28dsgLx4kUguvn_ca5Ms4bdbstgWWawfGtj2bkltdsJ8_APz8N5q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvApioYAPcELeukmc2AcOZZfVlu6uEGyht-DHREhECWKTovJb-Cv8N2wnuzzFrRKnJIqdKJ5xPN_4mxmAR8LEGedxRrMUPUDBhGpuIiqFcgaE0iaz3qE_X6TT4-TFCT_Zgq-bWBhEDOQzHPrTsJdva9N6V9me8HW7edRTKI_w7LMDaKunh2MnzcdRNHm-HE1pX0OAmkjyhqostlY7_OemMZdoUeiYmULa1FpmE-8BVIkuHEwoWFSotGASdZIqtxBblqGJ3XMvwEVnZ_Coiw77EXXJOg-OEJwKZ0atQ3KY3Fu-fPtq7Hljcuj3KblMfln2Qh2XP37-YUWbXINv67HoiCwfhm2jh-bLb2ki_9fBug5Xe1OaHHS6fwO2sLoJV35KsLgD7w_Ioj7FkkzfjEfEgQVdIl12_J_S3aro67PK-PzAdbsiE9WWDZnVnReTzENxbfLMrfOWuOtRXZ32E9V3Rp-wxB0Cjf4WHJ_Lp96G7aqu8A6QfVlYk3KMTebgpuQq9kl9HExTmbAYiwHsr0Wfmz7xuq__UeYBgDGZB3XJvbrkvboM4Mmmz8cu7cg_W-94-W9a9qIfwO5aw_L-z7TKI8_856lg_O7fez2ES9PlfJbPDhdH9-Cyf09HjduF7eZTi_edEdboB2EuEHh33vr0HcmZP7U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+HVDC+Double-Terminal+Non-Synchronous+Fault+Location+Method+Based+on+Convolutional+Neural+Network&rft.jtitle=IEEE+transactions+on+power+delivery&rft.au=Lan%2C+Sheng&rft.au=Chen%2C+Mou-Jie&rft.au=Chen%2C+Duan-Yu&rft.date=2019-06-01&rft.issn=0885-8977&rft.eissn=1937-4208&rft.volume=34&rft.issue=3&rft.spage=848&rft.epage=857&rft_id=info:doi/10.1109%2FTPWRD.2019.2901594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRD_2019_2901594 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8977&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8977&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8977&client=summon |