A Novel HVDC Double-Terminal Non-Synchronous Fault Location Method Based on Convolutional Neural Network

Due to the difficulty in locating high-resistance grounding faults, this paper proposes a novel fault location method for HVdc transmission lines by considering double-end unsynchronized using Hilbert-Huang transform and one-dimensional convolutional neural network (1D-CNN). After the fault signal i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power delivery Vol. 34; no. 3; pp. 848 - 857
Main Authors Lan, Sheng, Chen, Mou-Jie, Chen, Duan-Yu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the difficulty in locating high-resistance grounding faults, this paper proposes a novel fault location method for HVdc transmission lines by considering double-end unsynchronized using Hilbert-Huang transform and one-dimensional convolutional neural network (1D-CNN). After the fault signal is collected at both ends, the proposed method can achieve high-precision fault location, requiring only the two ends data transmission without time synchronization. After Empirical Mode Decomposition (EMD), the high-frequency components of the double-terminal fault signals are connected in series to make a characteristic waveform. This waveform contains characteristics of different fault types and distances, which can be learned by CNN. The trained CNN can then be used to achieve fault location effectively. As a comparison, two fault location methods based on traditional traveling wave and machine learning are introduced. Electromagnetic transient simulation software PSCAD/EMTDC has been used to carry out various types of fault simulation on the ± 500 kV HVdc transmission system. The results show that the proposed method can reliably and accurately locate line faults under fault resistance up to 5200 Ω.
AbstractList Due to the difficulty in locating high-resistance grounding faults, this paper proposes a novel fault location method for HVdc transmission lines by considering double-end unsynchronized using Hilbert–Huang transform and one-dimensional convolutional neural network (1D-CNN). After the fault signal is collected at both ends, the proposed method can achieve high-precision fault location, requiring only the two ends data transmission without time synchronization. After Empirical Mode Decomposition (EMD), the high-frequency components of the double-terminal fault signals are connected in series to make a characteristic waveform. This waveform contains characteristics of different fault types and distances, which can be learned by CNN. The trained CNN can then be used to achieve fault location effectively. As a comparison, two fault location methods based on traditional traveling wave and machine learning are introduced. Electromagnetic transient simulation software PSCAD/EMTDC has been used to carry out various types of fault simulation on the ± 500 kV HVdc transmission system. The results show that the proposed method can reliably and accurately locate line faults under fault resistance up to 5200 Ω.
Author Lan, Sheng
Chen, Duan-Yu
Chen, Mou-Jie
Author_xml – sequence: 1
  givenname: Sheng
  orcidid: 0000-0002-4946-8902
  surname: Lan
  fullname: Lan, Sheng
  email: lansheng@fzu.edu.cn
  organization: College of Electrical Engineering and Automation and the Key Laboratory of Industrial Automation Control Technology and Information Processing, Fuzhou University, Fuzhou, China
– sequence: 2
  givenname: Mou-Jie
  surname: Chen
  fullname: Chen, Mou-Jie
  email: 78037002@qq.com
  organization: College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China
– sequence: 3
  givenname: Duan-Yu
  orcidid: 0000-0002-4607-0552
  surname: Chen
  fullname: Chen, Duan-Yu
  email: dychen@saturn.yzu.edu.tw
  organization: Department of Electrical Engineering, Yuan Ze University, Chung Li, Taiwan
BookMark eNp9kEtPwzAQhC1UJNrCH4BLJM4paydO7GNpKUUqD0GBY-TEGzUljcFOivrvSR_iwIHTaDXzrXanRzqVqZCQcwoDSkFezZ_en8cDBlQOmATKZXhEulQGsR8yEB3SBSG4L2Qcn5Cec0sACEFClyyG3oNZY-lN38Yjb2yatER_jnZVVKpsrcp_2VTZwprKNM6bqKasvZnJVF2YyrvHemG0d60caq-dR6Zam7LZelsYG7uT-tvYj1NynKvS4dlB--R1cjMfTf3Z4-3daDjzMyZ57as40DqNQ6Y1cokaRRpAlksdaQ06xIAKFaZ5KHkOLFdRDhLTMFJRFGiIMQv65HK_99OarwZdnSxNY9t7XMJYADGPBPA2JfapzBrnLOZJVtS7p2qrijKhkGx7TXa9Jttek0OvLcr-oJ-2WCm7-R-62EMFIv4CIuKUcxb8AGWUh3M
CODEN ITPDE5
CitedBy_id crossref_primary_10_1016_j_epsr_2021_107550
crossref_primary_10_1109_ACCESS_2021_3062703
crossref_primary_10_1109_TIM_2020_2965635
crossref_primary_10_1080_15325008_2020_1821836
crossref_primary_10_1016_j_epsr_2024_110880
crossref_primary_10_1109_ACCESS_2020_3006104
crossref_primary_10_1109_TPWRD_2021_3135429
crossref_primary_10_1109_TSG_2023_3277853
crossref_primary_10_1049_hve2_12033
crossref_primary_10_1109_TIA_2022_3146117
crossref_primary_10_1109_TEMC_2020_3014681
crossref_primary_10_1016_j_epsr_2021_107747
crossref_primary_10_1109_ACCESS_2020_3035905
crossref_primary_10_1109_TPWRD_2023_3248102
crossref_primary_10_1016_j_egyr_2024_11_016
crossref_primary_10_1016_j_epsr_2021_107105
crossref_primary_10_1016_j_ijepes_2024_110249
crossref_primary_10_1016_j_est_2022_105308
crossref_primary_10_1016_j_ijepes_2022_108310
crossref_primary_10_1049_gtd2_13156
crossref_primary_10_3389_fenrg_2023_1291382
crossref_primary_10_1108_WJE_09_2021_0526
crossref_primary_10_1109_TIM_2020_3047922
crossref_primary_10_3390_jsan14020029
crossref_primary_10_3390_pr10081655
crossref_primary_10_1016_j_ijepes_2021_106965
crossref_primary_10_3390_electronics10030255
crossref_primary_10_1016_j_apenergy_2020_115733
crossref_primary_10_1109_ACCESS_2021_3085298
crossref_primary_10_1049_iet_gtd_2020_0437
crossref_primary_10_2174_2213111607666191003105654
crossref_primary_10_1109_TPWRD_2023_3288158
crossref_primary_10_1016_j_epsr_2024_111146
crossref_primary_10_1016_j_epsr_2024_110496
crossref_primary_10_1109_TPWRD_2021_3083642
crossref_primary_10_1007_s11581_021_04169_9
crossref_primary_10_1002_tee_23290
crossref_primary_10_1016_j_egyr_2023_04_130
crossref_primary_10_1049_gtd2_12553
crossref_primary_10_3390_s20195633
crossref_primary_10_1049_gtd2_12115
crossref_primary_10_1049_gtd2_12995
crossref_primary_10_1016_j_epsr_2024_110943
crossref_primary_10_1016_j_epsr_2021_107054
crossref_primary_10_1049_iet_gtd_2019_0874
crossref_primary_10_48084_etasr_5107
crossref_primary_10_1109_TPWRD_2024_3471780
crossref_primary_10_1109_ACCESS_2020_2971582
crossref_primary_10_1109_ACCESS_2021_3107478
crossref_primary_10_3390_en14134046
crossref_primary_10_1109_ICJECE_2022_3217262
crossref_primary_10_1109_TPWRD_2020_3010160
crossref_primary_10_1109_TII_2022_3229497
crossref_primary_10_1109_ACCESS_2021_3076410
crossref_primary_10_1016_j_egyr_2022_02_275
crossref_primary_10_1016_j_epsr_2021_107768
crossref_primary_10_1109_ACCESS_2020_2974571
crossref_primary_10_1109_ACCESS_2020_2988909
crossref_primary_10_1002_cta_4274
crossref_primary_10_1016_j_epsr_2022_108213
crossref_primary_10_1049_gtd2_12324
crossref_primary_10_1016_j_ijepes_2022_108570
crossref_primary_10_3390_en16041827
crossref_primary_10_1049_tje2_12310
crossref_primary_10_1109_TPWRD_2024_3419034
crossref_primary_10_1109_TPWRD_2023_3262761
crossref_primary_10_1109_ACCESS_2021_3129838
crossref_primary_10_1109_TII_2020_3003476
crossref_primary_10_1016_j_epsr_2024_110598
crossref_primary_10_1016_j_ijepes_2020_106608
crossref_primary_10_3390_en16217317
crossref_primary_10_3390_pr9081436
crossref_primary_10_3389_fenrg_2024_1401285
crossref_primary_10_3934_mbe_2023650
crossref_primary_10_1109_ACCESS_2023_3313003
crossref_primary_10_1049_gtd2_13225
crossref_primary_10_1016_j_epsr_2022_107996
crossref_primary_10_1016_j_ijepes_2023_109131
Cites_doi 10.1109/TPWRD.2015.2461450
10.1049/joe.2017.0744
10.14257/ijca.2016.9.2.25
10.1109/ICPST.2006.321669
10.1145/3065386
10.1109/ACCESS.2017.2707460
10.1109/TIE.2016.2582729
10.1049/iet-gtd.2016.0140
10.1109/IHMSC.2015.103
10.1109/TBME.2015.2468589
10.1049/el.2017.0023
10.1109/LGRS.2017.2765339
10.1049/iet-smt.2016.0244
10.1109/TPWRD.2013.2269769
10.1109/TSMC.2017.2705582
10.1109/JSEN.2017.2776238
10.1109/PESGM.2012.6343919
10.1109/MIE.2010.936104
10.1049/iet-gtd.2015.0247
10.1109/MCI.2010.938364
10.1109/TPWRD.2014.2335748
10.1109/TENCON.2016.7848050
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TPWRD.2019.2901594
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-4208
EndPage 857
ExternalDocumentID 10_1109_TPWRD_2019_2901594
8651552
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology
  grantid: MOST 108-2634-F-001-003
  funderid: 10.13039/501100003711
– fundername: Project Program of Key Laboratory of Industrial Automation Control Technology and Information Processing (Fuzhou University) Fujian
  grantid: 2018-FZU-kf1
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c295t-a73ddb742dde59ede8b30cf9d6dd0d4e318a4bf495f02fa6f09eb46a663d07ec3
IEDL.DBID RIE
ISSN 0885-8977
IngestDate Mon Jun 30 10:26:48 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Tue Jul 01 00:24:14 EDT 2025
Wed Aug 27 02:46:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-a73ddb742dde59ede8b30cf9d6dd0d4e318a4bf495f02fa6f09eb46a663d07ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4607-0552
0000-0002-4946-8902
PQID 2230756805
PQPubID 85445
PageCount 10
ParticipantIDs ieee_primary_8651552
crossref_citationtrail_10_1109_TPWRD_2019_2901594
crossref_primary_10_1109_TPWRD_2019_2901594
proquest_journals_2230756805
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power delivery
PublicationTitleAbbrev TPWRD
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
an (ref2) 0
ref14
ref11
ref1
ref17
ref16
ref19
ref18
liao (ref9) 0
cui (ref13) 0
ref24
dong (ref26) 0
ref23
ref20
ref22
liang (ref10) 2015; 30
ref21
ref27
ref8
ref7
ref4
ref3
ref6
ref5
nielsen (ref25) 2015
References_xml – year: 2015
  ident: ref25
  publication-title: Neural Networks and Deep Learning
– ident: ref7
  doi: 10.1109/TPWRD.2015.2461450
– start-page: 1
  year: 0
  ident: ref13
  article-title: HVDC transmission line fault localization base on RBF neural network with wavelet packet decomposition
  publication-title: Proc Int Conf Service Syst Service Manage
– ident: ref4
  doi: 10.1049/joe.2017.0744
– ident: ref5
  doi: 10.14257/ijca.2016.9.2.25
– ident: ref6
  doi: 10.1109/ICPST.2006.321669
– ident: ref24
  doi: 10.1145/3065386
– ident: ref18
  doi: 10.1109/ACCESS.2017.2707460
– ident: ref23
  doi: 10.1109/TIE.2016.2582729
– ident: ref27
  doi: 10.1049/iet-gtd.2016.0140
– ident: ref14
  doi: 10.1109/IHMSC.2015.103
– ident: ref16
  doi: 10.1109/TBME.2015.2468589
– ident: ref15
  doi: 10.1049/el.2017.0023
– ident: ref17
  doi: 10.1109/LGRS.2017.2765339
– ident: ref11
  doi: 10.1049/iet-smt.2016.0244
– ident: ref8
  doi: 10.1109/TPWRD.2013.2269769
– ident: ref22
  doi: 10.1109/TSMC.2017.2705582
– ident: ref19
  doi: 10.1109/JSEN.2017.2776238
– ident: ref3
  doi: 10.1109/PESGM.2012.6343919
– ident: ref1
  doi: 10.1109/MIE.2010.936104
– start-page: 1
  year: 0
  ident: ref2
  article-title: Reliability evaluation and comparison for different topologies of VSC-HVDC distribution networks using analytical and simulation methods
  publication-title: Proc 12th IET Int Conf AC DC Power Transm
– ident: ref20
  doi: 10.1049/iet-gtd.2015.0247
– ident: ref21
  doi: 10.1109/MCI.2010.938364
– start-page: 5652
  year: 0
  ident: ref9
  article-title: A fault location method based on traveling wave natural frequency used on ±800 kV UHVDC transmission lines
  publication-title: Proc Int Conf Elect Control Eng
– start-page: 76
  year: 0
  ident: ref26
  article-title: Study on fault location of transmission line based on transient current traveling wave
  publication-title: Proc CSEE
– volume: 30
  start-page: 1031
  year: 2015
  ident: ref10
  article-title: Time-domain fault-location method on HVDC transmission lines under unsynchronized two-end measurement and uncertain line parameters
  publication-title: IEEE Trans Power Del
  doi: 10.1109/TPWRD.2014.2335748
– ident: ref12
  doi: 10.1109/TENCON.2016.7848050
SSID ssj0004090
Score 2.5673552
Snippet Due to the difficulty in locating high-resistance grounding faults, this paper proposes a novel fault location method for HVdc transmission lines by...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 848
SubjectTerms 1-D CNN
Artificial neural networks
Computer simulation
Convolution
Convolutional neural networks
Data transmission
Electric power transmission
Fault location
Grounding
high resistance fault
Hilbert-Huang Transform
HVdc system
HVDC transmission
Inverters
Machine learning
Neural networks
Rectifiers
Repair & maintenance
Time synchronization
Transmission lines
Traveling waves
unsynchronized two-end measurement
Title A Novel HVDC Double-Terminal Non-Synchronous Fault Location Method Based on Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/8651552
https://www.proquest.com/docview/2230756805
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJzi0vKpuecgHbtSL2cSJfYSF1QqxCMHyuEV-TFSpUYIgQaK_vh4nu5SHqp6SKHZkaRx7vvE33xCyK22UChGlLE0AAQrEzAg7YEpq70BoY1OHAf3JeTK-jk_vxN0C-THPhQGAQD6DPt6Gs3xX2QZDZfsS63YLv-B-8sCtzdV6yYHkbTxFSsGkd2pmCTJc7U8vbi-PkcWl-nhqKFT8ahMKVVXeLcVhfxl9IZPZyFpaya9-U5u-_f1GtPF_h75CPneOJj1sZ8YqWYByjSz_JT-4Tn4e0vPqCQo6vjkeUu9KmwLYtGXHFP5Vya6eS4vquVXzSEe6KWp6VrUxPjoJpafpkd8FHfXPw6p86qYxdgaU8_CXQDLfINejk-lwzLrKC8wOlKiZTiPnjEfNfvETChxIE3GbK5c4x12McVMdm9yDq5wPcp3kXIGJE-3dF8dTsNFXslhWJXwj9EDlziYCIpt6MKaEjlDyxoMYnUoHkeyRg5kpMtvJkmN1jCIL8ISrLJgvQ_Nlnfl6ZG_e574V5fhn63W0x7xlZ4oe2ZpZPOv-28dsgLx4kUguvn_ca5Ms4bdbstgWWawfGtj2bkltdsJ8_APz8N5q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvApioYAPcELeukmc2AcOZZfVlu6uEGyht-DHREhECWKTovJb-Cv8N2wnuzzFrRKnJIqdKJ5xPN_4mxmAR8LEGedxRrMUPUDBhGpuIiqFcgaE0iaz3qE_X6TT4-TFCT_Zgq-bWBhEDOQzHPrTsJdva9N6V9me8HW7edRTKI_w7LMDaKunh2MnzcdRNHm-HE1pX0OAmkjyhqostlY7_OemMZdoUeiYmULa1FpmE-8BVIkuHEwoWFSotGASdZIqtxBblqGJ3XMvwEVnZ_Coiw77EXXJOg-OEJwKZ0atQ3KY3Fu-fPtq7Hljcuj3KblMfln2Qh2XP37-YUWbXINv67HoiCwfhm2jh-bLb2ki_9fBug5Xe1OaHHS6fwO2sLoJV35KsLgD7w_Ioj7FkkzfjEfEgQVdIl12_J_S3aro67PK-PzAdbsiE9WWDZnVnReTzENxbfLMrfOWuOtRXZ32E9V3Rp-wxB0Cjf4WHJ_Lp96G7aqu8A6QfVlYk3KMTebgpuQq9kl9HExTmbAYiwHsr0Wfmz7xuq__UeYBgDGZB3XJvbrkvboM4Mmmz8cu7cg_W-94-W9a9qIfwO5aw_L-z7TKI8_856lg_O7fez2ES9PlfJbPDhdH9-Cyf09HjduF7eZTi_edEdboB2EuEHh33vr0HcmZP7U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+HVDC+Double-Terminal+Non-Synchronous+Fault+Location+Method+Based+on+Convolutional+Neural+Network&rft.jtitle=IEEE+transactions+on+power+delivery&rft.au=Lan%2C+Sheng&rft.au=Chen%2C+Mou-Jie&rft.au=Chen%2C+Duan-Yu&rft.date=2019-06-01&rft.issn=0885-8977&rft.eissn=1937-4208&rft.volume=34&rft.issue=3&rft.spage=848&rft.epage=857&rft_id=info:doi/10.1109%2FTPWRD.2019.2901594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRD_2019_2901594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8977&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8977&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8977&client=summon