LVE-S2D: Low-Light Video Enhancement From Static to Dynamic
Recently, deep-learning-based low-light video enhancement methods have drawn wide attention and achieved remarkable performance. However, limited by the difficulty in collecting dynamic low-light and well-lighted video pairs in real scenes, how to construct video sequences for supervised learning an...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 12; pp. 8342 - 8352 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, deep-learning-based low-light video enhancement methods have drawn wide attention and achieved remarkable performance. However, limited by the difficulty in collecting dynamic low-light and well-lighted video pairs in real scenes, how to construct video sequences for supervised learning and design a low-light enhancement network for real dynamic video remains a challenge. In this paper, we propose a simple yet effective low-light video enhancement method (LVE-S2D), which generates dynamic video training pairs from static videos, and enhances the low-light video by mining dynamic temporal information. To obtain low-light and well-lighted video pairs, a sliding window-based dynamic video generation mechanism is designed to produce pseudo videos with rich dynamic temporal information. Then, a siamese dynamic low-light video enhancement network is presented, which effectively utilizes temporal correlation between adjacent frames to enhance the video frames. Extensive experimental results demonstrate that the proposed method not only achieves superior performance on static low-light videos, but also outperforms the state-of-the-art methods on real dynamic low-light videos. |
---|---|
AbstractList | Recently, deep-learning-based low-light video enhancement methods have drawn wide attention and achieved remarkable performance. However, limited by the difficulty in collecting dynamic low-light and well-lighted video pairs in real scenes, how to construct video sequences for supervised learning and design a low-light enhancement network for real dynamic video remains a challenge. In this paper, we propose a simple yet effective low-light video enhancement method (LVE-S2D), which generates dynamic video training pairs from static videos, and enhances the low-light video by mining dynamic temporal information. To obtain low-light and well-lighted video pairs, a sliding window-based dynamic video generation mechanism is designed to produce pseudo videos with rich dynamic temporal information. Then, a siamese dynamic low-light video enhancement network is presented, which effectively utilizes temporal correlation between adjacent frames to enhance the video frames. Extensive experimental results demonstrate that the proposed method not only achieves superior performance on static low-light videos, but also outperforms the state-of-the-art methods on real dynamic low-light videos. |
Author | Zhang, Xuanyu Ling, Nam Huang, Qingming Zhang, Zhe Peng, Bo Lei, Jianjun |
Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0002-6616-453X surname: Peng fullname: Peng, Bo email: bpeng@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 2 givenname: Xuanyu surname: Zhang fullname: Zhang, Xuanyu email: jstxzxy@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 3 givenname: Jianjun orcidid: 0000-0003-3171-7680 surname: Lei fullname: Lei, Jianjun email: jjlei@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 4 givenname: Zhe orcidid: 0000-0002-8772-2107 surname: Zhang fullname: Zhang, Zhe email: zz300@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 5 givenname: Nam orcidid: 0000-0002-5741-7937 surname: Ling fullname: Ling, Nam email: nling@scu.edu.cn organization: Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA, USA – sequence: 6 givenname: Qingming orcidid: 0000-0001-7542-296X surname: Huang fullname: Huang, Qingming email: qmhuang@ucas.ac.cn organization: School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China |
BookMark | eNp9kL1OwzAURi1UJNrCC8ASiTnFduzYhgn1B5AiMbR0tRzHoa4auziuqr49Ka0YGJjuHb5zP90zAD3nnQHgFsERQlA8LMbz5WKEIcajDAkoUH4B-ohSnmIMaa_bIUUpx4hegUHbriFEhBPWB0_FcprO8eQxKfw-LeznKiZLWxmfTN1KOW0a42IyC75J5lFFq5Pok8nBqcbqa3BZq01rbs5zCD5m08X4NS3eX97Gz0WqsaAxFaXRSNXa1IhRwSvFeY0rUWJaUoZqbijPSoIrTBgxnIuKEaVzCnORwZyaKhuC-9PdbfBfO9NGufa74LpKiRlhOUJEsC6FTykdfNsGU8ttsI0KB4mgPEqSP5LkUZI8S-og_gfS9vimdzEou_kfvTuh1hjz2yU4FjwT2TfEIHSZ |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TCSVT_2022_3220412 crossref_primary_10_1109_TIP_2022_3203213 crossref_primary_10_1109_TIM_2023_3271762 crossref_primary_10_1109_TMM_2023_3260620 crossref_primary_10_1145_3596445 crossref_primary_10_1109_TCSVT_2023_3294521 crossref_primary_10_1080_2150704X_2022_2132122 crossref_primary_10_1109_TCSVT_2023_3238580 crossref_primary_10_1109_TCSVT_2023_3296583 crossref_primary_10_1007_s11760_024_03439_z crossref_primary_10_3390_electronics13050982 crossref_primary_10_1109_ACCESS_2023_3318745 crossref_primary_10_1109_TCSVT_2023_3299232 crossref_primary_10_1109_TCSVT_2023_3312213 crossref_primary_10_1109_TII_2022_3210589 crossref_primary_10_1016_j_displa_2023_102614 crossref_primary_10_1145_3587467 crossref_primary_10_1016_j_patcog_2024_111180 crossref_primary_10_1109_TETCI_2023_3272003 crossref_primary_10_3390_math12081228 crossref_primary_10_1007_s11263_024_02292_4 crossref_primary_10_1016_j_eswa_2024_125803 crossref_primary_10_1016_j_neucom_2024_128909 crossref_primary_10_1109_TETCI_2024_3369858 crossref_primary_10_3390_rs17071165 crossref_primary_10_3390_app12157384 crossref_primary_10_1007_s11042_024_19087_x crossref_primary_10_1109_TCSVT_2024_3465875 crossref_primary_10_1109_TCSVT_2022_3213515 crossref_primary_10_1109_TBC_2024_3484269 crossref_primary_10_1109_TCSII_2023_3259689 crossref_primary_10_3390_app14062271 crossref_primary_10_3390_electronics13224372 crossref_primary_10_1109_TII_2022_3227722 crossref_primary_10_1117_1_JEI_33_4_043009 |
Cites_doi | 10.1109/TCE.2015.7064113 10.1109/CVPR.2018.00347 10.1109/TIP.2020.2973499 10.1109/TIP.2013.2284059 10.1109/ICCV.2019.00421 10.1109/TCSVT.2017.2787190 10.1109/CVPR42600.2020.00235 10.1109/TCSVT.2020.2981652 10.1109/CVPR.2018.00265 10.1109/TIP.2012.2199324 10.1007/978-3-030-58601-0_7 10.1109/CCDC.2016.7531629 10.1109/InCIT50588.2020.9310971 10.1109/TIP.2003.819861 10.1016/j.patcog.2016.06.008 10.1109/TCSVT.2020.3009235 10.1109/SPAC.2014.6982691 10.1109/TMM.2021.3054509 10.1109/TCSVT.2020.3037068 10.1109/ICCV48922.2021.00956 10.1016/j.neucom.2020.05.123 10.1109/TIP.2009.2021548 10.1109/ISPACS.2013.6704591 10.1109/83.597272 10.1007/978-3-030-01267-0_11 10.1109/TIE.2017.2682034 10.1109/CVPR42600.2020.00237 10.1109/ICCV.2019.00742 10.1109/TCSVT.2021.3073371 10.1109/TIP.2021.3051462 10.1109/CVPR42600.2020.00313 10.1109/TIP.2016.2639450 10.1109/ICCVW.2019.00293 10.1109/CVPR42600.2020.00185 10.1007/s11263-018-01144-2 10.1109/TCYB.2018.2831447 10.1109/TCSVT.2020.3027616 10.1109/ICCV.2019.00328 10.1038/scientificamerican1277-108 10.1109/CVPR46437.2021.00493 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2022.3190916 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 8352 |
ExternalDocumentID | 10_1109_TCSVT_2022_3190916 9829839 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Tianjin grantid: 18JCJQJC45800 funderid: 10.13039/501100006606 – fundername: National Natural Science Foundation of China grantid: 62125110; 62101379; 61931014; U21B2038; 61931008 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2018YFE0203900 funderid: 10.13039/501100012166 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-9bec1afcef17598da88f2d9b25b571f8e583b42d2474e889d74ac650693065ed3 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 05:05:17 EDT 2025 Tue Jul 01 00:41:18 EDT 2025 Thu Apr 24 23:12:03 EDT 2025 Wed Aug 27 02:15:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-9bec1afcef17598da88f2d9b25b571f8e583b42d2474e889d74ac650693065ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8772-2107 0000-0002-6616-453X 0000-0003-3171-7680 0000-0001-7542-296X 0000-0002-5741-7937 |
PQID | 2747611497 |
PQPubID | 85433 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2747611497 crossref_primary_10_1109_TCSVT_2022_3190916 crossref_citationtrail_10_1109_TCSVT_2022_3190916 ieee_primary_9829839 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref11 ref10 li (ref8) 2021 wei (ref19) 2018 ref17 ref16 ref18 simonyan (ref44) 2015 lv (ref36) 2018 ref48 ref42 ref41 ronneberger (ref45) 2015 ref43 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref31 ref30 ref33 ref2 ref1 ref39 ref38 ref24 dong (ref32) 2011 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ying (ref15) 2017 kingma (ref46) 2015 abadi (ref47) 2016 |
References_xml | – year: 2017 ident: ref15 article-title: A bio-inspired multi-exposure fusion framework for low-light image enhancement publication-title: arXiv 1711 00591 – ident: ref33 doi: 10.1109/TCE.2015.7064113 – ident: ref20 doi: 10.1109/CVPR.2018.00347 – ident: ref5 doi: 10.1109/TIP.2020.2973499 – ident: ref11 doi: 10.1109/TIP.2013.2284059 – ident: ref39 doi: 10.1109/ICCV.2019.00421 – start-page: 1 year: 2015 ident: ref44 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc 3rd Int Conf Learn Represent (ICLR) – ident: ref3 doi: 10.1109/TCSVT.2017.2787190 – ident: ref24 doi: 10.1109/CVPR42600.2020.00235 – ident: ref1 doi: 10.1109/TCSVT.2020.2981652 – ident: ref38 doi: 10.1109/CVPR.2018.00265 – ident: ref34 doi: 10.1109/TIP.2012.2199324 – ident: ref29 doi: 10.1007/978-3-030-58601-0_7 – start-page: 1 year: 2011 ident: ref32 article-title: Fast efficient algorithm for enhancement of low lighting video publication-title: Proc ICME – ident: ref30 doi: 10.1109/CCDC.2016.7531629 – ident: ref6 doi: 10.1109/InCIT50588.2020.9310971 – ident: ref49 doi: 10.1109/TIP.2003.819861 – ident: ref18 doi: 10.1016/j.patcog.2016.06.008 – ident: ref26 doi: 10.1109/TCSVT.2020.3009235 – ident: ref31 doi: 10.1109/SPAC.2014.6982691 – ident: ref17 doi: 10.1109/TMM.2021.3054509 – ident: ref43 doi: 10.1109/TCSVT.2020.3037068 – year: 2021 ident: ref8 article-title: Low-light image and video enhancement using deep learning: A survey publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref41 doi: 10.1109/ICCV48922.2021.00956 – ident: ref4 doi: 10.1016/j.neucom.2020.05.123 – ident: ref9 doi: 10.1109/TIP.2009.2021548 – ident: ref12 doi: 10.1109/ISPACS.2013.6704591 – ident: ref13 doi: 10.1109/83.597272 – ident: ref42 doi: 10.1007/978-3-030-01267-0_11 – ident: ref35 doi: 10.1109/TIE.2017.2682034 – ident: ref37 doi: 10.1109/CVPR42600.2020.00237 – ident: ref27 doi: 10.1109/ICCV.2019.00742 – ident: ref22 doi: 10.1109/TCSVT.2021.3073371 – ident: ref21 doi: 10.1109/TIP.2021.3051462 – start-page: 250 year: 2018 ident: ref19 article-title: Deep Retinex decomposition for low-light enhancement publication-title: Proc BMVC – ident: ref25 doi: 10.1109/CVPR42600.2020.00313 – start-page: 265 year: 2016 ident: ref47 article-title: Tensorflow: A system for large-scale machine learning publication-title: Proc OSDI – ident: ref14 doi: 10.1109/TIP.2016.2639450 – ident: ref7 doi: 10.1109/ICCVW.2019.00293 – start-page: 234 year: 2015 ident: ref45 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc Med Image Comput Comput -Assist Intervent – ident: ref23 doi: 10.1109/CVPR42600.2020.00185 – start-page: 1 year: 2015 ident: ref46 article-title: Adam: A method for stochastic optimization publication-title: Proc ICLR – ident: ref48 doi: 10.1007/s11263-018-01144-2 – ident: ref2 doi: 10.1109/TCYB.2018.2831447 – ident: ref16 doi: 10.1109/TCSVT.2020.3027616 – ident: ref28 doi: 10.1109/ICCV.2019.00328 – ident: ref10 doi: 10.1038/scientificamerican1277-108 – ident: ref40 doi: 10.1109/CVPR46437.2021.00493 – start-page: 220 year: 2018 ident: ref36 article-title: MBLLEN: Low-light image/video enhancement using CNNs publication-title: Proc BMVC |
SSID | ssj0014847 |
Score | 2.564581 |
Snippet | Recently, deep-learning-based low-light video enhancement methods have drawn wide attention and achieved remarkable performance. However, limited by the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8342 |
SubjectTerms | Correlation Deep learning Frames (data processing) Histograms Image enhancement Light Lighting Low-light video enhancement sliding window Task analysis temporal correlation Training Video Video sequences |
Title | LVE-S2D: Low-Light Video Enhancement From Static to Dynamic |
URI | https://ieeexplore.ieee.org/document/9829839 https://www.proquest.com/docview/2747611497 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8CqJQkAc2cNvYTmLDhEorhFoWStUtcpKLqIAGQSokfj22k1a8hNgy2JZ1d_Z9X3wPgGNbYivjXBnjxTYVTCPVXhBTmamEoVBaujrbg5vg6k5cj_3xEpwucmEQ0QWfYdN-urf8NE9m9ldZS0mmjENfhmVD3MpcrcWLgZCumZiBCx6Vxo_NE2TaqjXs3I6GhgoyZhiqMg4y-OKEXFeVH1ex8y-9DRjMd1aGlTw0Z0XcTN6_FW3879Y3Yb0CmuSitIwtWMLpNqx9Kj9Yg_P-qEtv2eUZ6edvtG9pOhlNUsxJd3pvrcGuSXov-ROxmHSSkCInl2UL-x2463WHnStaNVOgCVN-QZVRlqezBDMDGJRMtZQZS1XM_NgPvUyiL3ksWMpEKFBKlYZCJwa-2VaJgY8p34WVaT7FPSDa42iAX2wuKC40-rHmba2MC8xSHoQc6-DNpRslVaVx2_DiMXKMo60ip5HIaiSqNFKHk8Wc57LOxp-ja1bEi5GVdOvQmCsxqo7ia2Rpd2BYnwr3f591AKt27TJGpQErxcsMDw3SKOIjZ2If30DMAg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VcgAOFCiIhQI-wAl5u7GdxAb1gLq72tK0l25XvQXHmYgVNEFtVlX7W_pX-G-Mk-yKL3GrxC0HO3E8T35v7PEMwGufYquQ0hB4ccCVsMhtEGVcF8YJVMbqJs_2wWE0OVYfT8KTNbhe3YVBxCb4DPv-sTnLzyu38Ftl20YLQ4TehVDu4-UFOWjnO3tDsuYbIcaj6e6EdzUEuBMmrLmhMQa2cFgQTxqdW60LkZtMhFkYB4XGUMtMiVyoWKHWJo-VdaRafIXAKMRc0ntvwW3SGaFob4etziiUbsqXkUAJuCbmXF7JGZjt6e7RbErOpxDkExui5OgX2mvquPyx-DeMNt6A78u5aANZvvQXddZ3V7-lifxfJ-sB3O-kNPvQYv8hrGH5CO79lGBxE94nsxE_EsN3LKkueOI3IthsnmPFRuVnj3f_D2x8Vp0yr7rnjtUVG16W9nTuHsPxjYz-CayXVYlPgdlAIknbjJZgqSyGmZUDa4jki1xGscQeBEtrpq7Lpe5LenxNG59qYNIGAalHQNohoAdvV32-tZlE_tl605t01bKzZg-2lqBJu8XmPPUbCxH5tSZ-9vder-DOZHqQpMne4f5zuOu_00bkbMF6fbbAF6Sr6uxlA28Gn24aIj8AJSkpug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LVE-S2D%3A+Low-Light+Video+Enhancement+From+Static+to+Dynamic&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Peng%2C+Bo&rft.au=Zhang%2C+Xuanyu&rft.au=Lei%2C+Jianjun&rft.au=Zhang%2C+Zhe&rft.date=2022-12-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=12&rft.spage=8342&rft.epage=8352&rft_id=info:doi/10.1109%2FTCSVT.2022.3190916&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2022_3190916 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |