Multiple Sensors Based Hand Motion Recognition Using Adaptive Directed Acyclic Graph
The use of human hand motions as an effective way to interact with computers/robots, robot manipulation learning and prosthetic hand control is being researched in-depth. This paper proposes a novel and effective multiple sensor based hand motion capture and recognition system. Ten common predefined...
Saved in:
Published in | Applied sciences Vol. 7; no. 4; p. 358 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
05.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of human hand motions as an effective way to interact with computers/robots, robot manipulation learning and prosthetic hand control is being researched in-depth. This paper proposes a novel and effective multiple sensor based hand motion capture and recognition system. Ten common predefined object grasp and manipulation tasks demonstrated by different subjects are recorded from both the human hand and object points of view. Three types of sensors, including electromyography, data glove and FingerTPS are applied to simultaneously capture the EMG signals, the finger angle trajectories, and the contact force. Recognising different grasp and manipulation tasks based on the combined signals is investigated by using an adaptive directed acyclic graph algorithm, and results of comparative experiments show the proposed system with a higher recognition rate compared with individual sensing technology, as well as other algorithms. The proposed framework contains abundant information from multimodal human hand motions with the multiple sensor techniques, and it is potentially applicable to applications in prosthetic hand control and artificial systems performing autonomous dexterous manipulation. |
---|---|
AbstractList | The use of human hand motions as an effective way to interact with computers/robots, robot manipulation learning and prosthetic hand control is being researched in-depth. This paper proposes a novel and effective multiple sensor based hand motion capture and recognition system. Ten common predefined object grasp and manipulation tasks demonstrated by different subjects are recorded from both the human hand and object points of view. Three types of sensors, including electromyography, data glove and FingerTPS are applied to simultaneously capture the EMG signals, the finger angle trajectories, and the contact force. Recognising different grasp and manipulation tasks based on the combined signals is investigated by using an adaptive directed acyclic graph algorithm, and results of comparative experiments show the proposed system with a higher recognition rate compared with individual sensing technology, as well as other algorithms. The proposed framework contains abundant information from multimodal human hand motions with the multiple sensor techniques, and it is potentially applicable to applications in prosthetic hand control and artificial systems performing autonomous dexterous manipulation. |
Author | Liu, Honghai Ju, Zhaojie Xiang, Kui Xue, Yaxu Chen, Jing |
Author_xml | – sequence: 1 givenname: Yaxu surname: Xue fullname: Xue, Yaxu – sequence: 2 givenname: Zhaojie surname: Ju fullname: Ju, Zhaojie – sequence: 3 givenname: Kui surname: Xiang fullname: Xiang, Kui – sequence: 4 givenname: Jing surname: Chen fullname: Chen, Jing – sequence: 5 givenname: Honghai surname: Liu fullname: Liu, Honghai |
BookMark | eNptkE9LAzEQxYNUsNZe_AQBb8Jqstk_2WOttRVaBG3PS5qd1JQ1WZNU6Lc3tYIizmXe4fdmeO8c9Yw1gNAlJTeMVeRWdF1JMsJyfoL6KSmLhGW07P3SZ2jo_ZbEqSjjlPTRcrFrg-5awC9gvHUe3wkPDZ4J0-CFDdoa_AzSboz-0iuvzQaPGtEF_QH4XjuQIfIjuZetlnjqRPd6gU6VaD0Mv_cArR4my_EsmT9NH8ejeSLTKg-JoCB5JQVQleZcFbJsGtEoyFQmGJFrUFyVPANJUpU20bJe50rlrMzyQla8YAN0dbzbOfu-Ax_qrd05E1_WlFeRICRNI0WOlHTWeweqljqIQ5rghG5rSupDffVPfdFy_cfSOf0m3P4_-BPKHHMK |
CitedBy_id | crossref_primary_10_1155_2021_5526509 crossref_primary_10_3390_app8122574 crossref_primary_10_3390_app11062845 crossref_primary_10_1177_0954411920953031 crossref_primary_10_1038_s41597_025_04770_x crossref_primary_10_1109_ACCESS_2019_2957668 crossref_primary_10_3390_sym14102093 crossref_primary_10_3390_en11071647 crossref_primary_10_1002_aisy_201900088 crossref_primary_10_1007_s11042_018_5998_1 crossref_primary_10_1109_TCDS_2018_2800167 crossref_primary_10_1109_JSEN_2018_2880194 crossref_primary_10_3390_biomimetics8030328 |
Cites_doi | 10.1021/nn500441k 10.1109/72.991427 10.1109/ICIP.2014.7025313 10.1007/978-1-60327-241-4_13 10.1007/s11042-015-2609-2 10.1109/JBHI.2013.2249590 10.1109/MFI.2010.5604451 10.1109/ACCESS.2015.2482543 10.1109/TMECH.2013.2240312 10.1109/TNN.2003.820841 10.1109/ICIEA.2016.7603939 10.1109/JSEN.2015.2450211 10.1007/978-3-642-76153-9_5 10.1155/2016/7845102 10.1108/AA-03-2013-020 10.1023/A:1009715923555 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2017 |
Copyright_xml | – notice: Copyright MDPI AG 2017 |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.3390/app7040358 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | 10_3390_app7040358 |
GroupedDBID | .4S 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IPNFZ K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC RIG TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c295t-a1ec89cae1f258f6c7ddadfe4f4a30cbef8f784ec02f2d295bb5ff537456c9863 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Mon Jun 30 08:24:05 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 Tue Jul 01 02:58:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-a1ec89cae1f258f6c7ddadfe4f4a30cbef8f784ec02f2d295bb5ff537456c9863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/1899860022?pq-origsite=%requestingapplication% |
PQID | 1899860022 |
PQPubID | 2032433 |
ParticipantIDs | proquest_journals_1899860022 crossref_citationtrail_10_3390_app7040358 crossref_primary_10_3390_app7040358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-05 |
PublicationDateYYYYMMDD | 2017-04-05 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2017 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Liu (ref_1) 2016; 2016 Ju (ref_30) 2016; 75 Madzarov (ref_25) 2009; 33 Bugmann (ref_7) 2013; 17 ref_14 ref_12 Park (ref_11) 2014; 8 Hsu (ref_27) 2002; 13 Fang (ref_15) 2015; 15 Luzanin (ref_5) 2014; 34 Burges (ref_16) 1998; 2 ref_19 ref_17 Weston (ref_18) 2010; 609 Ju (ref_4) 2014; 16 Crammer (ref_22) 2001; 2 Metcalf (ref_8) 2008; 55 Han (ref_9) 2013; 43 ref_24 ref_23 Ju (ref_13) 2014; 19 Passerini (ref_26) 2004; 15 ref_20 Ju (ref_10) 2015; 99 ref_3 ref_29 Weston (ref_21) 1999; 99 ref_28 Saudabayev (ref_2) 2015; 3 ref_6 |
References_xml | – ident: ref_28 – ident: ref_3 – ident: ref_24 – volume: 2 start-page: 265 year: 2001 ident: ref_22 article-title: On the algorithmic implementation of multiclass kernel-based vector machines publication-title: Mach. Learn. Res. – volume: 8 start-page: 4689 year: 2014 ident: ref_11 article-title: Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins publication-title: ACS Nano doi: 10.1021/nn500441k – volume: 13 start-page: 415 year: 2002 ident: ref_27 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.991427 – ident: ref_14 doi: 10.1109/ICIP.2014.7025313 – volume: 43 start-page: 1318 year: 2013 ident: ref_9 article-title: Enhanced computer vision with microsoft kinect sensor: A review publication-title: Cybernetics – ident: ref_23 – volume: 609 start-page: 223 year: 2010 ident: ref_18 article-title: A user’s guide to support vector machines publication-title: Data Min. Tech. Life Sci. doi: 10.1007/978-1-60327-241-4_13 – volume: 75 start-page: 11929 year: 2016 ident: ref_30 article-title: A novel approach to extract hand gesture feature in depth images publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-015-2609-2 – volume: 17 start-page: 608 year: 2013 ident: ref_7 article-title: Classification of finger movements for the dexterous hand prosthesis control with surface electromyography publication-title: J. Biomed. Health Inform. doi: 10.1109/JBHI.2013.2249590 – volume: 55 start-page: 1199 year: 2008 ident: ref_8 article-title: Validation and application of a computational model for wrist and hand movements using surface markers publication-title: Biomed. Eng. – volume: 99 start-page: 1 year: 2015 ident: ref_10 article-title: An Integrative Framework of Human Hand Gesture Segmentation for Human–Robot Interaction publication-title: IEEE Sens. J. – ident: ref_29 doi: 10.1109/MFI.2010.5604451 – volume: 3 start-page: 1765 year: 2015 ident: ref_2 article-title: Sensors for Robotic Hands: A Survey of State of the Art publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2482543 – volume: 19 start-page: 456 year: 2014 ident: ref_13 article-title: Human hand motion analysis with multisensory information publication-title: IEEE Trans. Mechatron. doi: 10.1109/TMECH.2013.2240312 – ident: ref_12 – volume: 33 start-page: 225 year: 2009 ident: ref_25 article-title: A Multi-class SVM Classifier Utilizing Binary Decision Tree publication-title: Informatica (Slovenia) – volume: 15 start-page: 45 year: 2004 ident: ref_26 article-title: New results on error correcting output codes of kernel machines publication-title: Neural Netw. doi: 10.1109/TNN.2003.820841 – ident: ref_6 doi: 10.1109/ICIEA.2016.7603939 – volume: 15 start-page: 6065 year: 2015 ident: ref_15 article-title: Multi-modal sensing techniques for interfacing hand prostheses: A review publication-title: Sensors doi: 10.1109/JSEN.2015.2450211 – ident: ref_20 doi: 10.1007/978-3-642-76153-9_5 – volume: 99 start-page: 219 year: 1999 ident: ref_21 article-title: Support vector machines for multi-class pattern recognition publication-title: ESANN – ident: ref_17 – volume: 16 start-page: 160 year: 2014 ident: ref_4 article-title: Fuzzy Empirical Copula for Estimating Data Dependence Structure publication-title: Fuzzy Syst. – ident: ref_19 – volume: 2016 start-page: 7845102 year: 2016 ident: ref_1 article-title: An interactive astronaut-robot system with gesture control publication-title: Comput. Intell. Neurosci. doi: 10.1155/2016/7845102 – volume: 34 start-page: 94 year: 2014 ident: ref_5 article-title: Hand gesture recognition using low-budget data glove and cluster-trained probabilistic neural network publication-title: Assem. Autom. doi: 10.1108/AA-03-2013-020 – volume: 2 start-page: 121 year: 1998 ident: ref_16 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 |
SSID | ssj0000913810 |
Score | 2.151226 |
Snippet | The use of human hand motions as an effective way to interact with computers/robots, robot manipulation learning and prosthetic hand control is being... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 358 |
SubjectTerms | Prostheses Sensors |
Title | Multiple Sensors Based Hand Motion Recognition Using Adaptive Directed Acyclic Graph |
URI | https://www.proquest.com/docview/1899860022 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA5uu-hBdCpO5wjowR2Cbdqs6Uk22Q-EDZkb7FbyE4TRzXUe_O9N2nSbIN4KTS8vyXvve-_1-wB4MJhB-jLCyNYXUMiwRjGXHPGQRIpwzn1mf3AeTzqjefi6IAtXcMvcWGXpE3NHLVfC1siffAsMbBMJP68_kVWNst1VJ6FRATXjgqkBX7Vef_I23VVZLOsl9b2ClzQw-N72hSNzcAOr8X4YiX474jy6DM7AqUsLYbfYx3NwpNI6ODkgC6yDc3cNM_jouKLbF2A2dgOB8N3g0dUmgz0TliQcsVTCca7QA6fljJB5zicEYFeytXVzsHB4Zn1XfIvlh4BDy199CeaD_uxlhJxQAhI4JlvEfCVoLJjyNSZUd0QkJZNahTpkgSe40lRHNFTCwxpL8wnnRGsSRCZ7EsaqwRWopqtUXQNIJOaRFkJxqkISMyo8rYgOiSd8ImXcAO3SaIlwLOJWzGKZGDRhDZzsDdwA97u164I7489VzdL2ibs_WbLf7Zv_X9-CY2wDrZ2lIU1Q3W6-1J1JE7a8BSp0MGy5E9HKwfYPnB_CAg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58HNSD-MS3CyroIZhsdpvkIFIftbXWg1bwFvcJgrS1rYh_yt_oTh61gnjzFthJCLPz3Jn9BmDf5Qw60BH18HzBY4JaL5FaepLxyHApZSDwgnPrtlJ_YNeP_HECPsu7MNhWWdrEzFDrrsIz8uMAEwMsItHT3quHU6OwulqO0MjFomk-3l3KNjhpXLj9PaC0dtk-r3vFVAFP0YQPPREYFSdKmMBSHtuKirQW2hpmmQh9JY2NbRQzo3xqqXavSMmt5WHkQg3lfiF0352EaRaGCWpUXLsanekgxmYc-DkKqlv3sQodOTUJcaL8uN_7afYzX1ZbgPkiCCXVXGoWYcJ0lmBuDJpwCRYLpR-QwwKZ-mgZ2q2i_ZDcu-y32x-QM-cENamLjiatbB4QuSs7ktxz1o9Aqlr00KiS3Lw6-qr6UC_PilwhWvYKPPwLA1dhqtPtmDUgXFMZWaWMjA3jiYiVbw23jPsq4Fon63BUMi1VBWY5js54SV3uggxOvxm8Dnsj2l6O1PEr1VbJ-7TQ1kH6LVsbfy_vwky93bpJbxq3zU2YpejisYuHb8HUsP9mtl2AMpQ7mVQQePpvMfwCSTj-Rw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS8NAEB60BdEH8cSj6oIK-hCabLImeRBp1VqPFvGAvsU9QZC22or0r_nr3Gk2HiC--RbIJITJ7Bw7s98HsGNrBhWomHq4v-BFnBovFUp4ImKxZkKIgOMB51b7oHkfXXRYZwLei7MwOFZZ-MSxo1Y9iXvk1QALA2wi0apxYxHXJ42j_rOHDFLYaS3oNHITudSjN1u-DQ7PT-y_3qW0cXp33PQcw4AnacqGHg-0TFLJdWAoS8yBjJXiyujIRDz0pdAmMXESaelTQ5V9RAhmDAtjm3ZI-zmhfe8klGNbFfklKNdP29c3nzs8iLiZBH6OiRqGqY896dgumhD55b9HwZ9BYBzZGnMw61JSUsttaB4mdHcBZr4BFS7AvHMBA7LncKr3F-Gu5YYRya2thXsvA1K3IVGRJu8q0hqzA5GbYj7JXo-nE0hN8T66WJI7WytfkyP59CjJGWJnL8H9v6hwGUrdXlevAGGKithIqUWiI5byRPpGMxMxXwZMqXQV9gulZdIhmCORxlNmKxlUcPal4FXY_pTt57gdv0pVCt1nbu0Osi9LW_v79hZMWRPMrs7bl-swTTHe40gPq0Bp-PKqN2y2MhSbziwIPPy3JX4A2LED6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Sensors+Based+Hand+Motion+Recognition+Using+Adaptive+Directed+Acyclic+Graph&rft.jtitle=Applied+sciences&rft.au=Xue%2C+Yaxu&rft.au=Ju%2C+Zhaojie&rft.au=Xiang%2C+Kui&rft.au=Chen%2C+Jing&rft.date=2017-04-05&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=7&rft.issue=4&rft.spage=358&rft_id=info:doi/10.3390%2Fapp7040358&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app7040358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |