Enhancing Quality for HEVC Compressed Videos
The latest High Efficiency Video Coding (HEVC) standard has been increasingly applied to generate video streams over the Internet. However, HEVC compressed videos may incur severe quality degradation, particularly at low bit rates. Thus, it is necessary to enhance the visual quality of HEVC videos a...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 29; no. 7; pp. 2039 - 2054 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The latest High Efficiency Video Coding (HEVC) standard has been increasingly applied to generate video streams over the Internet. However, HEVC compressed videos may incur severe quality degradation, particularly at low bit rates. Thus, it is necessary to enhance the visual quality of HEVC videos at the decoder side. To this end, this paper proposes a quality enhancement convolutional neural network (QE-CNN) method that does not require any modification of the encoder to achieve quality enhancement for HEVC. In particular, our QE-CNN method learns QE-CNN-I and QE-CNN-P models to reduce the distortion of HEVC I and P/B frames, respectively. The proposed method differs from the existing CNN-based quality enhancement approaches, which only handle intra-coding distortion and are thus not suitable for P/B frames. Our experimental results validate that our QE-CNN method is effective in enhancing quality for both I and P/B frames of HEVC videos. To apply our QE-CNN method in time-constrained scenarios, we further propose a time-constrained quality enhancement optimization (TQEO) scheme. Our TQEO scheme controls the computational time of QE-CNN to meet a target, meanwhile maximizing the quality enhancement. Next, the experimental results demonstrate the effectiveness of our TQEO scheme from the aspects of time control accuracy and quality enhancement under different time constraints. Finally, we design a prototype to implement our TQEO scheme in a real-time scenario. |
---|---|
AbstractList | The latest High Efficiency Video Coding (HEVC) standard has been increasingly applied to generate video streams over the Internet. However, HEVC compressed videos may incur severe quality degradation, particularly at low bit rates. Thus, it is necessary to enhance the visual quality of HEVC videos at the decoder side. To this end, this paper proposes a quality enhancement convolutional neural network (QE-CNN) method that does not require any modification of the encoder to achieve quality enhancement for HEVC. In particular, our QE-CNN method learns QE-CNN-I and QE-CNN-P models to reduce the distortion of HEVC I and P/B frames, respectively. The proposed method differs from the existing CNN-based quality enhancement approaches, which only handle intra-coding distortion and are thus not suitable for P/B frames. Our experimental results validate that our QE-CNN method is effective in enhancing quality for both I and P/B frames of HEVC videos. To apply our QE-CNN method in time-constrained scenarios, we further propose a time-constrained quality enhancement optimization (TQEO) scheme. Our TQEO scheme controls the computational time of QE-CNN to meet a target, meanwhile maximizing the quality enhancement. Next, the experimental results demonstrate the effectiveness of our TQEO scheme from the aspects of time control accuracy and quality enhancement under different time constraints. Finally, we design a prototype to implement our TQEO scheme in a real-time scenario. |
Author | Wang, Zulin Xu, Mai Guan, Zhenyu Liu, Tie Yang, Ren |
Author_xml | – sequence: 1 givenname: Ren orcidid: 0000-0003-4124-4186 surname: Yang fullname: Yang, Ren organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Mai orcidid: 0000-0002-0277-3301 surname: Xu fullname: Xu, Mai email: maixu@buaa.edu.cn organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 3 givenname: Tie orcidid: 0000-0002-9547-692X surname: Liu fullname: Liu, Tie organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 4 givenname: Zulin surname: Wang fullname: Wang, Zulin organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 5 givenname: Zhenyu orcidid: 0000-0002-3959-338X surname: Guan fullname: Guan, Zhenyu organization: School of Electronic and Information Engineering, Beihang University, Beijing, China |
BookMark | eNp9kDFPwzAQhS1UJNrCH4AlEisp50vsOCOKCkWqhBClq2WcC7hq42KnQ_89KUUMDEz3hve9k74RG7S-JcYuOUw4h_J2Ub0sFxMEriaoZCGkOmFDLoRKEUEM-gyCpwq5OGOjGFcAPFd5MWQ30_bDtNa178nzzqxdt08aH5LZdFklld9sA8VIdbJ0Nfl4zk4bs4508XPH7PV-uqhm6fzp4bG6m6cWS9GlRlINDVpppci5VFleokVh0VpRlNRwqjHjRgI1whC9geS1KbOMLClV1JCN2fVxdxv8545ip1d-F9r-pUYUUPSDRd631LFlg48xUKOt60znfNsF49aagz640d9u9MGN_nHTo_gH3Qa3MWH_P3R1hBwR_QIqFwAosi-uenC5 |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TCSVT_2024_3406425 crossref_primary_10_1117_1_JEI_33_4_043054 crossref_primary_10_1109_TPAMI_2019_2944806 crossref_primary_10_1016_j_image_2021_116355 crossref_primary_10_1109_TCSVT_2021_3063165 crossref_primary_10_1109_TCSII_2024_3444052 crossref_primary_10_1016_j_jksuci_2021_09_019 crossref_primary_10_1109_TCSII_2022_3220951 crossref_primary_10_1109_TPAMI_2023_3346921 crossref_primary_10_3390_jmse11010122 crossref_primary_10_1109_ACCESS_2021_3075623 crossref_primary_10_1155_2021_9947288 crossref_primary_10_1109_TCSVT_2023_3241920 crossref_primary_10_1145_3368405 crossref_primary_10_1016_j_compbiomed_2024_108035 crossref_primary_10_1145_3551641 crossref_primary_10_1109_LSP_2024_3407536 crossref_primary_10_1109_TBC_2022_3208426 crossref_primary_10_1109_TIP_2020_3043124 crossref_primary_10_1016_j_egyr_2021_07_041 crossref_primary_10_3390_s24061907 crossref_primary_10_1007_s11760_021_01966_7 crossref_primary_10_1016_j_knosys_2021_107529 crossref_primary_10_1109_LSP_2022_3147441 crossref_primary_10_1109_TCSVT_2023_3260266 crossref_primary_10_1109_TCSVT_2021_3128275 crossref_primary_10_1109_MMUL_2019_2922194 crossref_primary_10_1109_TCSVT_2019_2945057 crossref_primary_10_1016_j_eswa_2024_124201 crossref_primary_10_1007_s00366_020_01215_4 crossref_primary_10_1007_s10668_021_01382_4 crossref_primary_10_3390_app14188276 crossref_primary_10_1109_TIP_2020_2991525 crossref_primary_10_1109_TIP_2019_2921877 crossref_primary_10_1145_3571727 crossref_primary_10_1109_TIP_2020_2982534 crossref_primary_10_1186_s13634_024_01109_3 crossref_primary_10_1109_TCSVT_2024_3379971 crossref_primary_10_1155_2021_8328532 crossref_primary_10_1088_2632_2153_abc326 crossref_primary_10_1109_LSP_2023_3244711 crossref_primary_10_1007_s00366_021_01363_1 crossref_primary_10_1109_TCSVT_2023_3270729 crossref_primary_10_1016_j_compeleceng_2021_107270 crossref_primary_10_1016_j_neucom_2020_12_019 crossref_primary_10_1007_s00366_021_01288_9 crossref_primary_10_3390_s24010299 crossref_primary_10_1016_j_compbiomed_2021_104609 crossref_primary_10_1109_TCSVT_2020_3019919 crossref_primary_10_1007_s11263_021_01510_7 crossref_primary_10_1016_j_egyr_2021_06_064 crossref_primary_10_1016_j_knosys_2020_106684 crossref_primary_10_1109_TNNLS_2021_3124370 crossref_primary_10_3390_s23052631 crossref_primary_10_1016_j_bspc_2023_104638 crossref_primary_10_2139_ssrn_3989557 crossref_primary_10_1080_03772063_2022_2089746 crossref_primary_10_1016_j_jvcir_2024_104270 crossref_primary_10_1109_ACCESS_2023_3303510 crossref_primary_10_1007_s11227_024_06654_0 crossref_primary_10_1049_cmu2_12274 crossref_primary_10_1109_TMM_2020_2978664 crossref_primary_10_1109_TCSVT_2018_2884203 crossref_primary_10_1109_TIP_2020_2994412 crossref_primary_10_1016_j_neucom_2022_05_111 crossref_primary_10_1016_j_sigpro_2024_109878 crossref_primary_10_1007_s11063_022_10865_y crossref_primary_10_1007_s11276_023_03392_8 crossref_primary_10_1109_TBC_2023_3332015 crossref_primary_10_1016_j_image_2024_117127 crossref_primary_10_1016_j_jvcir_2022_103615 crossref_primary_10_1016_j_jvcir_2022_103734 crossref_primary_10_1109_TNNLS_2024_3354982 crossref_primary_10_1109_TCSVT_2019_2940092 crossref_primary_10_1109_ACCESS_2023_3242673 crossref_primary_10_1109_OJSP_2021_3092598 crossref_primary_10_3390_sym16030299 crossref_primary_10_1016_j_neucom_2020_06_048 crossref_primary_10_1109_TCSVT_2021_3057518 crossref_primary_10_1016_j_compbiomed_2021_104427 crossref_primary_10_1109_TCSVT_2021_3103519 crossref_primary_10_1016_j_neucom_2024_128909 crossref_primary_10_1016_j_compbiomed_2021_104941 crossref_primary_10_1109_TMM_2022_3214775 crossref_primary_10_3390_app11031092 crossref_primary_10_1016_j_jvcir_2024_104329 crossref_primary_10_1016_j_displa_2024_102843 crossref_primary_10_1007_s11036_022_01914_w crossref_primary_10_1016_j_enconman_2021_114484 crossref_primary_10_1109_TCSVT_2021_3096072 crossref_primary_10_1016_j_eswa_2024_125853 crossref_primary_10_1109_LSP_2019_2899253 crossref_primary_10_1007_s00366_021_01464_x crossref_primary_10_1109_TIP_2021_3092949 crossref_primary_10_1145_3529107 crossref_primary_10_1007_s00366_021_01359_x crossref_primary_10_1177_1550147720917647 crossref_primary_10_1007_s00366_021_01388_6 crossref_primary_10_1109_TCSVT_2020_3018230 crossref_primary_10_3390_electronics8010088 crossref_primary_10_1007_s10825_021_01726_3 crossref_primary_10_1109_TMM_2023_3339599 crossref_primary_10_1155_2021_5579547 crossref_primary_10_1155_2021_9916725 crossref_primary_10_1109_TCSVT_2022_3161103 crossref_primary_10_2139_ssrn_4088133 crossref_primary_10_1109_ACCESS_2023_3301145 crossref_primary_10_1109_ACCESS_2019_2930644 crossref_primary_10_1007_s11227_022_04412_8 crossref_primary_10_1016_j_jmrt_2021_03_048 crossref_primary_10_1155_2021_5229073 crossref_primary_10_1109_TCSVT_2021_3104305 crossref_primary_10_1109_TCE_2024_3411144 crossref_primary_10_1007_s00366_021_01377_9 crossref_primary_10_1016_j_enconman_2020_113751 crossref_primary_10_1016_j_asoc_2023_110664 crossref_primary_10_1109_ACCESS_2021_3076763 crossref_primary_10_1109_TCSVT_2022_3202034 crossref_primary_10_1016_j_knosys_2022_110010 |
Cites_doi | 10.1109/TIP.2018.2847035 10.1109/TCSVT.2004.825555 10.1109/TCE.2011.6131165 10.1016/j.image.2012.03.002 10.1109/TSP.2013.2290508 10.1109/TCSVT.2015.2474075 10.1145/2700300 10.1109/TCSVT.2012.2221191 10.1109/CVPR.2015.7298965 10.1109/5.726791 10.1109/TBC.2018.2795459 10.1109/TCSVT.2015.2477916 10.1109/CVPR.2014.81 10.1109/CVPR.2014.223 10.1109/30.125072 10.1109/MICRO.2016.7783723 10.1109/ICCV.2015.123 10.1109/TPAMI.2016.2596743 10.1109/IVMSPW.2016.7528223 10.1109/TIP.2017.2713598 10.1109/CVPR.2016.302 10.1109/TCSVT.2016.2589878 10.1109/ICIP.2015.7351132 10.1016/j.image.2013.01.006 10.1109/ICCV.2015.73 10.1109/ICME.2016.7552864 10.1109/CVPR.2016.182 10.1109/TPAMI.2010.161 10.1109/ICME.2017.8019299 10.1109/DCC.2016.105 10.1145/3079856.3080246 10.1109/TIP.2007.891788 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2018.2867568 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 2054 |
ExternalDocumentID | 10_1109_TCSVT_2018_2867568 8450025 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61876013; 61573037 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-a6ed0f2c6c6541683492c25c2cc579ef1ed231a60ef5aeeb061da933ece887d03 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 10:19:10 EDT 2025 Tue Jul 01 00:41:12 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Wed Aug 27 05:51:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-a6ed0f2c6c6541683492c25c2cc579ef1ed231a60ef5aeeb061da933ece887d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0277-3301 0000-0002-3959-338X 0000-0002-9547-692X 0000-0003-4124-4186 |
PQID | 2250734974 |
PQPubID | 85433 |
PageCount | 16 |
ParticipantIDs | ieee_primary_8450025 crossref_citationtrail_10_1109_TCSVT_2018_2867568 crossref_primary_10_1109_TCSVT_2018_2867568 proquest_journals_2250734974 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref36 ref14 ref31 krizhevsky (ref19) 2012 ref30 (ref38) 2002 ref33 ref11 ref32 bossen (ref37) 2011 ref10 zhou (ref40) 2016 ref2 ref1 ref18 zeiler (ref35) 2014 wang (ref17) 2017 dai (ref16) 2017 li (ref39) 2006 ref24 ref26 ref25 jancsary (ref5) 2012 ref20 ref42 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 dong (ref23) 2014 |
References_xml | – ident: ref28 doi: 10.1109/TIP.2018.2847035 – ident: ref3 doi: 10.1109/TCSVT.2004.825555 – ident: ref26 doi: 10.1109/TCE.2011.6131165 – ident: ref7 doi: 10.1016/j.image.2012.03.002 – year: 2002 ident: ref38 – ident: ref6 doi: 10.1109/TSP.2013.2290508 – start-page: 112 year: 2012 ident: ref5 article-title: Loss-specific training of non-parametric image restoration models: A new state of the art publication-title: Proc ECCV – ident: ref27 doi: 10.1109/TCSVT.2015.2474075 – ident: ref29 doi: 10.1145/2700300 – ident: ref1 doi: 10.1109/TCSVT.2012.2221191 – year: 2011 ident: ref37 publication-title: Common Test Conditions and Software Reference Configurations – ident: ref22 doi: 10.1109/CVPR.2015.7298965 – start-page: 28 year: 2017 ident: ref16 article-title: A convolutional neural network approach for post-processing in HEVC intra coding publication-title: Proc MMM – ident: ref11 doi: 10.1109/5.726791 – ident: ref31 doi: 10.1109/TBC.2018.2795459 – ident: ref2 doi: 10.1109/TCSVT.2015.2477916 – ident: ref21 doi: 10.1109/CVPR.2014.81 – ident: ref20 doi: 10.1109/CVPR.2014.223 – ident: ref33 doi: 10.1109/30.125072 – ident: ref41 doi: 10.1109/MICRO.2016.7783723 – ident: ref34 doi: 10.1109/ICCV.2015.123 – ident: ref12 doi: 10.1109/TPAMI.2016.2596743 – start-page: 266 year: 2016 ident: ref40 article-title: A 4 Gpixel/s 8/10 b H.265/HEVC video decoder chip for 8 K ultra HD applications publication-title: IEEE ISSCC Dig Tech Papers – start-page: 818 year: 2014 ident: ref35 article-title: Visualizing and understanding convolutional networks publication-title: Proc ECCV – start-page: 184 year: 2014 ident: ref23 article-title: Learning a deep convolutional network for image super-resolution publication-title: Proc ECCV – ident: ref15 doi: 10.1109/IVMSPW.2016.7528223 – ident: ref25 doi: 10.1109/TIP.2017.2713598 – ident: ref10 doi: 10.1109/CVPR.2016.302 – ident: ref24 doi: 10.1109/TCSVT.2016.2589878 – year: 2006 ident: ref39 publication-title: Nonlinear Integer Programming – ident: ref13 doi: 10.1109/ICIP.2015.7351132 – ident: ref8 doi: 10.1016/j.image.2013.01.006 – ident: ref9 doi: 10.1109/ICCV.2015.73 – ident: ref30 doi: 10.1109/ICME.2016.7552864 – ident: ref36 doi: 10.1109/CVPR.2016.182 – ident: ref32 doi: 10.1109/TPAMI.2010.161 – ident: ref18 doi: 10.1109/ICME.2017.8019299 – start-page: 1097 year: 2012 ident: ref19 article-title: Imagenet classification with deep convolutional neural networks publication-title: Proc NIPS – ident: ref14 doi: 10.1109/DCC.2016.105 – start-page: 410 year: 2017 ident: ref17 article-title: A novel deep learning-based method of improving coding efficiency from the decoder-end for HEVC publication-title: Proc Data Compress Conf – ident: ref42 doi: 10.1145/3079856.3080246 – ident: ref4 doi: 10.1109/TIP.2007.891788 |
SSID | ssj0014847 |
Score | 2.6225948 |
Snippet | The latest High Efficiency Video Coding (HEVC) standard has been increasingly applied to generate video streams over the Internet. However, HEVC compressed... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2039 |
SubjectTerms | Artificial neural networks Coding Complexity theory Computing time Constraints convolutional neural network Decoding Digital media Distortion Encoding Frames HEVC Optimization Quality quality enhancement Transform coding Video compression Video data Videos Visualization |
Title | Enhancing Quality for HEVC Compressed Videos |
URI | https://ieeexplore.ieee.org/document/8450025 https://www.proquest.com/docview/2250734974 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayAGA_XAjXXrM0uOaNo0IcGFbdqtalMHEKhDrDvAr8dJH5oAIW45JFVkp_bnxP4McEV4zSMYxCnIEZIClMS1hdQVy0opxlRAENxk-d6z6Ty4XYbLBvTqWhhENMln2NdD85afruRGX5UNeBBqH92EJgVuRa1W_WIQcNNMjOCCa3PyY1WBjCMGs9HDYqazuHjf4wSQNa3qlhMyXVV-mGLjXyb7cFftrEgreelv8qQvP7-RNv536wewVwJN66Y4GYfQwOwIdrfoB9vQG2dPmm4je7QKKo0PiyCsNR0vRpa2E4ZXPLUWzymu1scwn4xno6lddk-wpSfC3I4Zpo7yJJO61TfjmoZQeqH0pAyHApWLKWG7mDmowhgxIceexsL3USIZntTxT6CVrTI8BUsJ1x_KZJhoshrGuXA5I2jh-L5mo0fsgFuJM5IltbjucPEamRDDEZFRQaRVEJUq6MB1veatINb4c3Zby7SeWYqzA91Ka1H5760jslBktwIKlM5-X3UOO_RtUSTddqGVv2_wgqBFnlyaM_UFl__GyA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0gHtSDX2hEUXvwJoV-LrtHQyCowMVCuDV0O1WjKUbgoL_e2W1piBrjrYfddLOznfemO_MG4Ir4mkM0iFOQIyQFKJFtCqkqlpMkYSzxiILrLN8h6428u4k_KUG9qIVBRJ18hg31qO_y45lcql9lTe75CqM3YJNw33eyaq3izsDjup0YEQbb5IRkqxIZSzSD9sM4UHlcvOFwoshKWHUNhnRflR_OWCNMdw8Gq7VliSUvjeUiasjPb7KN_138PuzmVNO4yc7GAZQwPYSdNQHCCtQ76ZMS3EgfjUxM48MgEmv0OuO2oTyFVhaPjfFzjLP5EYy6naDdM_P-CaZ0hL8wpwxjK3Ekk6rZN-NKiFA6vnSk9FsCExtjYndTZmHiTxEjgvZ4KlwXJZLriS33GMrpLMUTMBJhuy0ZtSIlV8M4FzZnRC4s11V69IhVsFfbGcpcXFz1uHgNdZBhiVCbIFQmCHMTVOG6mPOWSWv8Obqi9rQYmW9nFWorq4X51zcPyUeR5_IoVDr9fdYlbPWCQT_s3w7vz2Cb3iOyFNwalBfvSzwnorGILvT5-gIpPcoS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Quality+for+HEVC+Compressed+Videos&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Yang%2C+Ren&rft.au=Xu%2C+Mai&rft.au=Liu%2C+Tie&rft.au=Wang%2C+Zulin&rft.date=2019-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=29&rft.issue=7&rft.spage=2039&rft_id=info:doi/10.1109%2FTCSVT.2018.2867568&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |