A Review on Data-Driven Process Monitoring Methods: Characterization and Mining of Industrial Data
Safe and stable operation plays an important role in the chemical industry. Fault detection and diagnosis (FDD) make it possible to identify abnormal process deviations early and assist operators in taking proper action against fault propagation. After decades of development, data-driven process mon...
Saved in:
Published in | Processes Vol. 10; no. 2; p. 335 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Safe and stable operation plays an important role in the chemical industry. Fault detection and diagnosis (FDD) make it possible to identify abnormal process deviations early and assist operators in taking proper action against fault propagation. After decades of development, data-driven process monitoring technologies have gradually attracted attention from process industries. Although many promising FDD methods have been proposed from both academia and industry, challenges remain due to the complex characteristics of industrial data. In this work, classical and recent research on data-driven process monitoring methods is reviewed from the perspective of characterizing and mining industrial data. The implementation framework of data-driven process monitoring methods is first introduced. State of art of process monitoring methods corresponding to common industrial data characteristics are then reviewed. Finally, the challenges and possible solutions for actual industrial applications are discussed. |
---|---|
AbstractList | Safe and stable operation plays an important role in the chemical industry. Fault detection and diagnosis (FDD) make it possible to identify abnormal process deviations early and assist operators in taking proper action against fault propagation. After decades of development, data-driven process monitoring technologies have gradually attracted attention from process industries. Although many promising FDD methods have been proposed from both academia and industry, challenges remain due to the complex characteristics of industrial data. In this work, classical and recent research on data-driven process monitoring methods is reviewed from the perspective of characterizing and mining industrial data. The implementation framework of data-driven process monitoring methods is first introduced. State of art of process monitoring methods corresponding to common industrial data characteristics are then reviewed. Finally, the challenges and possible solutions for actual industrial applications are discussed. |
Author | Sun, Wei Ji, Cheng |
Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0001-9417-5829 surname: Ji fullname: Ji, Cheng – sequence: 2 givenname: Wei orcidid: 0000-0003-4027-3751 surname: Sun fullname: Sun, Wei |
BookMark | eNptkE9LAzEQxYNUsNZe_AQBb8LqJOnuZr2V1j-FFkX0vGSzszalJjVJK_rp3baCIs5l5vB7b3jvmHSss0jIKYMLIQq4XHkGwEGI9IB0Oed5UuQs7_y6j0g_hAW0UzAh06xLqiF9xI3Bd-osHauokrE3G7T0wTuNIdCZsyY6b-wLnWGcuzpc0dFceaUjevOpommFytZ0ZuwWcg2d2HodojdquXM8IYeNWgbsf-8eeb65fhrdJdP728loOE00L9KYFAwbgRKUFCB5nVaDHCVTDZMyrTjXeVpUuilAVwIy3lQ5w0GmWk4gyJyB6JGzve_Ku7c1hlgu3Nrb9mXJMyEgFWIgWup8T2nvQvDYlCtvXpX_KBmU2xrLnxpbGP7A2sRd5OiVWf4n-QJUwnXG |
CitedBy_id | crossref_primary_10_1016_j_jprocont_2024_103209 crossref_primary_10_54021_seesv5n3_118 crossref_primary_10_1002_apj_3132 crossref_primary_10_54097_69k0rb19 crossref_primary_10_1016_j_compind_2023_103987 crossref_primary_10_3390_act12100389 crossref_primary_10_1016_j_ifacol_2024_07_239 crossref_primary_10_1016_j_anucene_2023_109684 crossref_primary_10_1177_03019233241292384 crossref_primary_10_1016_j_compchemeng_2025_109106 crossref_primary_10_1016_j_jprocont_2024_103283 crossref_primary_10_1515_htmp_2024_0030 crossref_primary_10_3390_pr11020402 crossref_primary_10_1016_j_ifacol_2024_08_443 crossref_primary_10_1016_j_cej_2022_141025 crossref_primary_10_1016_j_ins_2024_120444 crossref_primary_10_1016_j_measurement_2025_116770 crossref_primary_10_1002_cjce_25157 crossref_primary_10_1002_bit_28670 crossref_primary_10_1021_acs_iecr_2c02334 crossref_primary_10_3390_pr12071432 crossref_primary_10_1016_j_psep_2022_04_039 crossref_primary_10_3390_pr12040676 crossref_primary_10_3390_pr10030589 crossref_primary_10_3390_en15155333 crossref_primary_10_1016_j_compchemeng_2024_108788 crossref_primary_10_1016_j_psep_2022_11_076 crossref_primary_10_1016_j_heliyon_2023_e23152 crossref_primary_10_3390_pr10112269 crossref_primary_10_1016_j_isatra_2023_09_027 crossref_primary_10_1016_j_ifacol_2024_08_439 crossref_primary_10_1109_ACCESS_2024_3481331 crossref_primary_10_1016_j_isatra_2022_07_017 crossref_primary_10_1016_j_measurement_2024_115610 crossref_primary_10_1021_acs_iecr_4c00423 crossref_primary_10_1002_cem_3602 crossref_primary_10_1016_j_ces_2024_120631 crossref_primary_10_1016_j_aime_2022_100095 crossref_primary_10_3390_pr10091850 crossref_primary_10_1021_acs_jcim_4c02060 crossref_primary_10_3390_pr12122824 crossref_primary_10_1016_j_conengprac_2024_106062 crossref_primary_10_1016_j_dche_2025_100227 crossref_primary_10_1016_j_cherd_2024_12_015 crossref_primary_10_1016_j_jtice_2024_105747 crossref_primary_10_1016_j_procir_2024_08_408 crossref_primary_10_1016_j_chemolab_2023_104921 crossref_primary_10_1016_j_cie_2024_110064 crossref_primary_10_1360_SSI_2023_0377 crossref_primary_10_3390_pr10102003 crossref_primary_10_1016_j_compchemeng_2024_108887 crossref_primary_10_1016_j_compchemeng_2024_108600 crossref_primary_10_1007_s00521_023_08483_3 crossref_primary_10_1016_j_isatra_2024_04_006 crossref_primary_10_1016_j_jprocont_2023_103052 crossref_primary_10_1360_SSI_2022_0404 crossref_primary_10_1016_j_ces_2023_118900 |
Cites_doi | 10.1023/A:1010933404324 10.1016/j.ces.2007.09.046 10.1016/j.jprocont.2017.05.002 10.1016/j.isatra.2020.07.037 10.1016/j.ces.2018.01.036 10.1021/acs.iecr.5b02266 10.1016/j.compchemeng.2009.08.007 10.1016/j.chemolab.2009.01.001 10.1016/S0098-1354(02)00127-8 10.1021/ie901911p 10.1109/TCST.2006.883234 10.3390/pr10010169 10.1109/DDCLS49620.2020.9275054 10.1016/j.jlp.2016.08.020 10.1016/S0169-7439(00)00058-7 10.1016/j.ces.2011.10.011 10.1016/S0098-1354(00)00509-3 10.1021/acs.iecr.6b01916 10.1016/j.chemolab.2015.04.016 10.1016/j.automatica.2009.02.027 10.1016/0169-7439(95)00076-3 10.1016/j.isatra.2013.11.007 10.1162/089976698300017467 10.1016/j.psep.2008.06.004 10.1016/j.jprocont.2003.09.004 10.1021/ie4039345 10.3390/pr5030035 10.1016/j.chemolab.2012.05.010 10.1016/j.chemolab.2013.10.014 10.1016/S0098-1354(02)00162-X 10.1016/j.chemolab.2021.104371 10.1016/j.jprocont.2019.01.005 10.1021/ie900479g 10.1016/j.isatra.2019.05.013 10.1016/j.jprocont.2014.12.001 10.1021/ie00103a031 10.7551/mitpress/1120.003.0080 10.1021/acs.iecr.7b03600 10.1080/00224065.1996.11979699 10.3182/20120710-4-SG-2026.00172 10.1016/j.jprocont.2017.09.003 10.1016/j.automatica.2014.09.005 10.1016/j.arcontrol.2020.09.004 10.1109/ICDM.2008.17 10.1162/089976602317318938 10.1016/j.cie.2020.106376 10.1016/j.ssci.2019.104580 10.1002/cjce.5450690105 10.1002/bit.21220 10.1021/ie300679e 10.3390/pr10010122 10.1016/j.chemolab.2019.03.012 10.1016/j.arcontrol.2009.08.001 10.1016/j.ins.2013.06.021 10.1016/j.jprocont.2010.12.003 10.1016/B978-0-12-823377-1.50195-6 10.1016/j.ifacol.2015.09.595 10.1016/j.conengprac.2013.06.017 10.1016/j.jprocont.2018.02.005 10.1109/SYSTOL.2010.5676081 10.1002/aic.16489 10.1021/ie9018947 10.1016/j.jprocont.2011.02.004 10.1016/j.compchemeng.2019.04.003 10.3182/20090630-4-ES-2003.00184 10.1016/j.ces.2004.08.007 10.1016/j.arcontrol.2016.09.001 10.1016/j.compchemeng.2019.106515 10.1016/S1004-9541(06)60103-1 10.1002/cjce.23738 10.1016/j.jprocont.2020.09.005 10.1016/j.chemolab.2005.11.003 10.1016/j.ifacol.2018.09.378 10.1021/ie070741+ 10.1016/j.chemolab.2015.05.019 10.3390/su10082935 10.1016/j.engappai.2019.04.013 10.1111/j.1467-9868.2009.00723.x 10.1021/ie102564d 10.1016/j.jprocont.2016.09.007 10.1021/acs.iecr.7b01642 10.1016/j.jlp.2012.03.001 10.1016/j.dib.2020.105779 10.1126/science.290.5500.2323 10.1016/j.jprocont.2015.05.004 10.1016/j.compchemeng.2021.107587 10.1016/j.compchemeng.2018.04.009 10.1021/ie102048f 10.1016/j.measurement.2021.110064 10.1016/j.compchemeng.2010.05.004 10.1021/ie000141+ 10.1016/j.microrel.2016.07.151 10.1016/j.compchemeng.2017.03.026 10.1021/ie070381q 10.1016/S0967-0661(99)00040-4 10.3182/20110828-6-IT-1002.00934 10.1016/j.jprocont.2006.07.005 10.1016/S0169-7439(98)00162-2 10.1016/S0098-1354(02)00161-8 10.1109/TIE.2018.2811358 10.1016/j.ces.2010.08.024 10.1016/S0098-1354(01)00683-4 10.1016/j.ifacol.2017.08.2208 10.1016/j.jprocont.2018.09.009 10.1109/ACCESS.2019.2956494 10.1016/j.chemolab.2015.08.025 10.1016/j.chemolab.2014.04.001 10.3182/20140824-6-ZA-1003.00754 10.1177/0020294020911390 10.1016/j.ces.2004.07.019 10.1016/j.chemolab.2017.09.021 10.1016/j.conengprac.2020.104692 10.1002/aic.16048 10.1016/S0967-0661(99)00038-6 10.1145/2689746.2689747 10.1016/j.jprocont.2016.01.001 10.1002/cjce.23740 10.1016/j.chemolab.2011.10.013 10.1016/j.compchemeng.2020.106762 10.1021/ie8012874 10.1016/j.compchemeng.2020.106978 10.1016/j.jprocont.2018.02.004 10.1080/07408170903019150 10.1016/j.jprocont.2019.09.004 10.1016/j.ifacol.2016.07.259 10.1021/ie801611s 10.1016/j.arcontrol.2012.09.004 10.1023/B:MACH.0000008084.60811.49 10.1016/S0169-7439(00)00062-9 10.1016/j.ces.2003.09.012 10.1016/j.jprocont.2007.11.007 10.1016/j.jprocont.2021.07.007 10.1021/ie202720y 10.1016/j.jprocont.2017.03.005 10.1016/S0967-0661(02)00096-5 10.1016/0098-1354(93)80018-I 10.1016/j.ifacol.2015.09.589 10.1016/j.ces.2018.05.045 10.1002/aic.690480610 10.1002/aic.690490414 10.1002/cjce.5450850414 10.1016/j.jprocont.2005.12.002 10.1016/j.conengprac.2018.11.020 10.1021/acs.iecr.5b04777 10.1007/BF00994018 10.1021/acs.iecr.7b00011 10.1016/j.compchemeng.2017.05.029 10.1016/S0098-1354(97)00262-7 10.1016/j.chemolab.2020.104230 10.1016/j.measurement.2020.108782 10.1021/ie048873f 10.1080/00401706.1995.10485888 10.1002/aic.690420412 10.1016/S1474-6670(17)57142-6 10.1109/INDIN.2017.8104910 10.1016/j.jprocont.2015.11.004 10.1016/j.jprocont.2008.11.001 10.1016/j.psep.2021.10.036 10.1002/aic.10024 10.1103/PhysRevE.97.052216 10.1016/j.chemolab.2017.07.013 10.1016/j.ces.2018.10.024 10.1002/aic.690400809 10.1002/aic.690430810 10.1016/j.compchemeng.2004.02.036 10.1145/1390156.1390294 10.3390/pr9061027 10.1080/00224065.1992.12015232 10.1016/S0009-2509(01)00366-9 10.1016/j.jprocont.2019.01.008 10.1016/0169-7439(95)00043-7 10.1016/j.compchemeng.2020.107064 10.1016/j.compchemeng.2003.09.031 10.1021/ie302069q 10.1002/aic.690490113 10.1109/TII.2017.2695583 10.1016/j.chemolab.2016.09.006 10.1002/aic.690440712 10.1016/j.isatra.2018.10.016 10.1016/j.conengprac.2016.09.014 10.1016/j.compchemeng.2020.107024 10.1016/j.psep.2020.10.024 10.1021/acs.iecr.5b00373 10.1016/j.jprocont.2016.01.011 10.1021/acs.iecr.9b02391 10.1016/j.ssci.2020.104741 10.1002/cem.2686 10.1016/j.jprocont.2020.06.013 10.1080/00401706.1979.10489779 10.1198/106186006X113430 10.1126/science.1127647 10.1016/j.chemolab.2014.08.007 10.1016/j.jprocont.2012.06.008 10.1016/S0009-2509(02)00338-X 10.1021/ie0497893 10.1016/S0098-1354(02)00160-6 10.1002/aic.11515 10.1109/MCS.2002.1035216 10.1016/j.conengprac.2012.11.013 10.1002/aic.14888 10.3182/20120710-4-SG-2026.00033 10.1007/978-1-4471-5185-2 10.1016/S0098-1354(01)00738-4 10.1109/TCST.2019.2897946 10.1016/j.jprocont.2013.09.017 10.1109/ACCESS.2017.2672780 10.1016/j.compchemeng.2021.107252 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/pr10020335 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database ProQuest Biological Science Collection Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2227-9717 |
ExternalDocumentID | 10_3390_pr10020335 |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC RNS 7SR 8FD ABUWG AZQEC COVID DWQXO GNUQQ JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c295t-91ef3e80a83082d5b47e81af1885b22c759bcf90cb3062fb71e46ad5b3e087103 |
IEDL.DBID | BENPR |
ISSN | 2227-9717 |
IngestDate | Fri Jul 25 12:08:41 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 Tue Jul 01 02:34:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-91ef3e80a83082d5b47e81af1885b22c759bcf90cb3062fb71e46ad5b3e087103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9417-5829 0000-0003-4027-3751 |
OpenAccessLink | https://www.proquest.com/docview/2633053343?pq-origsite=%requestingapplication% |
PQID | 2633053343 |
PQPubID | 2032344 |
ParticipantIDs | proquest_journals_2633053343 crossref_primary_10_3390_pr10020335 crossref_citationtrail_10_3390_pr10020335 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Processes |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_137 Duan (ref_126) 2020; 31 Verde (ref_18) 2019; 189 Qin (ref_35) 2009; 42 Shao (ref_113) 2009; 96 Li (ref_211) 2016; 159 Kano (ref_23) 2002; 26 Chen (ref_98) 2021; 107 Wang (ref_129) 2005; 44 Pistikopoulos (ref_7) 2021; 147 Yao (ref_172) 2009; 33 An (ref_106) 2015; 2 Nomikos (ref_161) 1995; 30 Lee (ref_43) 2004; 14 Sukchotrat (ref_62) 2009; 42 ref_127 Han (ref_151) 2018; 51 Lee (ref_212) 2020; 142 Galicia (ref_48) 2012; 45 ref_120 Dong (ref_80) 2018; 67 ref_124 Cao (ref_150) 2021; 210 Tax (ref_61) 2004; 54 Zhang (ref_93) 2008; 47 Lin (ref_140) 2019; 84 Shang (ref_133) 2018; 65 Nomikos (ref_159) 1994; 40 Liu (ref_184) 2018; 181 Qin (ref_12) 2012; 36 Zhang (ref_148) 2015; 54 Engle (ref_134) 1987; 55 Ji (ref_188) 2020; 81 Yu (ref_45) 2008; 54 Gao (ref_57) 2020; 98 Li (ref_79) 2011; 44 He (ref_112) 2004; 16 Wold (ref_162) 1998; 44 Camacho (ref_177) 2006; 81 Xu (ref_199) 2013; 52 Jung (ref_1) 2020; 124 Ning (ref_197) 2015; 48 Shang (ref_83) 2015; 61 Choi (ref_44) 2004; 28 Zheng (ref_81) 2022; 157 Tong (ref_216) 2019; 75 Zhang (ref_108) 2019; 75 Zhao (ref_200) 2014; 130 Zeng (ref_26) 2014; 50 Cheng (ref_27) 2019; 129 Gharahbagheri (ref_203) 2017; 56 Kano (ref_24) 2002; 48 Ge (ref_15) 2017; 171 Zhao (ref_179) 2009; 48 Venkatasubramanian (ref_9) 2003; 27 Undey (ref_171) 2002; 22 Yao (ref_182) 2009; 19 ref_214 ref_213 Gajjar (ref_50) 2016; 49 Alcala (ref_92) 2010; 49 ref_217 Zou (ref_51) 2006; 15 Luo (ref_71) 2014; 53 Wang (ref_187) 2009; 87 Yue (ref_30) 2001; 40 Yu (ref_116) 2012; 22 Zhang (ref_105) 2018; 64 Wang (ref_47) 2010; 49 Wang (ref_130) 2020; 107 Bi (ref_110) 2021; 156 Gao (ref_86) 2021; 105 Ramaker (ref_170) 2002; 57 Bao (ref_118) 2016; 47 He (ref_114) 2016; 37 Yan (ref_189) 2015; 146 Yu (ref_181) 2009; 48 Yu (ref_180) 2012; 68 Sun (ref_38) 2003; 49 Modak (ref_6) 2020; 141 Jiang (ref_87) 2019; 58 Venkatasubramanian (ref_10) 2003; 27 Hiranmayee (ref_186) 1999; 7 Wiskott (ref_82) 2002; 14 Qin (ref_16) 2019; 126 Zhu (ref_104) 2021; 171 Wan (ref_101) 2019; 7 Wang (ref_155) 2012; 110 Ghosh (ref_28) 2011; 35 Hwang (ref_17) 1999; 7 Cho (ref_91) 2005; 60 Lu (ref_53) 2018; 71 Chen (ref_163) 2002; 57 Zhao (ref_142) 2004; 43 Jackson (ref_21) 1979; 21 Zheng (ref_85) 2020; 95 Venkatasubramanian (ref_11) 2003; 27 ref_111 Choi (ref_164) 2008; 63 Zhang (ref_166) 2007; 46 Zhang (ref_4) 2012; 25 Tong (ref_32) 2017; 58 Apsemidis (ref_88) 2020; 142 Zhou (ref_125) 2016; 65 Wang (ref_156) 2016; 55 Bauer (ref_209) 2007; 15 Chen (ref_46) 2010; 34 Harrou (ref_25) 2016; 44 Song (ref_63) 2015; 27 Wang (ref_132) 2003; 11 Lee (ref_109) 2019; 83 Birol (ref_160) 2002; 26 Zhang (ref_115) 2011; 50 Conlin (ref_193) 2000; 14 Lin (ref_139) 2017; 56 ref_107 Kano (ref_42) 2003; 49 ref_102 Jiang (ref_40) 2015; 32 Nomikos (ref_173) 1995; 37 Zhao (ref_138) 2017; 64 Godoy (ref_94) 2014; 135 Yuan (ref_206) 2012; 45 Wang (ref_158) 2017; 57 Qin (ref_128) 1999; 32 ref_13 Choi (ref_31) 2004; 59 Severson (ref_14) 2016; 42 Westerhuis (ref_194) 2000; 51 Li (ref_73) 2006; 14 Ge (ref_5) 2013; 52 Bakshi (ref_37) 1998; 44 Alcala (ref_195) 2009; 45 Huang (ref_84) 2017; 169 Chen (ref_208) 2017; 50 Roweis (ref_70) 2000; 290 Luo (ref_215) 2017; 106 Dorgo (ref_64) 2021; 149 Ge (ref_176) 2011; 21 Wu (ref_141) 2020; 141 Wang (ref_157) 2015; 148 Li (ref_76) 2019; 95 Peng (ref_196) 2013; 21 Raich (ref_29) 1996; 42 Qin (ref_78) 2020; 50 Yu (ref_103) 2020; 28 Liu (ref_66) 2018; 64 Li (ref_75) 2021; 216 Zhao (ref_143) 2006; 16 Zhao (ref_174) 2014; 138 Huang (ref_77) 2019; 85 He (ref_123) 2015; 145 Kano (ref_22) 2001; 25 Ha (ref_146) 2017; 106 Yu (ref_136) 2020; 92 Lee (ref_90) 2004; 59 Ku (ref_72) 1995; 30 Tan (ref_145) 2011; 51 Ma (ref_152) 2012; 118 Yoo (ref_144) 2007; 96 Smola (ref_89) 1998; 10 Amin (ref_204) 2019; 195 Venkatasubramanian (ref_55) 2019; 65 Luo (ref_117) 2015; 54 ref_58 Chang (ref_185) 1990; 29 Kano (ref_19) 2000; 24 Kresta (ref_36) 1991; 69 ref_54 Fan (ref_96) 2014; 259 Huang (ref_99) 2016; 39 Tong (ref_147) 2013; 23 Lee (ref_165) 2004; 28 Zhao (ref_154) 2010; 65 Gao (ref_167) 2020; 98 Zhan (ref_119) 2017; 56 ref_59 Russell (ref_74) 2000; 51 Hinton (ref_100) 2006; 313 Fan (ref_97) 2014; 22 Chun (ref_52) 2010; 72 Jiang (ref_192) 2015; 26 Tracy (ref_20) 2018; 24 ref_68 Camacho (ref_178) 2006; 16 Kourti (ref_191) 2018; 28 Hui (ref_169) 2020; 53 Lee (ref_95) 2007; 85 Wang (ref_153) 2015; 29 Chen (ref_135) 2009; 48 Li (ref_207) 2018; 97 Wang (ref_69) 2021; 185 Bauer (ref_205) 2008; 18 Hajihosseini (ref_210) 2014; 53 Li (ref_122) 2014; 47 Puggini (ref_67) 2015; 48 Cortes (ref_60) 1995; 20 Zeng (ref_33) 2019; 83 Zhang (ref_168) 2017; 5 Gajjar (ref_49) 2018; 67 Breiman (ref_65) 2001; 45 Lu (ref_175) 2004; 50 Chen (ref_3) 2020; 128 Amin (ref_202) 2018; 189 Downs (ref_34) 1993; 17 Wu (ref_56) 2018; 115 Kwak (ref_121) 2020; 135 Cai (ref_201) 2017; 13 Miller (ref_190) 1998; 8 Negiz (ref_39) 1997; 43 Qin (ref_131) 1998; 22 Xie (ref_149) 2012; 51 ref_2 Ji (ref_198) 2016; 40 Jiang (ref_41) 2017; 58 Sun (ref_183) 2011; 21 ref_8 |
References_xml | – volume: 45 start-page: 5 year: 2001 ident: ref_65 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 63 start-page: 622 year: 2008 ident: ref_164 article-title: Dynamic model-based batch process monitoring publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2007.09.046 – volume: 67 start-page: 1 year: 2018 ident: ref_80 article-title: A novel dynamic PCA algorithm for dynamic data modeling and process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2017.05.002 – volume: 107 start-page: 360 year: 2020 ident: ref_130 article-title: Recursive correlated representation learning for adaptive monitoring of slowly varying processes publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.07.037 – volume: 181 start-page: 101 year: 2018 ident: ref_184 article-title: Sequential local-based Gaussian mixture model for monitoring multiphase batch processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.01.036 – volume: 54 start-page: 11126 year: 2015 ident: ref_117 article-title: Nonlinear Process Monitoring Using Data-Dependent Kernel Global–Local Preserving Projections publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b02266 – volume: 34 start-page: 500 year: 2010 ident: ref_46 article-title: On-line multivariate statistical monitoring of batch processes using Gaussian mixture model publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2009.08.007 – volume: 96 start-page: 75 year: 2009 ident: ref_113 article-title: Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2009.01.001 – volume: 26 start-page: 1553 year: 2002 ident: ref_160 article-title: A modular simulation package for fed-batch fermentation: Penicillin production publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(02)00127-8 – volume: 49 start-page: 7858 year: 2010 ident: ref_47 article-title: Multivariate statistical process monitoring based on statistics pattern analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie901911p – volume: 15 start-page: 12 year: 2007 ident: ref_209 article-title: Finding the Direction of Disturbance Propagation in a Chemical Process Using Transfer Entropy publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2006.883234 – ident: ref_137 doi: 10.3390/pr10010169 – ident: ref_127 doi: 10.1109/DDCLS49620.2020.9275054 – volume: 44 start-page: 73 year: 2016 ident: ref_25 article-title: Kullback-Leibler distance-based enhanced detection of incipient anomalies publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2016.08.020 – volume: 51 start-page: 81 year: 2000 ident: ref_74 article-title: Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(00)00058-7 – volume: 68 start-page: 506 year: 2012 ident: ref_180 article-title: A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.10.011 – volume: 24 start-page: 175 year: 2000 ident: ref_19 article-title: Comparison of statistical process monitoring methods: Application to the Eastman challenge problem publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(00)00509-3 – volume: 56 start-page: 2054 year: 2017 ident: ref_203 article-title: Root Cause Diagnosis of Process Fault Using KPCA and Bayesian Network publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b01916 – volume: 145 start-page: 114 year: 2015 ident: ref_123 article-title: An Improved Detection Statistic for Monitoring the Nonstationary and Nonlinear Processes publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.04.016 – volume: 45 start-page: 1593 year: 2009 ident: ref_195 article-title: Reconstruction-based contribution for process monitoring publication-title: Automatica doi: 10.1016/j.automatica.2009.02.027 – volume: 30 start-page: 179 year: 1995 ident: ref_72 article-title: Disturbance detection and isolation by dynamic principal component analysis publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(95)00076-3 – volume: 53 start-page: 230 year: 2014 ident: ref_210 article-title: Process fault isolation based on transfer entropy algorithm publication-title: ISA Trans. doi: 10.1016/j.isatra.2013.11.007 – volume: 10 start-page: 1299 year: 1998 ident: ref_89 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Comput. doi: 10.1162/089976698300017467 – volume: 87 start-page: 40 year: 2009 ident: ref_187 article-title: SDG-based HAZOP analysis of operating mistakes for PVC process publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2008.06.004 – volume: 14 start-page: 467 year: 2004 ident: ref_43 article-title: Statistical process monitoring with independent component analysis publication-title: J. Process Control doi: 10.1016/j.jprocont.2003.09.004 – volume: 53 start-page: 7696 year: 2014 ident: ref_71 article-title: Process Monitoring with Global–Local Preserving Projections publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie4039345 – ident: ref_13 doi: 10.3390/pr5030035 – volume: 118 start-page: 287 year: 2012 ident: ref_152 article-title: A novel local neighborhood standardization strategy and its application in fault detection of multimode processes publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2012.05.010 – volume: 130 start-page: 135 year: 2014 ident: ref_200 article-title: Reconstruction based fault diagnosis using concurrent phase partition and analysis of relative changes for multiphase batch processes with limited fault batches publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2013.10.014 – volume: 27 start-page: 327 year: 2003 ident: ref_11 article-title: A review of process fault detection and diagnosis Part III: Process history based methods publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(02)00162-X – volume: 216 start-page: 1 year: 2021 ident: ref_75 article-title: Dynamic Non-Gaussian hybrid serial modeling for industrial process monitoring publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2021.104371 – volume: 75 start-page: 77 year: 2019 ident: ref_216 article-title: Distributed partial least squares based residual generation for statistical process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2019.01.005 – volume: 48 start-page: 8585 year: 2009 ident: ref_181 article-title: Multiway Gaussian mixture model based multiphase batch process monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie900479g – volume: 95 start-page: 68 year: 2019 ident: ref_76 article-title: Complex dynamic process monitoring method based on slow feature analysis model of multi-subspace partitioning publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.05.013 – volume: 26 start-page: 17 year: 2015 ident: ref_192 article-title: Canonical variate analysis-based contributions for fault identification publication-title: J. Process Control doi: 10.1016/j.jprocont.2014.12.001 – volume: 29 start-page: 1290 year: 1990 ident: ref_185 article-title: On-line fault diagnosis using the signed directed graph publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00103a031 – ident: ref_111 doi: 10.7551/mitpress/1120.003.0080 – volume: 57 start-page: 292 year: 2017 ident: ref_158 article-title: Multimode Process Monitoring Approach Based on Moving Window Hidden Markov Model publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b03600 – volume: 28 start-page: 409 year: 2018 ident: ref_191 article-title: Multivariate SPC Methods for Process and Product Monitoring publication-title: J. Qual. Technol. doi: 10.1080/00224065.1996.11979699 – volume: 45 start-page: 160 year: 2012 ident: ref_206 article-title: Root cause diagnosis of plant-wide oscillations using granger causality publication-title: IFAC Proc. Vol. doi: 10.3182/20120710-4-SG-2026.00172 – volume: 58 start-page: 131 year: 2017 ident: ref_41 article-title: Fault detection of process correlation structure using canonical variate analysis-based correlation features publication-title: J. Process Control doi: 10.1016/j.jprocont.2017.09.003 – volume: 50 start-page: 2777 year: 2014 ident: ref_26 article-title: Detecting abnormal situations using the Kullback–Leibler divergence publication-title: Automatica doi: 10.1016/j.automatica.2014.09.005 – volume: 8 start-page: 775 year: 1998 ident: ref_190 article-title: Contribution plots: A missing link in multivariate quality control publication-title: Appl. Math. Comput. Sci. – volume: 50 start-page: 29 year: 2020 ident: ref_78 article-title: Bridging systems theory and data science: A unifying review of dynamic latent variable analytics and process monitoring publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2020.09.004 – ident: ref_68 doi: 10.1109/ICDM.2008.17 – volume: 14 start-page: 715 year: 2002 ident: ref_82 article-title: Slow feature analysis: Unsupervised learning of invariances publication-title: Neural Comput. doi: 10.1162/089976602317318938 – volume: 142 start-page: 106376 year: 2020 ident: ref_88 article-title: A review of machine learning kernel methods in statistical process monitoring publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106376 – volume: 124 start-page: 104580 year: 2020 ident: ref_1 article-title: Analysis of severe industrial accidents caused by hazardous chemicals in South Korea from January 2008 to June 2018 publication-title: Saf. Sci. doi: 10.1016/j.ssci.2019.104580 – volume: 69 start-page: 35 year: 1991 ident: ref_36 article-title: Multivariate statistical monitoring of process operating performance publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.5450690105 – volume: 96 start-page: 687 year: 2007 ident: ref_144 article-title: Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21220 – volume: 52 start-page: 9858 year: 2013 ident: ref_199 article-title: Weighted Reconstruction-Based Contribution for Improved Fault Diagnosis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie300679e – ident: ref_120 doi: 10.3390/pr10010122 – volume: 189 start-page: 56 year: 2019 ident: ref_18 article-title: Data-driven monitoring of multimode continuous processes: A review publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2019.03.012 – volume: 33 start-page: 172 year: 2009 ident: ref_172 article-title: A survey on multistage/multiphase statistical modeling methods for batch processes publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2009.08.001 – volume: 259 start-page: 369 year: 2014 ident: ref_96 article-title: Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.06.021 – volume: 21 start-page: 627 year: 2011 ident: ref_183 article-title: A method for multiphase batch process monitoring based on auto phase identification publication-title: J. Process Control doi: 10.1016/j.jprocont.2010.12.003 – ident: ref_217 doi: 10.1016/B978-0-12-823377-1.50195-6 – volume: 48 start-page: 619 year: 2015 ident: ref_197 article-title: Sparse contribution plot for fault diagnosis of multimodal chemical processes publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.09.595 – volume: 22 start-page: 205 year: 2014 ident: ref_97 article-title: Online monitoring of nonlinear multivariate industrial processes using filtering KICA–PCA publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2013.06.017 – volume: 64 start-page: 62 year: 2018 ident: ref_66 article-title: Weighted random forests for fault classification in industrial processes with hierarchical clustering model selection publication-title: J. Process Control doi: 10.1016/j.jprocont.2018.02.005 – ident: ref_214 doi: 10.1109/SYSTOL.2010.5676081 – volume: 65 start-page: 466 year: 2019 ident: ref_55 article-title: The promise of artificial intelligence in chemical engineering: Is it here, finally publication-title: AlChE J. doi: 10.1002/aic.16489 – volume: 49 start-page: 7849 year: 2010 ident: ref_92 article-title: Reconstruction-based contribution for process monitoring with kernel principal component analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9018947 – volume: 21 start-page: 949 year: 2011 ident: ref_176 article-title: Batch process monitoring based on support vector data description method publication-title: J. Process Control doi: 10.1016/j.jprocont.2011.02.004 – volume: 126 start-page: 465 year: 2019 ident: ref_16 article-title: Advances and opportunities in machine learning for process data analytics publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.04.003 – volume: 42 start-page: 1115 year: 2009 ident: ref_35 article-title: Data-driven Fault Detection and Diagnosis for Complex Industrial Processes publication-title: IFAC Proc. Vol. doi: 10.3182/20090630-4-ES-2003.00184 – volume: 60 start-page: 279 year: 2005 ident: ref_91 article-title: Fault identification for process monitoring using kernel principal component analysis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.08.007 – volume: 42 start-page: 190 year: 2016 ident: ref_14 article-title: Perspectives on process monitoring of industrial systems publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2016.09.001 – volume: 129 start-page: 106515 year: 2019 ident: ref_27 article-title: A novel process monitoring approach based on variational recurrent autoencoder publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106515 – volume: 14 start-page: 486 year: 2006 ident: ref_73 article-title: Fault Isolation by Partial Dynamic Principal Component Analysis in Dynamic Process publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(06)60103-1 – volume: 98 start-page: 1269 year: 2020 ident: ref_167 article-title: Batch process monitoring using multiway Laplacian autoencoders publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23738 – ident: ref_8 – volume: 95 start-page: 10 year: 2020 ident: ref_85 article-title: Enhanced canonical variate analysis with slow feature for dynamic process status analytics publication-title: J. Process Control doi: 10.1016/j.jprocont.2020.09.005 – volume: 81 start-page: 127 year: 2006 ident: ref_177 article-title: Multi-phase principal component analysis for batch processes modelling publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2005.11.003 – volume: 51 start-page: 482 year: 2018 ident: ref_151 article-title: PCA-SDG based process monitoring and fault diagnosis: Application to an industrial pyrolysis furnace publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.09.378 – volume: 47 start-page: 1120 year: 2008 ident: ref_93 article-title: Nonlinear multivariate quality estimation and prediction based on kernel partial least squares publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie070741+ – volume: 146 start-page: 136 year: 2015 ident: ref_189 article-title: Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO) publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.05.019 – ident: ref_2 doi: 10.3390/su10082935 – volume: 83 start-page: 13 year: 2019 ident: ref_109 article-title: Process monitoring using variational autoencoder for high-dimensional nonlinear processes publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.04.013 – volume: 72 start-page: 3 year: 2010 ident: ref_52 article-title: Sparse partial least squares regression for simultaneous dimension reduction and variable selection publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2009.00723.x – volume: 50 start-page: 6837 year: 2011 ident: ref_115 article-title: Global–Local Structure Analysis Model and Its Application for Fault Detection and Identification publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie102564d – volume: 47 start-page: 121 year: 2016 ident: ref_118 article-title: Improved fault detection and diagnosis using sparse global-local preserving projections publication-title: J. Process Control doi: 10.1016/j.jprocont.2016.09.007 – volume: 56 start-page: 10743 year: 2017 ident: ref_119 article-title: Enhanced Fault Detection Based on Ensemble Global–Local Preserving Projections with Quantitative Global–Local Structure Analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b01642 – volume: 25 start-page: 686 year: 2012 ident: ref_4 article-title: Characteristics of hazardous chemical accidents in China: A statistical investigation publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2012.03.001 – volume: 31 start-page: 105779 year: 2020 ident: ref_126 article-title: ARIMA modelling and forecasting of irregularly patterned COVID-19 outbreaks using Japanese and South Korean data publication-title: Data Brief doi: 10.1016/j.dib.2020.105779 – volume: 290 start-page: 2323 year: 2000 ident: ref_70 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – volume: 32 start-page: 109 year: 2015 ident: ref_40 article-title: Canonical variate analysis-based monitoring of process correlation structure using causal feature representation publication-title: J. Process Control doi: 10.1016/j.jprocont.2015.05.004 – volume: 157 start-page: 107587 year: 2022 ident: ref_81 article-title: Retrospective comparison of several typical linear dynamic latent variable models for industrial process monitoring publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107587 – volume: 115 start-page: 185 year: 2018 ident: ref_56 article-title: Deep convolutional neural network model based chemical process fault diagnosis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2018.04.009 – volume: 16 start-page: 153 year: 2004 ident: ref_112 article-title: Locality preserving projections publication-title: Adv. Neural Inf. Process. Syst. – volume: 2 start-page: 1 year: 2015 ident: ref_106 article-title: Variational autoencoder based anomaly detection using reconstruction probability publication-title: Spec. Lect. IE – volume: 51 start-page: 374 year: 2011 ident: ref_145 article-title: Multimode Process Monitoring Based on Mode Identification publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie102048f – volume: 185 start-page: 110064 year: 2021 ident: ref_69 article-title: A new method for fault detection of aero-engine based on isolation forest publication-title: Measurement doi: 10.1016/j.measurement.2021.110064 – volume: 81 start-page: 541 year: 2020 ident: ref_188 article-title: Fault Diagnosis Algorithm of Chemical Process Based on Information Entropy publication-title: Chem. Eng. Trans. – volume: 35 start-page: 342 year: 2011 ident: ref_28 article-title: Evaluation of decision fusion strategies for effective collaboration among heterogeneous fault diagnostic methods publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2010.05.004 – volume: 40 start-page: 4403 year: 2001 ident: ref_30 article-title: Reconstruction-based fault identification using a combined index publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie000141+ – volume: 65 start-page: 265 year: 2016 ident: ref_125 article-title: Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2016.07.151 – volume: 106 start-page: 1 year: 2017 ident: ref_215 article-title: Refined convergent cross-mapping for disturbance propagation analysis of chemical processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.03.026 – volume: 46 start-page: 7780 year: 2007 ident: ref_166 article-title: Fault detection of nonlinear processes using multiway kernel independent component analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie070381q – volume: 7 start-page: 903 year: 1999 ident: ref_186 article-title: PCA-SDG based process monitoring and fault diagnosis publication-title: Control. Eng. Pract. doi: 10.1016/S0967-0661(99)00040-4 – volume: 44 start-page: 12886 year: 2011 ident: ref_79 article-title: Dynamic latent variable modeling for statistical process monitoring publication-title: IFAC Proc. Vol. doi: 10.3182/20110828-6-IT-1002.00934 – volume: 16 start-page: 1021 year: 2006 ident: ref_178 article-title: Online monitoring of batch processes using multi-phase principal component analysis publication-title: J. Process Control doi: 10.1016/j.jprocont.2006.07.005 – volume: 44 start-page: 331 year: 1998 ident: ref_162 article-title: Modelling and diagnostics of batch processes and analogous kinetic experiments publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(98)00162-2 – volume: 27 start-page: 313 year: 2003 ident: ref_10 article-title: A review of process fault detection and diagnosis Part II: Qualitative models and search strategies publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(02)00161-8 – volume: 65 start-page: 8895 year: 2018 ident: ref_133 article-title: Recursive Slow Feature Analysis for Adaptive Monitoring of Industrial Processes publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2811358 – volume: 65 start-page: 5961 year: 2010 ident: ref_154 article-title: Statistical analysis and online monitoring for multimode processes with between-mode transitions publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.08.024 – volume: 25 start-page: 1103 year: 2001 ident: ref_22 article-title: A new multivariate statistical process monitoring method using principal component analysis publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(01)00683-4 – volume: 50 start-page: 13898 year: 2017 ident: ref_208 article-title: Root cause diagnosis of oscillation-type plant faults using nonlinear causality analysis publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2017.08.2208 – volume: 71 start-page: 90 year: 2018 ident: ref_53 article-title: Sparse canonical variate analysis approach for process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2018.09.009 – volume: 7 start-page: 173827 year: 2019 ident: ref_101 article-title: Outlier Detection for Monitoring Data Using Stacked Autoencoder publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2956494 – volume: 148 start-page: 51 year: 2015 ident: ref_157 article-title: Hidden Markov model-based approach for multimode process monitoring publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.08.025 – volume: 135 start-page: 76 year: 2014 ident: ref_94 article-title: New contributions to non-linear process monitoring through kernel partial least squares publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2014.04.001 – volume: 47 start-page: 10616 year: 2014 ident: ref_122 article-title: Nonstationarity and cointegration tests for fault detection of dynamic processes publication-title: IFAC Proc. Vol. doi: 10.3182/20140824-6-ZA-1003.00754 – volume: 53 start-page: 994 year: 2020 ident: ref_169 article-title: Multiway dynamic nonlinear global neighborhood preserving embedding method for monitoring batch process publication-title: Meas. Control doi: 10.1177/0020294020911390 – volume: 59 start-page: 5897 year: 2004 ident: ref_31 article-title: Nonlinear dynamic process monitoring based on dynamic kernel PCA publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.07.019 – volume: 171 start-page: 16 year: 2017 ident: ref_15 article-title: Review on data-driven modeling and monitoring for plant-wide industrial processes publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.09.021 – volume: 107 start-page: 104692 year: 2021 ident: ref_98 article-title: Key-performance-indicator-related state monitoring based on kernel canonical correlation analysis publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2020.104692 – volume: 64 start-page: 1662 year: 2017 ident: ref_138 article-title: A full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis publication-title: AlChE J. doi: 10.1002/aic.16048 – volume: 7 start-page: 891 year: 1999 ident: ref_17 article-title: Real-time monitoring for a process with multiple operating modes publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(99)00038-6 – ident: ref_59 doi: 10.1145/2689746.2689747 – volume: 39 start-page: 88 year: 2016 ident: ref_99 article-title: Related and independent variable fault detection based on KPCA and SVDD publication-title: J. Process Control doi: 10.1016/j.jprocont.2016.01.001 – volume: 98 start-page: 1280 year: 2020 ident: ref_57 article-title: A process fault diagnosis method using multi-time scale dynamic feature extraction based on convolutional neural network publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.23740 – volume: 110 start-page: 144 year: 2012 ident: ref_155 article-title: Process monitoring based on mode identification for multi-mode process with transitions publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2011.10.013 – volume: 27 start-page: 130 year: 2015 ident: ref_63 article-title: Decision tree methods: Applications for classification and prediction publication-title: Shanghai Arch. Psychiatry – volume: 135 start-page: 106762 year: 2020 ident: ref_121 article-title: Extracting nonstationary features for process data analytics and application in fouling detection publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106762 – volume: 48 start-page: 9163 year: 2009 ident: ref_179 article-title: Nonlinear Batch Process Monitoring Using Phase-Based Kernel-Independent Component AnalysisPrincipal Component Analysis (KICAPCA) publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie8012874 – volume: 141 start-page: 106978 year: 2020 ident: ref_6 article-title: Forty years of computers & chemical engineering: A bibliometric analysis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106978 – volume: 64 start-page: 49 year: 2018 ident: ref_105 article-title: Automated feature learning for nonlinear process monitoring—An approach using stacked denoising autoencoder and k-neare.est neighbor rule publication-title: J. Process Control doi: 10.1016/j.jprocont.2018.02.004 – volume: 42 start-page: 107 year: 2009 ident: ref_62 article-title: One-class classification-based control charts for multivariate process monitoring publication-title: IIE Trans. doi: 10.1080/07408170903019150 – volume: 83 start-page: 63 year: 2019 ident: ref_33 article-title: Mutual information-based sparse multiblock dissimilarity method for incipient fault detection and diagnosis in plant-wide process publication-title: J. Process Control doi: 10.1016/j.jprocont.2019.09.004 – volume: 49 start-page: 693 year: 2016 ident: ref_50 article-title: Use of sparse principal component analysis (SPCA) for fault detection publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.07.259 – volume: 48 start-page: 3533 year: 2009 ident: ref_135 article-title: Cointegration testing method for monitoring nonstationary processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie801611s – volume: 36 start-page: 220 year: 2012 ident: ref_12 article-title: Survey on data-driven industrial process monitoring and diagnosis publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2012.09.004 – volume: 54 start-page: 45 year: 2004 ident: ref_61 article-title: Support vector data description publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000008084.60811.49 – volume: 51 start-page: 95 year: 2000 ident: ref_194 article-title: Generalized contribution plots in multivariate statistical process monitoring publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(00)00062-9 – volume: 59 start-page: 223 year: 2004 ident: ref_90 article-title: Nonlinear process monitoring using kernel principal component analysis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2003.09.012 – volume: 18 start-page: 707 year: 2008 ident: ref_205 article-title: A practical method for identifying the propagation path of plant-wide disturbances publication-title: J. Process Control doi: 10.1016/j.jprocont.2007.11.007 – volume: 105 start-page: 27 year: 2021 ident: ref_86 article-title: Dynamic system modelling and process monitoring based on long-term dependency slow feature analysis publication-title: J. Process Control doi: 10.1016/j.jprocont.2021.07.007 – volume: 51 start-page: 5497 year: 2012 ident: ref_149 article-title: Dynamic Multimode Process Modeling and Monitoring Using Adaptive Gaussian Mixture Models publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie202720y – volume: 67 start-page: 112 year: 2018 ident: ref_49 article-title: Real-time fault detection and diagnosis using sparse principal component analysis publication-title: J. Process Control doi: 10.1016/j.jprocont.2017.03.005 – volume: 11 start-page: 613 year: 2003 ident: ref_132 article-title: Recursive partial least squares algorithms for monitoring complex industrial processes publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(02)00096-5 – volume: 17 start-page: 245 year: 1993 ident: ref_34 article-title: A plant-wide industrial process control problem publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(93)80018-I – volume: 48 start-page: 583 year: 2015 ident: ref_67 article-title: Fault detection using random forest similarity distance publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.09.589 – volume: 189 start-page: 191 year: 2018 ident: ref_202 article-title: Process system fault detection and diagnosis using a hybrid technique publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.05.045 – volume: 48 start-page: 1231 year: 2002 ident: ref_24 article-title: Statistical process monitoring based on dissimilarity of process data publication-title: AlChE J. doi: 10.1002/aic.690480610 – volume: 49 start-page: 969 year: 2003 ident: ref_42 article-title: Monitoring independent components for fault detection publication-title: AlChE J. doi: 10.1002/aic.690490414 – volume: 85 start-page: 526 year: 2007 ident: ref_95 article-title: Fault detection of non-linear processes using kernel independent component analysis publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.5450850414 – volume: 16 start-page: 763 year: 2006 ident: ref_143 article-title: Performance monitoring of processes with multiple operating modes through multiple PLS models publication-title: J. Process Control doi: 10.1016/j.jprocont.2005.12.002 – volume: 84 start-page: 139 year: 2019 ident: ref_140 article-title: Monitoring nonstationary and dynamic trends for practical process fault diagnosis publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2018.11.020 – volume: 55 start-page: 4613 year: 2016 ident: ref_156 article-title: Hidden Markov Model-Based Fault Detection Approach for a Multimode Process publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b04777 – volume: 20 start-page: 273 year: 1995 ident: ref_60 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 56 start-page: 8895 year: 2017 ident: ref_139 article-title: Monitoring Nonstationary Dynamic Systems Using Cointegration and Common-Trends Analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b00011 – volume: 106 start-page: 96 year: 2017 ident: ref_146 article-title: Multi-mode operation of principal component analysis with k-nearest neighbor algorithm to monitor compressors for liquefied natural gas mixed refrigerant processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.05.029 – volume: 22 start-page: 503 year: 1998 ident: ref_131 article-title: Recursive PLS algorithms for adaptive data modeling publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(97)00262-7 – volume: 210 start-page: 104230 year: 2021 ident: ref_150 article-title: Multimodal process monitoring based on variational Bayesian PCA and Kullback-Leibler divergence between mixture models publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.104230 – volume: 171 start-page: 108782 year: 2021 ident: ref_104 article-title: Nonlinear process monitoring based on load weighted denoising autoencoder publication-title: Measurement doi: 10.1016/j.measurement.2020.108782 – volume: 44 start-page: 5691 year: 2005 ident: ref_129 article-title: Process monitoring approach using fast moving window PCA publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie048873f – volume: 37 start-page: 41 year: 1995 ident: ref_173 article-title: Multivariate SPC charts for monitoring batch processes publication-title: Technometrics doi: 10.1080/00401706.1995.10485888 – volume: 42 start-page: 995 year: 1996 ident: ref_29 article-title: Statistical process monitoring and disturbance diagnosis in multivariable continuous processes publication-title: AlChE J. doi: 10.1002/aic.690420412 – volume: 32 start-page: 6686 year: 1999 ident: ref_128 article-title: Recursive PCA for Adaptive Process Monitoring publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)57142-6 – ident: ref_58 doi: 10.1109/INDIN.2017.8104910 – volume: 37 start-page: 46 year: 2016 ident: ref_114 article-title: A novel process monitoring and fault detection approach based on statistics locality preserving projections publication-title: J. Process Control doi: 10.1016/j.jprocont.2015.11.004 – volume: 19 start-page: 816 year: 2009 ident: ref_182 article-title: Phase and transition based batch process modeling and online monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2008.11.001 – volume: 156 start-page: 581 year: 2021 ident: ref_110 article-title: A novel orthogonal self-attentive variational autoencoder method for interpretable chemical process fault detection and identification publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.10.036 – volume: 14 start-page: 725 year: 2000 ident: ref_193 article-title: Confidence limits for contribution plots publication-title: J. Chemom. A J. Chemom. Soc. – volume: 50 start-page: 255 year: 2004 ident: ref_175 article-title: Sub-PCA modeling and on-line monitoring strategy for batch processes publication-title: AlChE J. doi: 10.1002/aic.10024 – volume: 97 start-page: 052216 year: 2018 ident: ref_207 article-title: Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.052216 – volume: 169 start-page: 1 year: 2017 ident: ref_84 article-title: Slow feature analysis based on online feature reordering and feature selection for dynamic chemical process monitoring publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.07.013 – volume: 195 start-page: 777 year: 2019 ident: ref_204 article-title: Fault detection and pathway analysis using a dynamic Bayesian network publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.10.024 – volume: 40 start-page: 1361 year: 1994 ident: ref_159 article-title: Monitoring batch processes using multiway principal component analysis publication-title: AlChE J. doi: 10.1002/aic.690400809 – volume: 43 start-page: 2002 year: 1997 ident: ref_39 article-title: Statistical monitoring of multivariable dynamic processes with state-space models publication-title: AlChE J. doi: 10.1002/aic.690430810 – volume: 28 start-page: 1837 year: 2004 ident: ref_165 article-title: Fault detection of batch processes using multiway kernel principal component analysis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2004.02.036 – ident: ref_102 doi: 10.1145/1390156.1390294 – ident: ref_213 doi: 10.3390/pr9061027 – volume: 24 start-page: 88 year: 2018 ident: ref_20 article-title: Multivariate Control Charts for Individual Observations publication-title: J. Qual. Technol. doi: 10.1080/00224065.1992.12015232 – volume: 57 start-page: 63 year: 2002 ident: ref_163 article-title: On-line batch process monitoring using dynamic PCA and dynamic PLS models publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(01)00366-9 – volume: 75 start-page: 136 year: 2019 ident: ref_108 article-title: Gaussian feature learning based on variational autoencoder for improving nonlinear process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2019.01.008 – volume: 30 start-page: 97 year: 1995 ident: ref_161 article-title: Multi-way partial least squares in monitoring batch processes publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(95)00043-7 – volume: 142 start-page: 107064 year: 2020 ident: ref_212 article-title: Data-driven fault diagnosis for chemical processes using transfer entropy and graphical lasso publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.107064 – volume: 28 start-page: 1377 year: 2004 ident: ref_44 article-title: Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2003.09.031 – volume: 52 start-page: 3543 year: 2013 ident: ref_5 article-title: Review of Recent Research on Data-Based Process Monitoring publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie302069q – volume: 49 start-page: 140 year: 2003 ident: ref_38 article-title: Detecting abnormal process trends by wavelet-domain hidden Markov models publication-title: AlChE J. doi: 10.1002/aic.690490113 – volume: 13 start-page: 2227 year: 2017 ident: ref_201 article-title: Bayesian Networks in Fault Diagnosis publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2695583 – volume: 159 start-page: 1 year: 2016 ident: ref_211 article-title: Data-driven root cause diagnosis of faults in process industries publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2016.09.006 – ident: ref_107 – volume: 44 start-page: 1596 year: 1998 ident: ref_37 article-title: Multiscale PCA with application to multivariate statistical process monitoring publication-title: AlChE J. doi: 10.1002/aic.690440712 – volume: 85 start-page: 119 year: 2019 ident: ref_77 article-title: Fault detection in dynamic plant-wide process by multi-block slow feature analysis and support vector data description publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.10.016 – ident: ref_124 – volume: 58 start-page: 34 year: 2017 ident: ref_32 article-title: Ensemble modified independent component analysis for enhanced non-Gaussian process monitoring publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2016.09.014 – volume: 141 start-page: 107024 year: 2020 ident: ref_141 article-title: Self-adaptive deep learning for multimode process monitoring publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.107024 – volume: 149 start-page: 312 year: 2021 ident: ref_64 article-title: Decision trees for informative process alarm definition and alarm-based fault classification publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2020.10.024 – volume: 54 start-page: 11866 year: 2015 ident: ref_148 article-title: Novel Monitoring Strategy Combining the Advantages of the Multiple Modeling Strategy and Gaussian Mixture Model for Multimode Processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b00373 – volume: 40 start-page: 24 year: 2016 ident: ref_198 article-title: On the use of reconstruction-based contribution for fault diagnosis publication-title: J. Process Control doi: 10.1016/j.jprocont.2016.01.011 – volume: 58 start-page: 12899 year: 2019 ident: ref_87 article-title: Review and Perspectives of Data-Driven Distributed Monitoring for Industrial Plant-Wide Processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b02391 – volume: 128 start-page: 104741 year: 2020 ident: ref_3 article-title: Chemical industry in China: The current status, safety problems, and pathways for future sustainable development publication-title: Saf. Sci. doi: 10.1016/j.ssci.2020.104741 – volume: 29 start-page: 126 year: 2015 ident: ref_153 article-title: A novel multi-mode data processing method and its application in industrial process monitoring publication-title: J. Chemom. doi: 10.1002/cem.2686 – volume: 92 start-page: 319 year: 2020 ident: ref_136 article-title: Recursive cointegration analytics for adaptive monitoring of nonstationary industrial processes with both static and dynamic variations publication-title: J. Process Control doi: 10.1016/j.jprocont.2020.06.013 – volume: 21 start-page: 341 year: 1979 ident: ref_21 article-title: Control Procedures for Residuals Associated With Principal Component Analysis publication-title: Technometrics doi: 10.1080/00401706.1979.10489779 – volume: 15 start-page: 265 year: 2006 ident: ref_51 article-title: Sparse Principal Component Analysis publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186006X113430 – volume: 55 start-page: 251 year: 1987 ident: ref_134 article-title: Co-integration and error correction: Representation, estimation, and testing publication-title: Econom. J. Econom. Soc. – volume: 313 start-page: 504 year: 2006 ident: ref_100 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 138 start-page: 178 year: 2014 ident: ref_174 article-title: Inter-batch-evolution-traced process monitoring based on inter-batch mode division for multiphase batch processes publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2014.08.007 – volume: 22 start-page: 1358 year: 2012 ident: ref_116 article-title: Local and global principal component analysis for process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2012.06.008 – volume: 57 start-page: 3979 year: 2002 ident: ref_170 article-title: Critical evaluation of approaches for on-line batch process monitoring publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(02)00338-X – volume: 43 start-page: 7025 year: 2004 ident: ref_142 article-title: Monitoring of processes with multiple operating modes through multiple principle component analysis models publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0497893 – volume: 27 start-page: 293 year: 2003 ident: ref_9 article-title: A review of process fault detection and diagnosis Part I: Quantitative model-based methods publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(02)00160-6 – volume: 54 start-page: 1811 year: 2008 ident: ref_45 article-title: Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models publication-title: AlChE J. doi: 10.1002/aic.11515 – volume: 22 start-page: 40 year: 2002 ident: ref_171 article-title: Statistical monitoring of multistage, multiphase batch processes publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.2002.1035216 – volume: 21 start-page: 360 year: 2013 ident: ref_196 article-title: Contribution rate plot for nonlinear quality-related fault diagnosis with application to the hot strip mill process publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2012.11.013 – volume: 61 start-page: 3666 year: 2015 ident: ref_83 article-title: Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis publication-title: AlChE J. doi: 10.1002/aic.14888 – volume: 45 start-page: 39 year: 2012 ident: ref_48 article-title: A comprehensive evaluation of Statistics Pattern Analysis based process monitoring publication-title: IFAC Proc. Vol. doi: 10.3182/20120710-4-SG-2026.00033 – ident: ref_54 doi: 10.1007/978-1-4471-5185-2 – volume: 26 start-page: 161 year: 2002 ident: ref_23 article-title: Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(01)00738-4 – volume: 28 start-page: 1083 year: 2020 ident: ref_103 article-title: Robust Monitoring and Fault Isolation of Nonlinear Industrial Processes Using Denoising Autoencoder and Elastic Net publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2019.2897946 – volume: 23 start-page: 1497 year: 2013 ident: ref_147 article-title: An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.09.017 – volume: 5 start-page: 2696 year: 2017 ident: ref_168 article-title: Batch Process Monitoring Based on Multiway Global Preserving Kernel Slow Feature Analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2672780 – volume: 147 start-page: 107252 year: 2021 ident: ref_7 article-title: Process systems engineering—The generation next? publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107252 |
SSID | ssj0000913856 |
Score | 2.4692664 |
SecondaryResourceType | review_article |
Snippet | Safe and stable operation plays an important role in the chemical industry. Fault detection and diagnosis (FDD) make it possible to identify abnormal process... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 335 |
SubjectTerms | Artificial intelligence Carbon Chemical industry Data analysis Data processing Datasets Distributed control systems False alarms Fault detection Fault diagnosis Industrial applications Monitoring Reviews Simulation |
Title | A Review on Data-Driven Process Monitoring Methods: Characterization and Mining of Industrial Data |
URI | https://www.proquest.com/docview/2633053343 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA5uu-hB3FSczhHQgzuUtU3Tpl5kus0hdIg42K3k50naudarf7tJm_0QxGPJI4e85uV9L3nfB8AtF1K4AkcOVSR0gpALh0mXOQhhqhGGCDzPNAon83C2CF6WeGkLboV9VrmJiVWgFjk3NfKhH2rkbfpG0cPq0zGqUeZ21UpoNEBLh2CiwVfrcTJ_fdtWWQzrJcFhzUuKNL4frtZedftW6bvtnUS_A3F1ukxPwLFNC-Go9mMbHMisA472yAI7oG23YQHvLFf04BSwEayr-zDP4JiW1BmvTfyCtgEA1nvWzACTSiy6uIdPW5LmugcT0kzApFKKgLmCOzWPasYzsJhO3p9mjpVNcLgf41KHL6mQJC4lhopGYBZEknhUeYRg5vs8wjHjKnY503DBVyzyZBBSbYekq-GTi85BM8szeQGgpxT1eRhw5ssgoijmJl-kSFCdRwjFu2CwWcKUW05xI23xkWpsYZY73S13F9xsbVc1k8afVr2NJ1K7m4p05_vL_4evwKFv2hOqV9U90CzXX_JaJw0l64MGmT737f-hv5LvyQ9LXMS5 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5qPagHsT6wWjWggj0s7ib7FETEWqu2PbXgbc3zJNvaVsQ_5W80ye62CuLNc4YcJjOTmUzm-wBOuJDCFUHkUBWHjh9y4TDpMoeQgOoKQ_ieZwaFe_2wM_QfnoKnCnyWszDmW2UZE22gFiNu3sjPcagrbzM3Sq7Gr45hjTLd1ZJCIzeLR_nxrku26eV9S5_vKcbt28FNxylYBRyOk2CmvVsqImOXxgapRQTMj2TsUeXFccAw5lGQMK4SlzOdTWPFIk_6IdVyRLq6unCJ3ncJln1CEuNRcftu_qZjMDbjIMxRUPW6ez6eeLbXZ9nkvt17P8O-vcvaG7BeJKHoOreaGlRktglr36AJN6FWOP0UnRXI1M0tYNco7yWgUYZadEad1sRES1SMG6A8QpgdUM9SU08v0M0cEjqf-EQ0E6hneSnQSKEFd4jdcRuG_6LOHahmo0zuAvKUopiHPmdY-hElCTfZKSWC6qxFKF6HZqnClBcI5oZI4yXVlYxRd7pQdx2O57LjHLfjV6lGeRJp4bvTdGFpe38vH8FKZ9Drpt37_uM-rGIzGGH_czegOpu8yQOdrszYobURBM__bZRf8Yf9iA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB60BdGD-MS3ARX0sHQ32acgUm2LVVtEFLyteZ5kW9uK-Nf8dSa72baCeOs5Qw6TyTwyme8DOOZCClcEkUNVHDp-yIXDpMscQgKqKwzhe54ZFO50w5tn__YleJmD73IWxnyrLH1i7qhFj5s38hoOdeVt5kZJTdlvEQ-N1mX_3TEMUqbTWtJpFCZyJ78-dfk2vGg39FmfYNxqPl3fOJZhwOE4CUb6pktFZOzS2KC2iID5kYw9qrw4DhjGPAoSxlXicqYza6xY5Ek_pFqOSFdXGi7R-85DNdJVkVuB6lWz-_A4fuExiJtxEBaYqIQkbq0_8PLOX84tNxUFfweBPLK1VmDZpqSoXtjQKszJbA2WpoAK12DVuoAhOrU41WfrwOqo6CygXoYadESdxsD4TmSHD1DhL8wOqJMTVQ_P0fUYILqY_0Q0E6iTs1SgnkITJpF8xw14nolCN6GS9TK5BchTimIe-pxh6UeUJNzkqpQIqnMYofg2nJUqTLnFMze0Gm-prmuMutOJurfhaCzbL1A8_pTaK08itTd5mE7sbuf_5UNY0AaZ3re7d7uwiM2URP65ew8qo8GH3Ne5y4gdWCNB8Dpru_wByaMDKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+Data-Driven+Process+Monitoring+Methods%3A+Characterization+and+Mining+of+Industrial+Data&rft.jtitle=Processes&rft.au=Cheng%2C+Ji&rft.au=Sun%2C+Wei&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=10&rft.issue=2&rft.spage=335&rft_id=info:doi/10.3390%2Fpr10020335&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |