Deep Adaptively-Enhanced Hashing With Discriminative Similarity Guidance for Unsupervised Cross-Modal Retrieval
Cross-modal hashing that leverages hash functions to project high-dimensional data from different modalities into the compact common hamming space, has shown immeasurable potential in cross-modal retrieval. To ease labor costs, unsupervised cross-modal hashing methods are proposed. However, existing...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 10; pp. 7255 - 7268 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cross-modal hashing that leverages hash functions to project high-dimensional data from different modalities into the compact common hamming space, has shown immeasurable potential in cross-modal retrieval. To ease labor costs, unsupervised cross-modal hashing methods are proposed. However, existing unsupervised methods still suffer from two factors in the optimization of hash functions: 1) similarity guidance, they barely give a clear definition of whether is similar or not between data points, leading to the residual of the redundant information; 2) optimization strategy, they ignore the fact that the similarity learning abilities of different hash functions are different, which makes the hash function of one modality weaker than the hash function of the other modality. To alleviate such limitations, this paper proposes an unsupervised cross-modal hashing method to train hash functions with discriminative similarity guidance and adaptively-enhanced optimization strategy, termed Deep Adaptively-Enhanced Hashing (DAEH). Specifically, to estimate the similarity relations with discriminability, Information Mixed Similarity Estimation (IMSE) is designed by integrating information from distance distributions and the similarity ratio. Moreover, Adaptive Teacher Guided Enhancement (ATGE) optimization strategy is also designed, which employs information theory to discover the weaker hash function and utilizes an extra teacher network to enhance it. Extensive experiments on three benchmark datasets demonstrate the superiority of the proposed DAEH against the state-of-the-arts. |
---|---|
AbstractList | Cross-modal hashing that leverages hash functions to project high-dimensional data from different modalities into the compact common hamming space, has shown immeasurable potential in cross-modal retrieval. To ease labor costs, unsupervised cross-modal hashing methods are proposed. However, existing unsupervised methods still suffer from two factors in the optimization of hash functions: 1) similarity guidance, they barely give a clear definition of whether is similar or not between data points, leading to the residual of the redundant information; 2) optimization strategy, they ignore the fact that the similarity learning abilities of different hash functions are different, which makes the hash function of one modality weaker than the hash function of the other modality. To alleviate such limitations, this paper proposes an unsupervised cross-modal hashing method to train hash functions with discriminative similarity guidance and adaptively-enhanced optimization strategy, termed Deep Adaptively-Enhanced Hashing (DAEH). Specifically, to estimate the similarity relations with discriminability, Information Mixed Similarity Estimation (IMSE) is designed by integrating information from distance distributions and the similarity ratio. Moreover, Adaptive Teacher Guided Enhancement (ATGE) optimization strategy is also designed, which employs information theory to discover the weaker hash function and utilizes an extra teacher network to enhance it. Extensive experiments on three benchmark datasets demonstrate the superiority of the proposed DAEH against the state-of-the-arts. |
Author | Zhao, Yue Ou, Weihua Shi, Yufeng Zheng, Feng Peng, Qinmu Liu, Xin You, Xinge |
Author_xml | – sequence: 1 givenname: Yufeng orcidid: 0000-0002-9217-4352 surname: Shi fullname: Shi, Yufeng email: yufengshi17@hust.edu.cn organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Yue surname: Zhao fullname: Zhao, Yue email: zhaoyhu@hubu.edu.cn organization: School of Computer Science and Information Engineering, Hubei University, Wuhan, China – sequence: 3 givenname: Xin surname: Liu fullname: Liu, Xin email: xliu@hqu.edu.cn organization: Department of Computer Science, Huaqiao University, Xiamen, China – sequence: 4 givenname: Feng orcidid: 0000-0002-1701-9141 surname: Zheng fullname: Zheng, Feng email: f.zheng@ieee.org organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China – sequence: 5 givenname: Weihua orcidid: 0000-0001-5241-7703 surname: Ou fullname: Ou, Weihua email: ouweihuahust@gmail.com organization: School of Big Data and Computer Science, Guizhou Normal University, Guiyang, China – sequence: 6 givenname: Xinge orcidid: 0000-0003-0607-1777 surname: You fullname: You, Xinge email: youxg@hust.edu.cn organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China – sequence: 7 givenname: Qinmu orcidid: 0000-0003-4863-5681 surname: Peng fullname: Peng, Qinmu email: pengqinmu@hust.edu.cn organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China |
BookMark | eNp9kMtOwzAQRS0EEuXxA7CxxDrFdh52llWAFgmEBC0sI9ceU6PgBDut1L_HoRULFqw8i3vueM4JOnStA4QuKBlTSsrrefXyOh8zwtg4pZxxWhygEc1zkTBG8sM4k5wmgtH8GJ2E8EEIzUTGR6i9AejwRMuutxtotsmtW0mnQOOZDCvr3vGb7Vf4xgbl7ad1cojhlzg20tt-i6drqwcAm9bjhQvrDvzGhlhQ-TaE5LHVssHP0HsLG9mcoSMjmwDn-_cULe5u59UseXia3leTh0SxMu-Tki9VSRksdSo5E6nJlC4IcGBaLxXlRU6NMCQlxrAyMypVGmJYU1HKZUlUeoqudr2db7_WEPr6o117F1fWjDOaxU6SxpTYpdTwVw-mVraPJ7au99I2NSX1oLf-0VsPeuu93oiyP2gXBUm__R-63EEWAH6BkhdCkDz9Bkb6iys |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TMM_2023_3323884 crossref_primary_10_1016_j_ins_2023_119543 crossref_primary_10_1007_s13735_023_00268_7 crossref_primary_10_1007_s11042_024_19371_w crossref_primary_10_1109_TCSVT_2023_3319633 crossref_primary_10_3390_e26110911 crossref_primary_10_1016_j_engappai_2024_108969 crossref_primary_10_1109_TMM_2023_3349075 crossref_primary_10_1007_s13042_024_02154_y crossref_primary_10_1109_TCSVT_2024_3350695 crossref_primary_10_1109_TCSVT_2024_3489886 crossref_primary_10_1016_j_neucom_2024_127911 crossref_primary_10_1145_3697353 crossref_primary_10_1016_j_engappai_2024_108197 crossref_primary_10_1007_s10489_023_04715_0 crossref_primary_10_1109_TCSVT_2024_3411298 crossref_primary_10_1007_s41019_024_00274_7 crossref_primary_10_1016_j_engappai_2023_106473 crossref_primary_10_1007_s10462_025_11152_7 crossref_primary_10_1016_j_ipm_2024_103958 crossref_primary_10_1007_s13735_024_00326_8 crossref_primary_10_1109_TCSVT_2023_3320444 crossref_primary_10_1109_TCSVT_2023_3293104 crossref_primary_10_1109_ACCESS_2024_3444817 crossref_primary_10_1016_j_knosys_2024_112547 crossref_primary_10_3390_s23073439 crossref_primary_10_1007_s11042_023_18048_0 crossref_primary_10_1016_j_imavis_2025_105421 crossref_primary_10_1109_TCSVT_2023_3251395 crossref_primary_10_1109_TCSVT_2023_3281868 crossref_primary_10_3390_app13127278 crossref_primary_10_1109_TCSVT_2023_3312385 crossref_primary_10_1109_TCSVT_2024_3374791 crossref_primary_10_1016_j_neucom_2024_128830 crossref_primary_10_1109_TCSVT_2024_3376373 crossref_primary_10_1109_TMM_2023_3245400 crossref_primary_10_1109_TCSVT_2023_3340102 crossref_primary_10_1109_TCSVT_2023_3285266 crossref_primary_10_1007_s13735_025_00353_z crossref_primary_10_1109_TCSVT_2023_3287301 crossref_primary_10_3390_app14020870 crossref_primary_10_1109_TCSVT_2023_3263054 |
Cites_doi | 10.1109/TPAMI.2018.2798607 10.1609/aaai.v35i5.16592 10.1109/TCSVT.2017.2723302 10.1109/CVPR.2015.7299011 10.1109/TKDE.2020.2987312 10.1145/2463676.2465274 10.1109/TPAMI.2019.2932976 10.1109/CVPR.2018.00446 10.1109/TMM.2019.2922128 10.1609/aaai.v31i1.10719 10.1109/ICCV48922.2021.00986 10.1109/TCSVT.2020.3042972 10.1145/3123266.3123345 10.1145/3372278.3390673 10.1145/1460096.1460104 10.1145/3362065 10.1109/CVPR42600.2020.00319 10.1109/TCSVT.2017.2705068 10.1007/978-3-319-10602-1_48 10.1109/TIP.2020.2963957 10.1109/CVPR.2016.90 10.1109/ICME.2019.00015 10.1109/MSP.2017.2738401 10.1109/TKDE.2020.2974825 10.1145/3323873.3325041 10.1016/j.patcog.2021.108084 10.1145/2600428.2609610 10.1609/aaai.v32i1.11263 10.1609/aaai.v33i01.3301176 10.1145/3397271.3401086 10.1007/s11280-020-00859-y 10.24963/ijcai.2018/148 10.1109/CVPR.2017.348 10.1109/ICME51207.2021.9428330 10.1109/TIP.2016.2607421 10.1109/CVPR.2009.5206848 10.1109/TCSVT.2020.2974877 10.1109/TIP.2018.2821921 10.1109/ICCV.2019.00312 10.24963/ijcai.2018/396 10.1145/3474085.3475286 10.1145/1646396.1646452 10.1109/TCSVT.2019.2911359 10.1145/3240508.3240684 10.1016/j.patcog.2020.107479 10.1109/TPAMI.2019.2940446 10.1109/TKDE.2020.2970050 10.1109/CVPR.2017.672 10.1109/TPAMI.2021.3055564 10.1145/3343031.3351055 10.1145/3460426.3463626 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2022.3172716 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2205 |
EndPage | 7268 |
ExternalDocumentID | 10_1109_TCSVT_2022_3172716 9768805 |
Genre | orig-research |
GrantInformation_xml | – fundername: Open Project of Zhejiang Laboratory grantid: 2021KH0AB01 – fundername: National Natural Science Foundation of China grantid: 62172177; 62101179; 61762021 funderid: 10.13039/501100001809 – fundername: Project of Hubei University School grantid: 202011903000002 funderid: 10.13039/501100017589 – fundername: Key Research and Development Plan of Hubei Province grantid: 2020BAB027 – fundername: Natural Science Foundation of Hubei Province grantid: 2021CFB332 funderid: 10.13039/501100003819 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-97bc912ebd3a7283f4cd60e7e2ddbc17651f8f030ff294fc3cdeebdd189ab90c3 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Sun Jun 29 16:36:18 EDT 2025 Tue Jul 01 00:41:17 EDT 2025 Thu Apr 24 23:07:11 EDT 2025 Wed Aug 27 02:14:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-97bc912ebd3a7283f4cd60e7e2ddbc17651f8f030ff294fc3cdeebdd189ab90c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9217-4352 0000-0003-4863-5681 0000-0003-0607-1777 0000-0001-5241-7703 0000-0002-1701-9141 |
PQID | 2721428303 |
PQPubID | 85433 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2721428303 crossref_citationtrail_10_1109_TCSVT_2022_3172716 crossref_primary_10_1109_TCSVT_2022_3172716 ieee_primary_9768805 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 Mikriukov (ref21) 2022 ref15 ref14 ref58 ref53 ref11 ref55 ref10 ref54 Chen (ref42) 2019 Simonyan (ref41) 2014 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref48 ref47 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 Xu (ref1) 2013 ref31 ref30 ref33 ref32 ref2 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 Wang (ref52) ref28 ref27 ref29 Dosovitskiy (ref45) 2020 Krizhevsky (ref56); 25 |
References_xml | – ident: ref3 doi: 10.1109/TPAMI.2018.2798607 – ident: ref19 doi: 10.1609/aaai.v35i5.16592 – ident: ref39 doi: 10.1109/TCSVT.2017.2723302 – year: 2022 ident: ref21 article-title: Deep unsupervised contrastive hashing for large-scale cross-modal text-image retrieval in remote sensing publication-title: arXiv:2201.08125 – ident: ref36 doi: 10.1109/CVPR.2015.7299011 – ident: ref12 doi: 10.1109/TKDE.2020.2987312 – ident: ref22 doi: 10.1145/2463676.2465274 – ident: ref44 doi: 10.1109/TPAMI.2019.2932976 – ident: ref28 doi: 10.1109/CVPR.2018.00446 – ident: ref23 doi: 10.1109/TMM.2019.2922128 – ident: ref31 doi: 10.1609/aaai.v31i1.10719 – ident: ref58 doi: 10.1109/ICCV48922.2021.00986 – ident: ref8 doi: 10.1109/TCSVT.2020.3042972 – ident: ref32 doi: 10.1145/3123266.3123345 – ident: ref40 doi: 10.1145/3372278.3390673 – ident: ref48 doi: 10.1145/1460096.1460104 – ident: ref6 doi: 10.1145/3362065 – start-page: 3890 volume-title: Proc. Int. Joint Conf. Artif. Intell. ident: ref52 article-title: Semantic topic multimodal hashing for cross-media retrieval – ident: ref25 doi: 10.1109/CVPR42600.2020.00319 – ident: ref4 doi: 10.1109/TCSVT.2017.2705068 – year: 2020 ident: ref45 article-title: An image is worth 16x16 words: Transformers for image recognition at scale publication-title: arXiv:2010.11929 – ident: ref49 doi: 10.1007/978-3-319-10602-1_48 – ident: ref29 doi: 10.1109/TIP.2020.2963957 – ident: ref57 doi: 10.1109/CVPR.2016.90 – ident: ref33 doi: 10.1109/ICME.2019.00015 – ident: ref2 doi: 10.1109/MSP.2017.2738401 – ident: ref10 doi: 10.1109/TKDE.2020.2974825 – ident: ref35 doi: 10.1145/3323873.3325041 – ident: ref13 doi: 10.1016/j.patcog.2021.108084 – ident: ref51 doi: 10.1145/2600428.2609610 – ident: ref24 doi: 10.1609/aaai.v32i1.11263 – ident: ref55 doi: 10.1609/aaai.v33i01.3301176 – ident: ref18 doi: 10.1145/3397271.3401086 – ident: ref20 doi: 10.1007/s11280-020-00859-y – ident: ref43 doi: 10.24963/ijcai.2018/148 – volume: 25 start-page: 1097 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref56 article-title: ImageNet classification with deep convolutional neural networks – ident: ref27 doi: 10.1109/CVPR.2017.348 – ident: ref38 doi: 10.1109/ICME51207.2021.9428330 – ident: ref53 doi: 10.1109/TIP.2016.2607421 – ident: ref54 doi: 10.1109/CVPR.2009.5206848 – ident: ref14 doi: 10.1109/TCSVT.2020.2974877 – year: 2013 ident: ref1 article-title: A survey on multi-view learning publication-title: arXiv:1304.5634 – ident: ref34 doi: 10.1109/TIP.2018.2821921 – ident: ref16 doi: 10.1109/ICCV.2019.00312 – ident: ref30 doi: 10.24963/ijcai.2018/396 – year: 2019 ident: ref42 article-title: Med3D: Transfer learning for 3D medical image analysis publication-title: arXiv:1904.00625 – ident: ref47 doi: 10.1145/3474085.3475286 – year: 2014 ident: ref41 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – ident: ref50 doi: 10.1145/1646396.1646452 – ident: ref11 doi: 10.1109/TCSVT.2019.2911359 – ident: ref5 doi: 10.1145/3240508.3240684 – ident: ref17 doi: 10.1016/j.patcog.2020.107479 – ident: ref37 doi: 10.1109/TPAMI.2019.2940446 – ident: ref9 doi: 10.1109/TKDE.2020.2970050 – ident: ref15 doi: 10.1109/CVPR.2017.672 – ident: ref46 doi: 10.1109/TPAMI.2021.3055564 – ident: ref7 doi: 10.1145/3343031.3351055 – ident: ref26 doi: 10.1145/3460426.3463626 |
SSID | ssj0014847 |
Score | 2.614143 |
Snippet | Cross-modal hashing that leverages hash functions to project high-dimensional data from different modalities into the compact common hamming space, has shown... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7255 |
SubjectTerms | Annotations Codes Computer science Cross-modal retrieval Data points Estimation Hash functions Information theory Optimization optimization strategy Retrieval Semantics Similarity similarity estimation Teachers unsupervised deep hashing |
Title | Deep Adaptively-Enhanced Hashing With Discriminative Similarity Guidance for Unsupervised Cross-Modal Retrieval |
URI | https://ieeexplore.ieee.org/document/9768805 https://www.proquest.com/docview/2721428303 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH4CTtsBNthEB5t82I25JI7TxEdUYNWk7gDtxi2K7WdRgdJqTQ7w1_PsJBViaNotkZ4tK9_z-xE_vw_gq8ysRgp1uR5Jw6WIHdeWXklYGqFya0I7hunP0WQuf9ykN1vwbXMXBhFD8RkO_WM4y7dL0_hfZafkOknd0m3YpsStvau1OTGQeSATo3Ah5jn5sf6CTKROZ-PrXzNKBYWgDJX8tec2f-aEAqvKX6Y4-JfLPZj2K2vLSu6GTa2H5vFF08b_Xfo72O0CTXbWasZ72MJqH_Z6EgfW7el9ePusI-EBLM8RV-zMlitvBu8f-EV1G2oE2KRlXWK_F_UtO194a-OraLwYu6ZHypApoGffm4X1AxgFw2xerZuVN0ZrmmDsPwWfLi2t6irweJGSf4D55cVsPOEdJwMn5NKaq0wbFQvUNikzCk2cNHYUYYbCWm3ibJTGLndkOZwTSjqTGIskbONclVpFJvkIO9WywkNg6CS6NFOmjKRMhc2NSJPSRao0Dss4GkDcg1SYrmG55824L0LiEqkiAFt4YIsO2AGcbMas2nYd_5Q-8EhtJDuQBnDc60LR7eh1IbK2OV2UfHp91BG88XO3hX7HsFP_afAzBSy1_hI09QnetupO |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoAeKLSgLrTgA5yQt4njbOIDh2q3ZUu7PdBd6C3Ef-qqq-yqmwiVZ-FVeLeOnWRVAeJWiZsjje1o8nlmHI_nA3jLEy0NhrpU9riinIWWSo2PKMwVE6lWvhzD6Kw3nPBPF_HFGvxc3YUxxvjkM9N1TX-Wr-eqcr_K9tF1ItzaFMoTc_MdN2jLD8cD_JrvGDs6HPeHtOEQoDhTXFKRSCVCZqSO8gRdqeVK9wKTGKa1VGHSi0ObWkS6tUxwqyKlDQrrMBW5FIGKcNwH8BDjjJjVt8NWZxQ89fRlGKCENEXP2V7JCcT-uH_-ZYybT8ZwT4wRgmNTv-P2PI_LH8bfe7SjTfjV6qJOZLnqVqXsqh-_lYn8X5X1FJ40oTQ5qLH_DNZMsQWbLU0FaazWFmzcqbm4DfOBMQtyoPOFM_SzG3pYXPosCDKseaXI12l5SQZTZ09dnpATI-fYnOWO6I98rKbadSAY7pNJsawWztwucYC-Uz0dzTW-1WfPVIbL-DlM7kUJL2C9mBdmB4ix3Ng4ESoPOI-ZThWLo9wGIlfW5GHQgbAFRaaakuyOGWSW-a1ZIDIPpMwBKWuA1IH3qz6LuiDJP6W3HTJWkg0oOrDbYi9rbNYyY0ldfi-IXv691xt4NByPTrPT47OTV_DYzVOnNe7CenldmT0Mz0r52q8SAt_uG2m3AJhLkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Adaptively-Enhanced+Hashing+With+Discriminative+Similarity+Guidance+for+Unsupervised+Cross-Modal+Retrieval&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Shi%2C+Yufeng&rft.au=Zhao%2C+Yue&rft.au=Liu%2C+Xin&rft.au=Zheng%2C+Feng&rft.date=2022-10-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=10&rft.spage=7255&rft.epage=7268&rft_id=info:doi/10.1109%2FTCSVT.2022.3172716&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2022_3172716 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |