Enhancing Quality for HEVC Compressed Videos

The latest High Efficiency Video Coding (HEVC) standard has been increasingly applied to generate video streams over the Internet. However, HEVC compressed videos may incur severe quality degradation, particularly at low bit rates. Thus, it is necessary to enhance the visual quality of HEVC videos a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 29; no. 7; pp. 2039 - 2054
Main Authors Yang, Ren, Xu, Mai, Liu, Tie, Wang, Zulin, Guan, Zhenyu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The latest High Efficiency Video Coding (HEVC) standard has been increasingly applied to generate video streams over the Internet. However, HEVC compressed videos may incur severe quality degradation, particularly at low bit rates. Thus, it is necessary to enhance the visual quality of HEVC videos at the decoder side. To this end, this paper proposes a quality enhancement convolutional neural network (QE-CNN) method that does not require any modification of the encoder to achieve quality enhancement for HEVC. In particular, our QE-CNN method learns QE-CNN-I and QE-CNN-P models to reduce the distortion of HEVC I and P/B frames, respectively. The proposed method differs from the existing CNN-based quality enhancement approaches, which only handle intra-coding distortion and are thus not suitable for P/B frames. Our experimental results validate that our QE-CNN method is effective in enhancing quality for both I and P/B frames of HEVC videos. To apply our QE-CNN method in time-constrained scenarios, we further propose a time-constrained quality enhancement optimization (TQEO) scheme. Our TQEO scheme controls the computational time of QE-CNN to meet a target, meanwhile maximizing the quality enhancement. Next, the experimental results demonstrate the effectiveness of our TQEO scheme from the aspects of time control accuracy and quality enhancement under different time constraints. Finally, we design a prototype to implement our TQEO scheme in a real-time scenario.
AbstractList The latest High Efficiency Video Coding (HEVC) standard has been increasingly applied to generate video streams over the Internet. However, HEVC compressed videos may incur severe quality degradation, particularly at low bit rates. Thus, it is necessary to enhance the visual quality of HEVC videos at the decoder side. To this end, this paper proposes a quality enhancement convolutional neural network (QE-CNN) method that does not require any modification of the encoder to achieve quality enhancement for HEVC. In particular, our QE-CNN method learns QE-CNN-I and QE-CNN-P models to reduce the distortion of HEVC I and P/B frames, respectively. The proposed method differs from the existing CNN-based quality enhancement approaches, which only handle intra-coding distortion and are thus not suitable for P/B frames. Our experimental results validate that our QE-CNN method is effective in enhancing quality for both I and P/B frames of HEVC videos. To apply our QE-CNN method in time-constrained scenarios, we further propose a time-constrained quality enhancement optimization (TQEO) scheme. Our TQEO scheme controls the computational time of QE-CNN to meet a target, meanwhile maximizing the quality enhancement. Next, the experimental results demonstrate the effectiveness of our TQEO scheme from the aspects of time control accuracy and quality enhancement under different time constraints. Finally, we design a prototype to implement our TQEO scheme in a real-time scenario.
Author Wang, Zulin
Xu, Mai
Guan, Zhenyu
Liu, Tie
Yang, Ren
Author_xml – sequence: 1
  givenname: Ren
  orcidid: 0000-0003-4124-4186
  surname: Yang
  fullname: Yang, Ren
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Mai
  orcidid: 0000-0002-0277-3301
  surname: Xu
  fullname: Xu, Mai
  email: maixu@buaa.edu.cn
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Tie
  orcidid: 0000-0002-9547-692X
  surname: Liu
  fullname: Liu, Tie
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 4
  givenname: Zulin
  surname: Wang
  fullname: Wang, Zulin
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 5
  givenname: Zhenyu
  orcidid: 0000-0002-3959-338X
  surname: Guan
  fullname: Guan, Zhenyu
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
BookMark eNp9kDFPwzAQhS1UJNrCH4AlEisp50vsOCOKCkWqhBClq2WcC7hq42KnQ_89KUUMDEz3hve9k74RG7S-JcYuOUw4h_J2Ub0sFxMEriaoZCGkOmFDLoRKEUEM-gyCpwq5OGOjGFcAPFd5MWQ30_bDtNa178nzzqxdt08aH5LZdFklld9sA8VIdbJ0Nfl4zk4bs4508XPH7PV-uqhm6fzp4bG6m6cWS9GlRlINDVpppci5VFleokVh0VpRlNRwqjHjRgI1whC9geS1KbOMLClV1JCN2fVxdxv8545ip1d-F9r-pUYUUPSDRd631LFlg48xUKOt60znfNsF49aagz640d9u9MGN_nHTo_gH3Qa3MWH_P3R1hBwR_QIqFwAosi-uenC5
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3406425
crossref_primary_10_1117_1_JEI_33_4_043054
crossref_primary_10_1109_TPAMI_2019_2944806
crossref_primary_10_1016_j_image_2021_116355
crossref_primary_10_1109_TCSVT_2021_3063165
crossref_primary_10_1109_TCSII_2024_3444052
crossref_primary_10_1016_j_jksuci_2021_09_019
crossref_primary_10_1109_TCSII_2022_3220951
crossref_primary_10_1109_TPAMI_2023_3346921
crossref_primary_10_3390_jmse11010122
crossref_primary_10_1109_ACCESS_2021_3075623
crossref_primary_10_1155_2021_9947288
crossref_primary_10_1109_TCSVT_2023_3241920
crossref_primary_10_1145_3368405
crossref_primary_10_1016_j_compbiomed_2024_108035
crossref_primary_10_1145_3551641
crossref_primary_10_1109_LSP_2024_3407536
crossref_primary_10_1109_TBC_2022_3208426
crossref_primary_10_1109_TIP_2020_3043124
crossref_primary_10_1016_j_egyr_2021_07_041
crossref_primary_10_3390_s24061907
crossref_primary_10_1007_s11760_021_01966_7
crossref_primary_10_1016_j_knosys_2021_107529
crossref_primary_10_1109_LSP_2022_3147441
crossref_primary_10_1109_TCSVT_2023_3260266
crossref_primary_10_1109_TCSVT_2021_3128275
crossref_primary_10_1109_MMUL_2019_2922194
crossref_primary_10_1109_TCSVT_2019_2945057
crossref_primary_10_1016_j_eswa_2024_124201
crossref_primary_10_1007_s00366_020_01215_4
crossref_primary_10_1007_s10668_021_01382_4
crossref_primary_10_3390_app14188276
crossref_primary_10_1109_TIP_2020_2991525
crossref_primary_10_1109_TIP_2019_2921877
crossref_primary_10_1145_3571727
crossref_primary_10_1109_TIP_2020_2982534
crossref_primary_10_1186_s13634_024_01109_3
crossref_primary_10_1109_TCSVT_2024_3379971
crossref_primary_10_1155_2021_8328532
crossref_primary_10_1088_2632_2153_abc326
crossref_primary_10_1109_LSP_2023_3244711
crossref_primary_10_1007_s00366_021_01363_1
crossref_primary_10_1109_TCSVT_2023_3270729
crossref_primary_10_1016_j_compeleceng_2021_107270
crossref_primary_10_1016_j_neucom_2020_12_019
crossref_primary_10_1007_s00366_021_01288_9
crossref_primary_10_3390_s24010299
crossref_primary_10_1016_j_compbiomed_2021_104609
crossref_primary_10_1109_TCSVT_2020_3019919
crossref_primary_10_1007_s11263_021_01510_7
crossref_primary_10_1016_j_egyr_2021_06_064
crossref_primary_10_1016_j_knosys_2020_106684
crossref_primary_10_1109_TNNLS_2021_3124370
crossref_primary_10_3390_s23052631
crossref_primary_10_1016_j_bspc_2023_104638
crossref_primary_10_2139_ssrn_3989557
crossref_primary_10_1080_03772063_2022_2089746
crossref_primary_10_1016_j_jvcir_2024_104270
crossref_primary_10_1109_ACCESS_2023_3303510
crossref_primary_10_1007_s11227_024_06654_0
crossref_primary_10_1049_cmu2_12274
crossref_primary_10_1109_TMM_2020_2978664
crossref_primary_10_1109_TCSVT_2018_2884203
crossref_primary_10_1109_TIP_2020_2994412
crossref_primary_10_1016_j_neucom_2022_05_111
crossref_primary_10_1016_j_sigpro_2024_109878
crossref_primary_10_1007_s11063_022_10865_y
crossref_primary_10_1007_s11276_023_03392_8
crossref_primary_10_1109_TBC_2023_3332015
crossref_primary_10_1016_j_image_2024_117127
crossref_primary_10_1016_j_jvcir_2022_103615
crossref_primary_10_1016_j_jvcir_2022_103734
crossref_primary_10_1109_TNNLS_2024_3354982
crossref_primary_10_1109_TCSVT_2019_2940092
crossref_primary_10_1109_ACCESS_2023_3242673
crossref_primary_10_1109_OJSP_2021_3092598
crossref_primary_10_3390_sym16030299
crossref_primary_10_1016_j_neucom_2020_06_048
crossref_primary_10_1109_TCSVT_2021_3057518
crossref_primary_10_1016_j_compbiomed_2021_104427
crossref_primary_10_1109_TCSVT_2021_3103519
crossref_primary_10_1016_j_neucom_2024_128909
crossref_primary_10_1016_j_compbiomed_2021_104941
crossref_primary_10_1109_TMM_2022_3214775
crossref_primary_10_3390_app11031092
crossref_primary_10_1016_j_jvcir_2024_104329
crossref_primary_10_1016_j_displa_2024_102843
crossref_primary_10_1007_s11036_022_01914_w
crossref_primary_10_1016_j_enconman_2021_114484
crossref_primary_10_1109_TCSVT_2021_3096072
crossref_primary_10_1016_j_eswa_2024_125853
crossref_primary_10_1109_LSP_2019_2899253
crossref_primary_10_1007_s00366_021_01464_x
crossref_primary_10_1109_TIP_2021_3092949
crossref_primary_10_1145_3529107
crossref_primary_10_1007_s00366_021_01359_x
crossref_primary_10_1177_1550147720917647
crossref_primary_10_1007_s00366_021_01388_6
crossref_primary_10_1109_TCSVT_2020_3018230
crossref_primary_10_3390_electronics8010088
crossref_primary_10_1007_s10825_021_01726_3
crossref_primary_10_1109_TMM_2023_3339599
crossref_primary_10_1155_2021_5579547
crossref_primary_10_1155_2021_9916725
crossref_primary_10_1109_TCSVT_2022_3161103
crossref_primary_10_2139_ssrn_4088133
crossref_primary_10_1109_ACCESS_2023_3301145
crossref_primary_10_1109_ACCESS_2019_2930644
crossref_primary_10_1007_s11227_022_04412_8
crossref_primary_10_1016_j_jmrt_2021_03_048
crossref_primary_10_1155_2021_5229073
crossref_primary_10_1109_TCSVT_2021_3104305
crossref_primary_10_1109_TCE_2024_3411144
crossref_primary_10_1007_s00366_021_01377_9
crossref_primary_10_1016_j_enconman_2020_113751
crossref_primary_10_1016_j_asoc_2023_110664
crossref_primary_10_1109_ACCESS_2021_3076763
crossref_primary_10_1109_TCSVT_2022_3202034
crossref_primary_10_1016_j_knosys_2022_110010
Cites_doi 10.1109/TIP.2018.2847035
10.1109/TCSVT.2004.825555
10.1109/TCE.2011.6131165
10.1016/j.image.2012.03.002
10.1109/TSP.2013.2290508
10.1109/TCSVT.2015.2474075
10.1145/2700300
10.1109/TCSVT.2012.2221191
10.1109/CVPR.2015.7298965
10.1109/5.726791
10.1109/TBC.2018.2795459
10.1109/TCSVT.2015.2477916
10.1109/CVPR.2014.81
10.1109/CVPR.2014.223
10.1109/30.125072
10.1109/MICRO.2016.7783723
10.1109/ICCV.2015.123
10.1109/TPAMI.2016.2596743
10.1109/IVMSPW.2016.7528223
10.1109/TIP.2017.2713598
10.1109/CVPR.2016.302
10.1109/TCSVT.2016.2589878
10.1109/ICIP.2015.7351132
10.1016/j.image.2013.01.006
10.1109/ICCV.2015.73
10.1109/ICME.2016.7552864
10.1109/CVPR.2016.182
10.1109/TPAMI.2010.161
10.1109/ICME.2017.8019299
10.1109/DCC.2016.105
10.1145/3079856.3080246
10.1109/TIP.2007.891788
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2018.2867568
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 2054
ExternalDocumentID 10_1109_TCSVT_2018_2867568
8450025
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61876013; 61573037
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-a6ed0f2c6c6541683492c25c2cc579ef1ed231a60ef5aeeb061da933ece887d03
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 10:19:10 EDT 2025
Tue Jul 01 00:41:12 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Wed Aug 27 05:51:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-a6ed0f2c6c6541683492c25c2cc579ef1ed231a60ef5aeeb061da933ece887d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0277-3301
0000-0002-3959-338X
0000-0002-9547-692X
0000-0003-4124-4186
PQID 2250734974
PQPubID 85433
PageCount 16
ParticipantIDs ieee_primary_8450025
crossref_citationtrail_10_1109_TCSVT_2018_2867568
crossref_primary_10_1109_TCSVT_2018_2867568
proquest_journals_2250734974
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref36
ref14
ref31
krizhevsky (ref19) 2012
ref30
(ref38) 2002
ref33
ref11
ref32
bossen (ref37) 2011
ref10
zhou (ref40) 2016
ref2
ref1
ref18
zeiler (ref35) 2014
wang (ref17) 2017
dai (ref16) 2017
li (ref39) 2006
ref24
ref26
ref25
jancsary (ref5) 2012
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
dong (ref23) 2014
References_xml – ident: ref28
  doi: 10.1109/TIP.2018.2847035
– ident: ref3
  doi: 10.1109/TCSVT.2004.825555
– ident: ref26
  doi: 10.1109/TCE.2011.6131165
– ident: ref7
  doi: 10.1016/j.image.2012.03.002
– year: 2002
  ident: ref38
– ident: ref6
  doi: 10.1109/TSP.2013.2290508
– start-page: 112
  year: 2012
  ident: ref5
  article-title: Loss-specific training of non-parametric image restoration models: A new state of the art
  publication-title: Proc ECCV
– ident: ref27
  doi: 10.1109/TCSVT.2015.2474075
– ident: ref29
  doi: 10.1145/2700300
– ident: ref1
  doi: 10.1109/TCSVT.2012.2221191
– year: 2011
  ident: ref37
  publication-title: Common Test Conditions and Software Reference Configurations
– ident: ref22
  doi: 10.1109/CVPR.2015.7298965
– start-page: 28
  year: 2017
  ident: ref16
  article-title: A convolutional neural network approach for post-processing in HEVC intra coding
  publication-title: Proc MMM
– ident: ref11
  doi: 10.1109/5.726791
– ident: ref31
  doi: 10.1109/TBC.2018.2795459
– ident: ref2
  doi: 10.1109/TCSVT.2015.2477916
– ident: ref21
  doi: 10.1109/CVPR.2014.81
– ident: ref20
  doi: 10.1109/CVPR.2014.223
– ident: ref33
  doi: 10.1109/30.125072
– ident: ref41
  doi: 10.1109/MICRO.2016.7783723
– ident: ref34
  doi: 10.1109/ICCV.2015.123
– ident: ref12
  doi: 10.1109/TPAMI.2016.2596743
– start-page: 266
  year: 2016
  ident: ref40
  article-title: A 4 Gpixel/s 8/10 b H.265/HEVC video decoder chip for 8 K ultra HD applications
  publication-title: IEEE ISSCC Dig Tech Papers
– start-page: 818
  year: 2014
  ident: ref35
  article-title: Visualizing and understanding convolutional networks
  publication-title: Proc ECCV
– start-page: 184
  year: 2014
  ident: ref23
  article-title: Learning a deep convolutional network for image super-resolution
  publication-title: Proc ECCV
– ident: ref15
  doi: 10.1109/IVMSPW.2016.7528223
– ident: ref25
  doi: 10.1109/TIP.2017.2713598
– ident: ref10
  doi: 10.1109/CVPR.2016.302
– ident: ref24
  doi: 10.1109/TCSVT.2016.2589878
– year: 2006
  ident: ref39
  publication-title: Nonlinear Integer Programming
– ident: ref13
  doi: 10.1109/ICIP.2015.7351132
– ident: ref8
  doi: 10.1016/j.image.2013.01.006
– ident: ref9
  doi: 10.1109/ICCV.2015.73
– ident: ref30
  doi: 10.1109/ICME.2016.7552864
– ident: ref36
  doi: 10.1109/CVPR.2016.182
– ident: ref32
  doi: 10.1109/TPAMI.2010.161
– ident: ref18
  doi: 10.1109/ICME.2017.8019299
– start-page: 1097
  year: 2012
  ident: ref19
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc NIPS
– ident: ref14
  doi: 10.1109/DCC.2016.105
– start-page: 410
  year: 2017
  ident: ref17
  article-title: A novel deep learning-based method of improving coding efficiency from the decoder-end for HEVC
  publication-title: Proc Data Compress Conf
– ident: ref42
  doi: 10.1145/3079856.3080246
– ident: ref4
  doi: 10.1109/TIP.2007.891788
SSID ssj0014847
Score 2.6225948
Snippet The latest High Efficiency Video Coding (HEVC) standard has been increasingly applied to generate video streams over the Internet. However, HEVC compressed...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2039
SubjectTerms Artificial neural networks
Coding
Complexity theory
Computing time
Constraints
convolutional neural network
Decoding
Digital media
Distortion
Encoding
Frames
HEVC
Optimization
Quality
quality enhancement
Transform coding
Video compression
Video data
Videos
Visualization
Title Enhancing Quality for HEVC Compressed Videos
URI https://ieeexplore.ieee.org/document/8450025
https://www.proquest.com/docview/2250734974
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayAGA_XAjXXrM0uOaNo0IcGFbdqtalMHEKhDrDvAr8dJH5oAIW45JFVkp_bnxP4McEV4zSMYxCnIEZIClMS1hdQVy0opxlRAENxk-d6z6Ty4XYbLBvTqWhhENMln2NdD85afruRGX5UNeBBqH92EJgVuRa1W_WIQcNNMjOCCa3PyY1WBjCMGs9HDYqazuHjf4wSQNa3qlhMyXVV-mGLjXyb7cFftrEgreelv8qQvP7-RNv536wewVwJN66Y4GYfQwOwIdrfoB9vQG2dPmm4je7QKKo0PiyCsNR0vRpa2E4ZXPLUWzymu1scwn4xno6lddk-wpSfC3I4Zpo7yJJO61TfjmoZQeqH0pAyHApWLKWG7mDmowhgxIceexsL3USIZntTxT6CVrTI8BUsJ1x_KZJhoshrGuXA5I2jh-L5mo0fsgFuJM5IltbjucPEamRDDEZFRQaRVEJUq6MB1veatINb4c3Zby7SeWYqzA91Ka1H5760jslBktwIKlM5-X3UOO_RtUSTddqGVv2_wgqBFnlyaM_UFl__GyA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHtSDX2hEUXvwJoV-LrtHQyCowMVCuDV0O1WjKUbgoL_e2W1piBrjrYfddLOznfemO_MG4Ir4mkM0iFOQIyQFKJFtCqkqlpMkYSzxiILrLN8h6428u4k_KUG9qIVBRJ18hg31qO_y45lcql9lTe75CqM3YJNw33eyaq3izsDjup0YEQbb5IRkqxIZSzSD9sM4UHlcvOFwoshKWHUNhnRflR_OWCNMdw8Gq7VliSUvjeUiasjPb7KN_138PuzmVNO4yc7GAZQwPYSdNQHCCtQ76ZMS3EgfjUxM48MgEmv0OuO2oTyFVhaPjfFzjLP5EYy6naDdM_P-CaZ0hL8wpwxjK3Ekk6rZN-NKiFA6vnSk9FsCExtjYndTZmHiTxEjgvZ4KlwXJZLriS33GMrpLMUTMBJhuy0ZtSIlV8M4FzZnRC4s11V69IhVsFfbGcpcXFz1uHgNdZBhiVCbIFQmCHMTVOG6mPOWSWv8Obqi9rQYmW9nFWorq4X51zcPyUeR5_IoVDr9fdYlbPWCQT_s3w7vz2Cb3iOyFNwalBfvSzwnorGILvT5-gIpPcoS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Quality+for+HEVC+Compressed+Videos&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Yang%2C+Ren&rft.au=Xu%2C+Mai&rft.au=Liu%2C+Tie&rft.au=Wang%2C+Zulin&rft.date=2019-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=29&rft.issue=7&rft.spage=2039&rft_id=info:doi/10.1109%2FTCSVT.2018.2867568&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon