Multiple Sensors Based Hand Motion Recognition Using Adaptive Directed Acyclic Graph

The use of human hand motions as an effective way to interact with computers/robots, robot manipulation learning and prosthetic hand control is being researched in-depth. This paper proposes a novel and effective multiple sensor based hand motion capture and recognition system. Ten common predefined...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 7; no. 4; p. 358
Main Authors Xue, Yaxu, Ju, Zhaojie, Xiang, Kui, Chen, Jing, Liu, Honghai
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 05.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of human hand motions as an effective way to interact with computers/robots, robot manipulation learning and prosthetic hand control is being researched in-depth. This paper proposes a novel and effective multiple sensor based hand motion capture and recognition system. Ten common predefined object grasp and manipulation tasks demonstrated by different subjects are recorded from both the human hand and object points of view. Three types of sensors, including electromyography, data glove and FingerTPS are applied to simultaneously capture the EMG signals, the finger angle trajectories, and the contact force. Recognising different grasp and manipulation tasks based on the combined signals is investigated by using an adaptive directed acyclic graph algorithm, and results of comparative experiments show the proposed system with a higher recognition rate compared with individual sensing technology, as well as other algorithms. The proposed framework contains abundant information from multimodal human hand motions with the multiple sensor techniques, and it is potentially applicable to applications in prosthetic hand control and artificial systems performing autonomous dexterous manipulation.
AbstractList The use of human hand motions as an effective way to interact with computers/robots, robot manipulation learning and prosthetic hand control is being researched in-depth. This paper proposes a novel and effective multiple sensor based hand motion capture and recognition system. Ten common predefined object grasp and manipulation tasks demonstrated by different subjects are recorded from both the human hand and object points of view. Three types of sensors, including electromyography, data glove and FingerTPS are applied to simultaneously capture the EMG signals, the finger angle trajectories, and the contact force. Recognising different grasp and manipulation tasks based on the combined signals is investigated by using an adaptive directed acyclic graph algorithm, and results of comparative experiments show the proposed system with a higher recognition rate compared with individual sensing technology, as well as other algorithms. The proposed framework contains abundant information from multimodal human hand motions with the multiple sensor techniques, and it is potentially applicable to applications in prosthetic hand control and artificial systems performing autonomous dexterous manipulation.
Author Liu, Honghai
Ju, Zhaojie
Xiang, Kui
Xue, Yaxu
Chen, Jing
Author_xml – sequence: 1
  givenname: Yaxu
  surname: Xue
  fullname: Xue, Yaxu
– sequence: 2
  givenname: Zhaojie
  surname: Ju
  fullname: Ju, Zhaojie
– sequence: 3
  givenname: Kui
  surname: Xiang
  fullname: Xiang, Kui
– sequence: 4
  givenname: Jing
  surname: Chen
  fullname: Chen, Jing
– sequence: 5
  givenname: Honghai
  surname: Liu
  fullname: Liu, Honghai
BookMark eNptkE9LAzEQxYNUsNZe_AQBb8Jqstk_2WOttRVaBG3PS5qd1JQ1WZNU6Lc3tYIizmXe4fdmeO8c9Yw1gNAlJTeMVeRWdF1JMsJyfoL6KSmLhGW07P3SZ2jo_ZbEqSjjlPTRcrFrg-5awC9gvHUe3wkPDZ4J0-CFDdoa_AzSboz-0iuvzQaPGtEF_QH4XjuQIfIjuZetlnjqRPd6gU6VaD0Mv_cArR4my_EsmT9NH8ejeSLTKg-JoCB5JQVQleZcFbJsGtEoyFQmGJFrUFyVPANJUpU20bJe50rlrMzyQla8YAN0dbzbOfu-Ax_qrd05E1_WlFeRICRNI0WOlHTWeweqljqIQ5rghG5rSupDffVPfdFy_cfSOf0m3P4_-BPKHHMK
CitedBy_id crossref_primary_10_1155_2021_5526509
crossref_primary_10_3390_app8122574
crossref_primary_10_3390_app11062845
crossref_primary_10_1177_0954411920953031
crossref_primary_10_1038_s41597_025_04770_x
crossref_primary_10_1109_ACCESS_2019_2957668
crossref_primary_10_3390_sym14102093
crossref_primary_10_3390_en11071647
crossref_primary_10_1002_aisy_201900088
crossref_primary_10_1007_s11042_018_5998_1
crossref_primary_10_1109_TCDS_2018_2800167
crossref_primary_10_1109_JSEN_2018_2880194
crossref_primary_10_3390_biomimetics8030328
Cites_doi 10.1021/nn500441k
10.1109/72.991427
10.1109/ICIP.2014.7025313
10.1007/978-1-60327-241-4_13
10.1007/s11042-015-2609-2
10.1109/JBHI.2013.2249590
10.1109/MFI.2010.5604451
10.1109/ACCESS.2015.2482543
10.1109/TMECH.2013.2240312
10.1109/TNN.2003.820841
10.1109/ICIEA.2016.7603939
10.1109/JSEN.2015.2450211
10.1007/978-3-642-76153-9_5
10.1155/2016/7845102
10.1108/AA-03-2013-020
10.1023/A:1009715923555
ContentType Journal Article
Copyright Copyright MDPI AG 2017
Copyright_xml – notice: Copyright MDPI AG 2017
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/app7040358
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID 10_3390_app7040358
GroupedDBID .4S
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IPNFZ
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
RIG
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c295t-a1ec89cae1f258f6c7ddadfe4f4a30cbef8f784ec02f2d295bb5ff537456c9863
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Mon Jun 30 08:24:05 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
Tue Jul 01 02:58:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-a1ec89cae1f258f6c7ddadfe4f4a30cbef8f784ec02f2d295bb5ff537456c9863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/1899860022?pq-origsite=%requestingapplication%
PQID 1899860022
PQPubID 2032433
ParticipantIDs proquest_journals_1899860022
crossref_citationtrail_10_3390_app7040358
crossref_primary_10_3390_app7040358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-05
PublicationDateYYYYMMDD 2017-04-05
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-05
  day: 05
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2017
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_1) 2016; 2016
Ju (ref_30) 2016; 75
Madzarov (ref_25) 2009; 33
Bugmann (ref_7) 2013; 17
ref_14
ref_12
Park (ref_11) 2014; 8
Hsu (ref_27) 2002; 13
Fang (ref_15) 2015; 15
Luzanin (ref_5) 2014; 34
Burges (ref_16) 1998; 2
ref_19
ref_17
Weston (ref_18) 2010; 609
Ju (ref_4) 2014; 16
Crammer (ref_22) 2001; 2
Metcalf (ref_8) 2008; 55
Han (ref_9) 2013; 43
ref_24
ref_23
Ju (ref_13) 2014; 19
Passerini (ref_26) 2004; 15
ref_20
Ju (ref_10) 2015; 99
ref_3
ref_29
Weston (ref_21) 1999; 99
ref_28
Saudabayev (ref_2) 2015; 3
ref_6
References_xml – ident: ref_28
– ident: ref_3
– ident: ref_24
– volume: 2
  start-page: 265
  year: 2001
  ident: ref_22
  article-title: On the algorithmic implementation of multiclass kernel-based vector machines
  publication-title: Mach. Learn. Res.
– volume: 8
  start-page: 4689
  year: 2014
  ident: ref_11
  article-title: Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins
  publication-title: ACS Nano
  doi: 10.1021/nn500441k
– volume: 13
  start-page: 415
  year: 2002
  ident: ref_27
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.991427
– ident: ref_14
  doi: 10.1109/ICIP.2014.7025313
– volume: 43
  start-page: 1318
  year: 2013
  ident: ref_9
  article-title: Enhanced computer vision with microsoft kinect sensor: A review
  publication-title: Cybernetics
– ident: ref_23
– volume: 609
  start-page: 223
  year: 2010
  ident: ref_18
  article-title: A user’s guide to support vector machines
  publication-title: Data Min. Tech. Life Sci.
  doi: 10.1007/978-1-60327-241-4_13
– volume: 75
  start-page: 11929
  year: 2016
  ident: ref_30
  article-title: A novel approach to extract hand gesture feature in depth images
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-015-2609-2
– volume: 17
  start-page: 608
  year: 2013
  ident: ref_7
  article-title: Classification of finger movements for the dexterous hand prosthesis control with surface electromyography
  publication-title: J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2249590
– volume: 55
  start-page: 1199
  year: 2008
  ident: ref_8
  article-title: Validation and application of a computational model for wrist and hand movements using surface markers
  publication-title: Biomed. Eng.
– volume: 99
  start-page: 1
  year: 2015
  ident: ref_10
  article-title: An Integrative Framework of Human Hand Gesture Segmentation for Human–Robot Interaction
  publication-title: IEEE Sens. J.
– ident: ref_29
  doi: 10.1109/MFI.2010.5604451
– volume: 3
  start-page: 1765
  year: 2015
  ident: ref_2
  article-title: Sensors for Robotic Hands: A Survey of State of the Art
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2482543
– volume: 19
  start-page: 456
  year: 2014
  ident: ref_13
  article-title: Human hand motion analysis with multisensory information
  publication-title: IEEE Trans. Mechatron.
  doi: 10.1109/TMECH.2013.2240312
– ident: ref_12
– volume: 33
  start-page: 225
  year: 2009
  ident: ref_25
  article-title: A Multi-class SVM Classifier Utilizing Binary Decision Tree
  publication-title: Informatica (Slovenia)
– volume: 15
  start-page: 45
  year: 2004
  ident: ref_26
  article-title: New results on error correcting output codes of kernel machines
  publication-title: Neural Netw.
  doi: 10.1109/TNN.2003.820841
– ident: ref_6
  doi: 10.1109/ICIEA.2016.7603939
– volume: 15
  start-page: 6065
  year: 2015
  ident: ref_15
  article-title: Multi-modal sensing techniques for interfacing hand prostheses: A review
  publication-title: Sensors
  doi: 10.1109/JSEN.2015.2450211
– ident: ref_20
  doi: 10.1007/978-3-642-76153-9_5
– volume: 99
  start-page: 219
  year: 1999
  ident: ref_21
  article-title: Support vector machines for multi-class pattern recognition
  publication-title: ESANN
– ident: ref_17
– volume: 16
  start-page: 160
  year: 2014
  ident: ref_4
  article-title: Fuzzy Empirical Copula for Estimating Data Dependence Structure
  publication-title: Fuzzy Syst.
– ident: ref_19
– volume: 2016
  start-page: 7845102
  year: 2016
  ident: ref_1
  article-title: An interactive astronaut-robot system with gesture control
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2016/7845102
– volume: 34
  start-page: 94
  year: 2014
  ident: ref_5
  article-title: Hand gesture recognition using low-budget data glove and cluster-trained probabilistic neural network
  publication-title: Assem. Autom.
  doi: 10.1108/AA-03-2013-020
– volume: 2
  start-page: 121
  year: 1998
  ident: ref_16
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
SSID ssj0000913810
Score 2.151226
Snippet The use of human hand motions as an effective way to interact with computers/robots, robot manipulation learning and prosthetic hand control is being...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 358
SubjectTerms Prostheses
Sensors
Title Multiple Sensors Based Hand Motion Recognition Using Adaptive Directed Acyclic Graph
URI https://www.proquest.com/docview/1899860022
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA5uu-hBdCpO5wjowR2Cbdqs6Uk22Q-EDZkb7FbyE4TRzXUe_O9N2nSbIN4KTS8vyXvve-_1-wB4MJhB-jLCyNYXUMiwRjGXHPGQRIpwzn1mf3AeTzqjefi6IAtXcMvcWGXpE3NHLVfC1siffAsMbBMJP68_kVWNst1VJ6FRATXjgqkBX7Vef_I23VVZLOsl9b2ClzQw-N72hSNzcAOr8X4YiX474jy6DM7AqUsLYbfYx3NwpNI6ODkgC6yDc3cNM_jouKLbF2A2dgOB8N3g0dUmgz0TliQcsVTCca7QA6fljJB5zicEYFeytXVzsHB4Zn1XfIvlh4BDy199CeaD_uxlhJxQAhI4JlvEfCVoLJjyNSZUd0QkJZNahTpkgSe40lRHNFTCwxpL8wnnRGsSRCZ7EsaqwRWopqtUXQNIJOaRFkJxqkISMyo8rYgOiSd8ImXcAO3SaIlwLOJWzGKZGDRhDZzsDdwA97u164I7489VzdL2ibs_WbLf7Zv_X9-CY2wDrZ2lIU1Q3W6-1J1JE7a8BSp0MGy5E9HKwfYPnB_CAg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58HNSD-MS3CyroIZhsdpvkIFIftbXWg1bwFvcJgrS1rYh_yt_oTh61gnjzFthJCLPz3Jn9BmDf5Qw60BH18HzBY4JaL5FaepLxyHApZSDwgnPrtlJ_YNeP_HECPsu7MNhWWdrEzFDrrsIz8uMAEwMsItHT3quHU6OwulqO0MjFomk-3l3KNjhpXLj9PaC0dtk-r3vFVAFP0YQPPREYFSdKmMBSHtuKirQW2hpmmQh9JY2NbRQzo3xqqXavSMmt5WHkQg3lfiF0352EaRaGCWpUXLsanekgxmYc-DkKqlv3sQodOTUJcaL8uN_7afYzX1ZbgPkiCCXVXGoWYcJ0lmBuDJpwCRYLpR-QwwKZ-mgZ2q2i_ZDcu-y32x-QM-cENamLjiatbB4QuSs7ktxz1o9Aqlr00KiS3Lw6-qr6UC_PilwhWvYKPPwLA1dhqtPtmDUgXFMZWaWMjA3jiYiVbw23jPsq4Fon63BUMi1VBWY5js54SV3uggxOvxm8Dnsj2l6O1PEr1VbJ-7TQ1kH6LVsbfy_vwky93bpJbxq3zU2YpejisYuHb8HUsP9mtl2AMpQ7mVQQePpvMfwCSTj-Rw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS8NAEB60BdEH8cSj6oIK-hCabLImeRBp1VqPFvGAvsU9QZC22or0r_nr3Gk2HiC--RbIJITJ7Bw7s98HsGNrBhWomHq4v-BFnBovFUp4ImKxZkKIgOMB51b7oHkfXXRYZwLei7MwOFZZ-MSxo1Y9iXvk1QALA2wi0apxYxHXJ42j_rOHDFLYaS3oNHITudSjN1u-DQ7PT-y_3qW0cXp33PQcw4AnacqGHg-0TFLJdWAoS8yBjJXiyujIRDz0pdAmMXESaelTQ5V9RAhmDAtjm3ZI-zmhfe8klGNbFfklKNdP29c3nzs8iLiZBH6OiRqGqY896dgumhD55b9HwZ9BYBzZGnMw61JSUsttaB4mdHcBZr4BFS7AvHMBA7LncKr3F-Gu5YYRya2thXsvA1K3IVGRJu8q0hqzA5GbYj7JXo-nE0hN8T66WJI7WytfkyP59CjJGWJnL8H9v6hwGUrdXlevAGGKithIqUWiI5byRPpGMxMxXwZMqXQV9gulZdIhmCORxlNmKxlUcPal4FXY_pTt57gdv0pVCt1nbu0Osi9LW_v79hZMWRPMrs7bl-swTTHe40gPq0Bp-PKqN2y2MhSbziwIPPy3JX4A2LED6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Sensors+Based+Hand+Motion+Recognition+Using+Adaptive+Directed+Acyclic+Graph&rft.jtitle=Applied+sciences&rft.au=Xue%2C+Yaxu&rft.au=Ju%2C+Zhaojie&rft.au=Xiang%2C+Kui&rft.au=Chen%2C+Jing&rft.date=2017-04-05&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=7&rft.issue=4&rft.spage=358&rft_id=info:doi/10.3390%2Fapp7040358&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app7040358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon