Multi-Scale Metric Learning for Few-Shot Learning

Few-shot learning in image classification is developed to learn a model that aims to identify unseen classes with only few training samples for each class. Fewer training samples and new tasks of classification make many traditional classification models no longer applicable. In this paper, a novel...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 31; no. 3; pp. 1091 - 1102
Main Authors Jiang, Wen, Huang, Kai, Geng, Jie, Deng, Xinyang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Few-shot learning in image classification is developed to learn a model that aims to identify unseen classes with only few training samples for each class. Fewer training samples and new tasks of classification make many traditional classification models no longer applicable. In this paper, a novel few-shot learning method named multi-scale metric learning (MSML) is proposed to extract multi-scale features and learn the multi-scale relations between samples for the classification of few-shot learning. In the proposed method, a feature pyramid structure is introduced for multi-scale feature embedding, which aims to combine high-level strong semantic features with low-level but abundant visual features. Then a multi-scale relation generation network (MRGN) is developed for hierarchical metric learning, in which high-level features are corresponding to deeper metric learning while low-level features are corresponding to lighter metric learning. Moreover, a novel loss function named intra-class and inter-class relation loss (IIRL) is proposed to optimize the proposed deep network, which aims to strengthen the correlation between homogeneous groups of samples and weaken the correlation between heterogeneous groups of samples. Experimental results on mini ImageNet and tiered ImageNet demonstrate that the proposed method achieves superior performance in few-shot learning problem.
AbstractList Few-shot learning in image classification is developed to learn a model that aims to identify unseen classes with only few training samples for each class. Fewer training samples and new tasks of classification make many traditional classification models no longer applicable. In this paper, a novel few-shot learning method named multi-scale metric learning (MSML) is proposed to extract multi-scale features and learn the multi-scale relations between samples for the classification of few-shot learning. In the proposed method, a feature pyramid structure is introduced for multi-scale feature embedding, which aims to combine high-level strong semantic features with low-level but abundant visual features. Then a multi-scale relation generation network (MRGN) is developed for hierarchical metric learning, in which high-level features are corresponding to deeper metric learning while low-level features are corresponding to lighter metric learning. Moreover, a novel loss function named intra-class and inter-class relation loss (IIRL) is proposed to optimize the proposed deep network, which aims to strengthen the correlation between homogeneous groups of samples and weaken the correlation between heterogeneous groups of samples. Experimental results on mini ImageNet and tiered ImageNet demonstrate that the proposed method achieves superior performance in few-shot learning problem.
Author Jiang, Wen
Deng, Xinyang
Geng, Jie
Huang, Kai
Author_xml – sequence: 1
  givenname: Wen
  orcidid: 0000-0001-5429-2748
  surname: Jiang
  fullname: Jiang, Wen
  email: jiangwen@nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Kai
  surname: Huang
  fullname: Huang, Kai
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0003-4858-823X
  surname: Geng
  fullname: Geng, Jie
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Xinyang
  orcidid: 0000-0001-8181-7001
  surname: Deng
  fullname: Deng, Xinyang
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
BookMark eNp9kMFOAjEQhhuDiYC-gF428Vxsux3aHg0RNIF4AL023TKrJesudkuMb-8ihIMHLzOTyf_NJN-A9OqmRkKuORtxzszdarJ8XY0EE2wkjAEF8oz0OYCmQjDodTMDTrXgcEEGbbthjEstVZ_wxa5KgS69qzBbYIrBZ3N0sQ71W1Y2MZviF12-N-m0vSTnpatavDr2IXmZPqwmj3T-PHua3M-pFwYSNZIr5CrPS2MUginXqLsqURrnS-HWxhQaWMELBhqhADcGXyjNnWA5FiwfktvD3W1sPnfYJrtpdrHuXlohjdZKaDXuUvqQ8rFp24il9SG5FJo6RRcqy5ndC7K_guxekD0K6lDxB93G8OHi9__QzQEKiHgCDDNKgMh_ANN6cgg
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2021_3135023
crossref_primary_10_1007_s11042_023_14790_7
crossref_primary_10_1016_j_cose_2024_103749
crossref_primary_10_1016_j_engappai_2021_104584
crossref_primary_10_1016_j_ins_2022_05_012
crossref_primary_10_1007_s10489_024_05582_z
crossref_primary_10_1007_s10489_021_03066_y
crossref_primary_10_1016_j_patcog_2022_109024
crossref_primary_10_1109_TCSVT_2023_3291054
crossref_primary_10_1002_int_22273
crossref_primary_10_1109_TCSVT_2022_3173687
crossref_primary_10_1109_TCSVT_2023_3317937
crossref_primary_10_1109_TIM_2023_3289549
crossref_primary_10_1109_TCSVT_2024_3499937
crossref_primary_10_1109_TCSVT_2022_3193612
crossref_primary_10_1007_s11042_023_16160_9
crossref_primary_10_1109_TCSVT_2021_3076523
crossref_primary_10_1109_TIM_2023_3292952
crossref_primary_10_1109_TCSVT_2023_3288205
crossref_primary_10_1007_s10489_021_02827_z
crossref_primary_10_1109_TCSVT_2024_3432152
crossref_primary_10_1109_TGRS_2023_3330490
crossref_primary_10_1016_j_engappai_2020_103882
crossref_primary_10_1109_TCSVT_2021_3052785
crossref_primary_10_1002_qre_2773
crossref_primary_10_1007_s00521_021_05707_2
crossref_primary_10_1016_j_isatra_2022_08_009
crossref_primary_10_1109_TGRS_2024_3362391
crossref_primary_10_1109_TGRS_2024_3368091
crossref_primary_10_1016_j_neucom_2022_08_070
crossref_primary_10_1109_TCSVT_2023_3275382
crossref_primary_10_1016_j_engappai_2022_105429
crossref_primary_10_1016_j_ins_2022_11_014
crossref_primary_10_1109_TGRS_2024_3354800
crossref_primary_10_3390_pr12040799
crossref_primary_10_3390_rs14143247
crossref_primary_10_1109_TCSVT_2021_3065693
crossref_primary_10_1016_j_egyai_2022_100170
crossref_primary_10_1109_TCSVT_2023_3248798
crossref_primary_10_3390_electronics12244934
crossref_primary_10_1016_j_ins_2023_119012
crossref_primary_10_1109_TIM_2022_3193185
crossref_primary_10_1109_TAI_2022_3212346
crossref_primary_10_1109_TCSVT_2021_3124908
crossref_primary_10_1109_TIM_2023_3322481
crossref_primary_10_1109_TITS_2024_3457583
crossref_primary_10_1007_s13369_020_05183_1
crossref_primary_10_1109_TII_2022_3169459
crossref_primary_10_1109_LGRS_2023_3243036
crossref_primary_10_1109_TGRS_2023_3337856
crossref_primary_10_1109_TGRS_2022_3210195
crossref_primary_10_1007_s10489_024_05670_0
crossref_primary_10_1017_S0263574724000195
crossref_primary_10_1016_j_asoc_2024_112558
crossref_primary_10_1016_j_neucom_2024_128044
crossref_primary_10_1109_TGRS_2023_3325988
crossref_primary_10_1007_s10489_024_05388_z
crossref_primary_10_1016_j_neucom_2024_129012
crossref_primary_10_1109_TCSVT_2024_3435003
crossref_primary_10_1109_TCSVT_2023_3281151
crossref_primary_10_1109_TCSVT_2022_3175923
crossref_primary_10_1007_s10489_022_03347_0
crossref_primary_10_1109_TGRS_2023_3332051
crossref_primary_10_1007_s10489_024_05425_x
crossref_primary_10_1016_j_knosys_2023_110746
crossref_primary_10_1016_j_eswa_2024_124676
crossref_primary_10_1109_TCSVT_2023_3301854
crossref_primary_10_1007_s10489_024_05340_1
crossref_primary_10_1016_j_ins_2023_119598
crossref_primary_10_1016_j_compositesa_2024_108671
crossref_primary_10_1109_TCSVT_2022_3165068
crossref_primary_10_1002_int_23070
crossref_primary_10_1007_s00371_024_03650_6
crossref_primary_10_1109_JSEN_2021_3117942
crossref_primary_10_1145_3656047
crossref_primary_10_1007_s12559_024_10273_5
crossref_primary_10_1109_TIP_2022_3169689
crossref_primary_10_3390_s23156880
crossref_primary_10_1109_TCSVT_2022_3223150
crossref_primary_10_1109_TIP_2022_3184813
crossref_primary_10_1109_TIP_2025_3526064
crossref_primary_10_1007_s00138_025_01669_w
crossref_primary_10_1109_TFUZZ_2020_3033062
crossref_primary_10_1007_s40815_023_01467_4
crossref_primary_10_1109_TCSVT_2022_3197147
crossref_primary_10_1109_TCSVT_2023_3282777
crossref_primary_10_1016_j_ress_2023_109353
crossref_primary_10_3390_rs14215550
crossref_primary_10_1016_j_neucom_2024_128970
crossref_primary_10_1109_TAI_2022_3169463
crossref_primary_10_3390_sym12091435
crossref_primary_10_1109_TCSVT_2023_3263593
crossref_primary_10_1016_j_knosys_2021_107840
crossref_primary_10_1109_TCSVT_2023_3268997
crossref_primary_10_1109_TCSVT_2024_3480279
crossref_primary_10_1109_TCSVT_2023_3327377
crossref_primary_10_1109_TCSVT_2024_3432753
crossref_primary_10_3390_app13053213
crossref_primary_10_1016_j_engappai_2023_107412
crossref_primary_10_1016_j_patcog_2024_110855
crossref_primary_10_1109_TCSVT_2021_3088545
crossref_primary_10_1007_s10489_022_03959_6
crossref_primary_10_3389_fnins_2022_1081788
crossref_primary_10_1007_s10489_024_05440_y
crossref_primary_10_1016_j_comcom_2023_10_022
crossref_primary_10_1109_TNNLS_2022_3213023
crossref_primary_10_11834_jig_230359
crossref_primary_10_1109_TCSVT_2023_3248585
crossref_primary_10_1109_TASE_2024_3369659
crossref_primary_10_1007_s10489_024_05635_3
crossref_primary_10_1007_s43684_023_00058_2
crossref_primary_10_1016_j_ins_2023_119855
crossref_primary_10_1109_TCSVT_2024_3435858
crossref_primary_10_1002_int_22366
crossref_primary_10_1016_j_neucom_2022_11_073
crossref_primary_10_1049_rpg2_13029
crossref_primary_10_1109_TCSVT_2024_3424566
crossref_primary_10_1007_s40815_021_01118_6
crossref_primary_10_1109_TAI_2021_3135248
crossref_primary_10_1109_TCSVT_2021_3125129
crossref_primary_10_1109_TCSVT_2024_3378978
crossref_primary_10_1007_s12559_021_09893_y
crossref_primary_10_1155_2021_5559529
crossref_primary_10_1155_2022_8110695
crossref_primary_10_1016_j_jpowsour_2022_232389
crossref_primary_10_1109_TCSVT_2024_3402952
crossref_primary_10_1109_TCSVT_2022_3188462
crossref_primary_10_3389_fmars_2024_1481028
crossref_primary_10_1109_TCSVT_2022_3164190
crossref_primary_10_1109_TCSVT_2022_3227574
crossref_primary_10_1364_OE_457945
crossref_primary_10_3390_electronics12132757
crossref_primary_10_1007_s00371_023_03228_8
crossref_primary_10_1109_TCSVT_2023_3241651
crossref_primary_10_3390_rs13142728
crossref_primary_10_3390_biomimetics10010016
crossref_primary_10_1109_ACCESS_2025_3544578
crossref_primary_10_1109_TCSVT_2022_3199496
crossref_primary_10_1109_TDSC_2024_3363692
crossref_primary_10_1109_TFUZZ_2020_3002431
crossref_primary_10_1007_s10489_020_01989_6
crossref_primary_10_1109_TCSVT_2024_3370600
crossref_primary_10_1016_j_engappai_2024_108528
crossref_primary_10_1109_TGRS_2023_3347618
crossref_primary_10_1109_TNNLS_2023_3238729
crossref_primary_10_1007_s40815_020_00957_z
crossref_primary_10_1109_TGRS_2024_3423716
crossref_primary_10_1007_s11760_022_02438_2
crossref_primary_10_1109_ACCESS_2023_3347634
crossref_primary_10_1109_TCSVT_2023_3292519
crossref_primary_10_1109_TCSVT_2023_3238804
crossref_primary_10_1109_TGRS_2024_3477933
crossref_primary_10_3390_electronics10080978
crossref_primary_10_1109_TCSVT_2022_3227716
crossref_primary_10_1016_j_engappai_2023_107125
crossref_primary_10_1109_TCSVT_2023_3343495
crossref_primary_10_3390_s21030840
crossref_primary_10_1007_s10845_022_02066_0
crossref_primary_10_1109_TCSVT_2023_3274168
crossref_primary_10_1109_ACCESS_2025_3529528
crossref_primary_10_1109_JSTARS_2024_3493606
crossref_primary_10_1155_2023_2132148
crossref_primary_10_1109_JSTARS_2023_3347561
crossref_primary_10_1109_TGRS_2024_3368509
crossref_primary_10_1109_TCSVT_2023_3236636
crossref_primary_10_1109_TCSVT_2023_3245584
crossref_primary_10_3390_app14041599
crossref_primary_10_1016_j_isprsjprs_2025_02_007
crossref_primary_10_1109_TCSVT_2024_3367666
Cites_doi 10.1109/CVPR.2019.00534
10.1109/TCYB.2018.2815559
10.1007/978-3-030-01270-0_35
10.1016/j.imavis.2017.01.012
10.15607/RSS.2018.XIV.002
10.1109/ACCESS.2018.2808938
10.1007/s13042-016-0634-8
10.1109/CVPR.2014.242
10.1007/978-1-4615-5529-2_1
10.1109/ICCV.2017.324
10.1016/j.knosys.2016.11.001
10.1109/TGRS.2020.2964679
10.1109/CVPR.2018.00294
10.1007/s11263-015-0816-y
10.1109/TKDE.2009.191
10.1007/978-3-030-01270-0_44
10.1016/j.sigpro.2017.07.015
10.1109/TMI.2016.2528162
10.1109/CVPR.2016.90
10.1109/CVPR.2015.7298682
10.1109/TCYB.2019.2953922
10.1109/TFUZZ.2019.2918999
10.1007/978-3-319-66179-7_59
10.1016/0010-0285(88)90014-X
10.1109/CVPR.2019.00049
10.1109/TGRS.2019.2913095
10.1023/A:1019956318069
10.1109/TPAMI.2017.2771779
10.1109/ICIP.2017.8297117
10.1109/ICIP.2018.8451346
10.1109/CVPR.2018.00131
10.1109/CVPR.2017.106
10.1109/TIP.2019.2910052
10.1109/TPAMI.2017.2666151
10.1109/ICIP.2019.8803599
10.1145/3178876.3186154
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2020.2995754
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1102
ExternalDocumentID 10_1109_TCSVT_2020_2995754
9097252
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: G2019KY05301
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61901376
  funderid: 10.13039/501100001809
– fundername: Peak Experience Plan in Northwestern Polytechnical University
  funderid: 10.13039/501100002663
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-9417e1733f997e59fde859f4e49acf2ad99b850b1b058e5b5a65cb781a203eb03
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 06:49:37 EDT 2025
Tue Jul 01 00:41:13 EDT 2025
Thu Apr 24 23:08:00 EDT 2025
Wed Aug 27 02:48:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-9417e1733f997e59fde859f4e49acf2ad99b850b1b058e5b5a65cb781a203eb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8181-7001
0000-0001-5429-2748
0000-0003-4858-823X
PQID 2498872876
PQPubID 85433
PageCount 12
ParticipantIDs ieee_primary_9097252
crossref_primary_10_1109_TCSVT_2020_2995754
proquest_journals_2498872876
crossref_citationtrail_10_1109_TCSVT_2020_2995754
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref14
ref53
mishkin (ref31) 2015
ref19
ref18
ren (ref54) 2018
rusu (ref28) 2019
ref51
weinberger (ref49) 2009; 10
ref50
mishra (ref44) 2018
ref46
ref45
ref48
ref47
finn (ref15) 2017
li (ref52) 2019
ref8
ref7
ref9
ref3
ref6
ref40
ref35
ref34
ref37
finn (ref16) 2017
ref36
ref30
ref33
ref32
ref2
yosinski (ref39) 2014
ref38
liu (ref56) 2018
ravi (ref5) 2016
munkhdalai (ref55) 2018
long (ref10) 2017
ref24
ref23
ref26
ref25
ref20
ref22
ref21
zhou (ref43) 2018
kim (ref41) 2018
ref27
ref29
santoro (ref17) 2016
finn (ref42) 2018
snell (ref4) 2017
vinyals (ref12) 2016
koch (ref11) 2015; 2
simonyan (ref1) 2014
References_xml – ident: ref30
  doi: 10.1109/CVPR.2019.00534
– ident: ref23
  doi: 10.1109/TCYB.2018.2815559
– start-page: 7332
  year: 2018
  ident: ref41
  article-title: Bayesian model-agnostic meta-learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref25
  doi: 10.1007/978-3-030-01270-0_35
– ident: ref40
  doi: 10.1016/j.imavis.2017.01.012
– ident: ref14
  doi: 10.15607/RSS.2018.XIV.002
– ident: ref36
  doi: 10.1109/ACCESS.2018.2808938
– start-page: 3320
  year: 2014
  ident: ref39
  article-title: How transferable are features in deep neural networks?
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 357
  year: 2017
  ident: ref15
  article-title: One-shot visual imitation learning via meta-learning
  publication-title: Proc Conf Rob Learn (CoRL)
– ident: ref32
  doi: 10.1007/s13042-016-0634-8
– start-page: 1842
  year: 2016
  ident: ref17
  article-title: Meta-learning with memory-augmented neural networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref50
  doi: 10.1109/CVPR.2014.242
– ident: ref3
  doi: 10.1007/978-1-4615-5529-2_1
– year: 2014
  ident: ref1
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref57
  doi: 10.1109/ICCV.2017.324
– ident: ref18
  doi: 10.1016/j.knosys.2016.11.001
– ident: ref35
  doi: 10.1109/TGRS.2020.2964679
– start-page: 1
  year: 2019
  ident: ref28
  article-title: Meta-learning with latent embedding optimization
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref29
  doi: 10.1109/CVPR.2018.00294
– ident: ref53
  doi: 10.1007/s11263-015-0816-y
– ident: ref7
  doi: 10.1109/TKDE.2009.191
– ident: ref45
  doi: 10.1007/978-3-030-01270-0_44
– ident: ref47
  doi: 10.1016/j.sigpro.2017.07.015
– year: 2018
  ident: ref54
  article-title: Meta-learning for semi-supervised few-shot classification
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref8
  doi: 10.1109/TMI.2016.2528162
– ident: ref2
  doi: 10.1109/CVPR.2016.90
– year: 2018
  ident: ref43
  article-title: Deep meta-learning: Learning to learn in the concept space
  publication-title: arXiv 1802 03596
– ident: ref51
  doi: 10.1109/CVPR.2015.7298682
– start-page: 3661
  year: 2018
  ident: ref55
  article-title: Rapid adaptation with conditionally shifted neurons
  publication-title: Proc Int Conf Mach Learn (ICML)
– start-page: 1
  year: 2018
  ident: ref44
  article-title: A simple neural attentive meta-learner
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref22
  doi: 10.1109/TCYB.2019.2953922
– ident: ref19
  doi: 10.1109/TFUZZ.2019.2918999
– start-page: 2208
  year: 2017
  ident: ref10
  article-title: Deep transfer learning with joint adaptation networks
  publication-title: Proc 34th Int Conf Mach Learn (ICML)
– ident: ref37
  doi: 10.1007/978-3-319-66179-7_59
– ident: ref9
  doi: 10.1016/0010-0285(88)90014-X
– ident: ref27
  doi: 10.1109/CVPR.2019.00049
– year: 2019
  ident: ref52
  article-title: Revisiting metric learning for few-shot image classification
  publication-title: arXiv 1907 03123
– ident: ref34
  doi: 10.1109/TGRS.2019.2913095
– ident: ref13
  doi: 10.1023/A:1019956318069
– ident: ref33
  doi: 10.1109/TPAMI.2017.2771779
– ident: ref38
  doi: 10.1109/ICIP.2017.8297117
– start-page: 3630
  year: 2016
  ident: ref12
  article-title: Matching networks for one shot learning
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 9516
  year: 2018
  ident: ref42
  article-title: Probabilistic model-agnostic meta-learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref24
  doi: 10.1109/ICIP.2018.8451346
– start-page: 1126
  year: 2017
  ident: ref16
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
  publication-title: Proc 34th Int Conf Mach Learn (ICML)
– year: 2015
  ident: ref31
  article-title: All you need is a good init
  publication-title: arXiv 1511 06422
– start-page: 4077
  year: 2017
  ident: ref4
  article-title: Prototypical networks for few-shot learning
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1
  year: 2016
  ident: ref5
  article-title: Optimization as a model for few-shot learning
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref6
  doi: 10.1109/CVPR.2018.00131
– ident: ref20
  doi: 10.1109/CVPR.2017.106
– volume: 10
  start-page: 207
  year: 2009
  ident: ref49
  article-title: Distance metric learning for large margin nearest neighbor classification
  publication-title: J Mach Learn Res
– ident: ref26
  doi: 10.1109/TIP.2019.2910052
– volume: 2
  start-page: 1
  year: 2015
  ident: ref11
  article-title: Siamese neural networks for one-shot image recognition
  publication-title: Proc Int Conf Mach Learn Workshops (ICMLW)
– ident: ref46
  doi: 10.1109/TPAMI.2017.2666151
– ident: ref21
  doi: 10.1109/ICIP.2019.8803599
– start-page: 1
  year: 2018
  ident: ref56
  article-title: Learning to propagate labels: Transductive propagation network for few-shot learning
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref48
  doi: 10.1145/3178876.3186154
SSID ssj0014847
Score 2.6860666
Snippet Few-shot learning in image classification is developed to learn a model that aims to identify unseen classes with only few training samples for each class....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1091
SubjectTerms Classification
Feature extraction
Few-shot learning
Image classification
Learning
Learning systems
Measurement
metric learning
multi-scale feature maps
Neural networks
Semantics
Task analysis
Training
Title Multi-Scale Metric Learning for Few-Shot Learning
URI https://ieeexplore.ieee.org/document/9097252
https://www.proquest.com/docview/2498872876
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61Jz34qmK1yh686bbJ7mazOUqxFKFe2kpvS5KdVVBa0S2Cv95J9oEvxMsSlgTCfMlkJpn5hpBzFuWBQZx9FVN7WyWwlYXgiyBTPGNMgKuiMLmNx_PoZsEXLXLZ5MIAgAs-g75turf8bGXW9qpsIC3XDEeFu4GOW5mr1bwYRIkrJobmAvMTPMfqBBkqB7Ph9G6GrmBA-6h80T6JvhxCrqrKD1XszpfRDpnUMyvDSh7760L3zfs30sb_Tn2XbFeGpndVrow90oLlPtn6RD_YIcxl3_pThAm8iS2tZbyKb_XeQ2PWG8GbP31YFc3fAzIfXc-GY78qoeCbQPLClxFKm4kwzKUUwGWeQYLfCCKpTB6oTEqdcKqZpjwBrrmKudEiYSqgIWgaHpL2crWEI-Kh6syVFCqhOZoEmVSBotQIpU0MWWjyLmG1TFNT8YvbMhdPqfMzqEwdDqnFIa1w6JKLZsxzya7xZ--OFWzTs5Jpl_Rq6NJqA76m6FWi-kR3MD7-fdQJ2QxseIoLJ-uRdvGyhlO0Lwp95hbWB61uyf0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5ROLQ9AC2turClObQnlMV24iQ-cEDbrpaf5bIL4pbazqRIVLsVZIXgWXgV3o2xNxuVUnFD4hJZkZ1Y_kaeb-z5AfjK41JYwjnUCXOnVSm1igjDVBRaFpyn6KsoDI6S_nG8fypPF-C2iYVBRO98hh3X9Hf5xcRO3VHZtnK5ZqSoXSgP8PqKDLTLnb3vhOY3IXo_Rt1-WNcQCK1QsgpVTL_jaRSVSqUoVVlgRs8YY6VtKXShlMkkM9wwmaE0UifSmjTjWrAIDYvou69giXiGFLPosOaOIs58-TIiKDzMSHPOQ3KY2h51hycjMj4F69B2T4wofqD2fB2XR5u_12i9Fbibr8XMkeW8M61Mx978kybypS7WKizXVDrYncn-O1jA8Xt4-1eCxTXgPr44HJIgYjBwxcNsUGeU_RUQXQ96eBUOzyZV8_YDHD_LnD_C4ngyxk8QkHIotUp1xkoiPYXSQjNmU21sgkVkyxbwOYa5rTOou0Iev3NvSTGVe9xzh3te496CrWbMn1n-kCd7rzkgm541hi1oz0Ulr7eYy5zsZlIQZPAm6_8f9QVe90eDw_xw7-hgA94I54zjnefasFhdTPEzsanKbHqhDuDncwvGPdEoJ44
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Scale+Metric+Learning+for+Few-Shot+Learning&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Jiang%2C+Wen&rft.au=Huang%2C+Kai&rft.au=Geng%2C+Jie&rft.au=Deng%2C+Xinyang&rft.date=2021-03-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=31&rft.issue=3&rft.spage=1091&rft.epage=1102&rft_id=info:doi/10.1109%2FTCSVT.2020.2995754&rft.externalDocID=9097252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon