Multiscale Low-Light Image Enhancement Network With Illumination Constraint
Images captured under low-light environments typically have poor visibility, affecting many advanced computer vision tasks. In recent years, there have been some low-light image enhancement models based on deep learning, but they have not been able to effectively mine the deep multiscale features in...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 11; pp. 7403 - 7417 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Images captured under low-light environments typically have poor visibility, affecting many advanced computer vision tasks. In recent years, there have been some low-light image enhancement models based on deep learning, but they have not been able to effectively mine the deep multiscale features in the image, resulting in poor generalization performance and instability of the model. The disadvantages are mainly reflected in the color distortion, color unsaturation and artifacts. Current methods unable to adjust the exposure effectively, resulting in uneven exposure or partial overexposure. To address these issues, we propose an end-to-end low-light image enhancement model, which is called multiscale low-light image enhancement network with illumination constraint (MLLEN-IC), to achieve preferable generalization ability and stable performance. On the one hand, we use the squeeze-and-excitation-Res2Net block (SE-Res2block) as a base unit to enhance the model's ability by extracting deep multiscale features. On the other hand, to make the model more adaptable in low-light image enhancement tasks, we calculate the illumination constraint by the low-light itself to prevent overexposure, uneven exposure, and unsaturated colors. Extensive experiments are conducted to demonstrate MLLEN-IC not only adjusts light levels, but also has a more natural visual effect, and avoids problems such as color distortion, artifacts, and uneven exposure. In particular, MLLEN-IC has pretty generalization and stability performance. The source code and supplementary are available at https://github.com/CCECfgd/MLLEN-IC . |
---|---|
AbstractList | Images captured under low-light environments typically have poor visibility, affecting many advanced computer vision tasks. In recent years, there have been some low-light image enhancement models based on deep learning, but they have not been able to effectively mine the deep multiscale features in the image, resulting in poor generalization performance and instability of the model. The disadvantages are mainly reflected in the color distortion, color unsaturation and artifacts. Current methods unable to adjust the exposure effectively, resulting in uneven exposure or partial overexposure. To address these issues, we propose an end-to-end low-light image enhancement model, which is called multiscale low-light image enhancement network with illumination constraint (MLLEN-IC), to achieve preferable generalization ability and stable performance. On the one hand, we use the squeeze-and-excitation-Res2Net block (SE-Res2block) as a base unit to enhance the model’s ability by extracting deep multiscale features. On the other hand, to make the model more adaptable in low-light image enhancement tasks, we calculate the illumination constraint by the low-light itself to prevent overexposure, uneven exposure, and unsaturated colors. Extensive experiments are conducted to demonstrate MLLEN-IC not only adjusts light levels, but also has a more natural visual effect, and avoids problems such as color distortion, artifacts, and uneven exposure. In particular, MLLEN-IC has pretty generalization and stability performance. The source code and supplementary are available at https://github.com/CCECfgd/MLLEN-IC . |
Author | Chen, C. L. Philip Fan, Guo-Dong Fan, Bi Gan, Min Chen, Guang-Yong |
Author_xml | – sequence: 1 givenname: Guo-Dong orcidid: 0000-0003-0382-6142 surname: Fan fullname: Fan, Guo-Dong email: fgd96@outlook.com organization: College of Computer Science and Technology, Qingdao University, Qingdao, China – sequence: 2 givenname: Bi orcidid: 0000-0003-2193-6943 surname: Fan fullname: Fan, Bi email: fanbi@outlook.com organization: College of Management, Research Institute of Business Analytics and Supply Chain Management, Shenzhen University, Shenzhen, China – sequence: 3 givenname: Min orcidid: 0000-0002-2756-0054 surname: Gan fullname: Gan, Min email: aganmin@aliyun.com organization: College of Computer Science and Technology, Qingdao University, Qingdao, China – sequence: 4 givenname: Guang-Yong orcidid: 0000-0003-2088-9188 surname: Chen fullname: Chen, Guang-Yong email: cgykeda@mail.ustc.edu.cn organization: College of Computer and Date Science, Fuzhou University, Fuzhou, China – sequence: 5 givenname: C. L. Philip orcidid: 0000-0001-5451-7230 surname: Chen fullname: Chen, C. L. Philip email: philip.chen@ieee.org organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
BookMark | eNp9kLtOwzAUhi1UJNrCC8ASiTnFl7hxRhQVqAgwUGC0nPSkdUntYjuqeHvSixgYmM4Z_u9cvgHqGWsAoUuCR4Tg7GaWv77PRhRTOmJEjIXAJ6hPOBcxpZj3uh5zEgtK-BkaeL_CmCQiSfvo8altgvaVaiAq7DYu9GIZoulaLSCamKUyFazBhOgZwta6z-hDh2U0bZp2rY0K2poot8YHp7QJ5-i0Vo2Hi2Mdore7ySx_iIuX-2l-W8QVzXiIBeAsK6tEKahLUdeKqbLM5ixNasZxyYWYCybmaQKMAREqVRQ4IUlS8bRUrGZDdH2Yu3H2qwUf5Mq2znQrJU1pNmYdPu5S4pCqnPXeQS0rHfYn765tJMFyp07u1cmdOnlU16H0D7pxeq3c9__Q1QHSAPALZKJ7NhPsBwxHfUg |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TCSVT_2023_3325357 crossref_primary_10_1016_j_dsp_2024_104524 crossref_primary_10_1016_j_optlastec_2023_110025 crossref_primary_10_1109_TCSVT_2024_3408007 crossref_primary_10_3390_e26030184 crossref_primary_10_1016_j_eswa_2025_126609 crossref_primary_10_3390_electronics12143038 crossref_primary_10_1016_j_engappai_2023_106969 crossref_primary_10_3390_jmse11071285 crossref_primary_10_3390_electronics13183695 crossref_primary_10_1016_j_engappai_2023_107462 crossref_primary_10_1016_j_eswa_2023_122844 crossref_primary_10_1109_TETCI_2024_3358200 crossref_primary_10_1109_TGRS_2023_3299442 crossref_primary_10_1109_TPAMI_2024_3416731 crossref_primary_10_1016_j_jksuci_2024_102234 crossref_primary_10_1016_j_neunet_2023_11_008 crossref_primary_10_1016_j_procs_2023_10_641 crossref_primary_10_1016_j_eswa_2023_120271 crossref_primary_10_1016_j_knosys_2024_111958 crossref_primary_10_1016_j_engappai_2023_106457 crossref_primary_10_1016_j_engappai_2023_106972 crossref_primary_10_1016_j_cag_2023_08_004 crossref_primary_10_1007_s13042_023_01991_7 crossref_primary_10_1145_3689642 crossref_primary_10_1109_ACCESS_2023_3305680 crossref_primary_10_1016_j_cviu_2024_104276 crossref_primary_10_1109_LSP_2024_3480831 crossref_primary_10_1007_s11760_024_03787_w crossref_primary_10_1016_j_cviu_2024_104079 crossref_primary_10_1109_TIM_2023_3317384 crossref_primary_10_1016_j_jvcir_2023_103978 crossref_primary_10_1109_ACCESS_2024_3403452 crossref_primary_10_1117_1_JEI_33_1_013027 crossref_primary_10_1016_j_engappai_2024_109236 crossref_primary_10_1016_j_engappai_2023_107793 crossref_primary_10_1109_TCSVT_2023_3241162 crossref_primary_10_1145_3665498 crossref_primary_10_1016_j_jvcir_2024_104051 crossref_primary_10_1109_TCSVT_2023_3323128 crossref_primary_10_1016_j_engappai_2023_107638 crossref_primary_10_1109_JSTARS_2025_3526208 crossref_primary_10_1016_j_cviu_2024_103952 crossref_primary_10_1109_TGRS_2024_3434416 crossref_primary_10_1038_s41598_025_86949_1 crossref_primary_10_1109_TCSVT_2024_3487849 crossref_primary_10_1109_TIM_2024_3353285 crossref_primary_10_1117_1_JEI_31_6_063015 crossref_primary_10_1109_TCSII_2024_3361561 crossref_primary_10_1109_TCSVT_2023_3313348 crossref_primary_10_1016_j_asoc_2024_112000 crossref_primary_10_1016_j_inffus_2022_12_012 crossref_primary_10_1109_TCSVT_2023_3286802 crossref_primary_10_1007_s11042_024_18459_7 crossref_primary_10_1109_TCSVT_2023_3260212 crossref_primary_10_1109_TCSVT_2023_3294938 crossref_primary_10_1109_TIM_2024_3370779 crossref_primary_10_1109_TCSVT_2024_3482548 crossref_primary_10_1016_j_jvcir_2024_104224 crossref_primary_10_1007_s11263_024_02318_x crossref_primary_10_1109_TCSVT_2024_3377108 crossref_primary_10_3390_agronomy14112526 crossref_primary_10_1016_j_neucom_2024_127688 crossref_primary_10_1007_s11760_024_03733_w crossref_primary_10_1109_TCSVT_2023_3340506 crossref_primary_10_1117_1_JEI_32_2_023005 crossref_primary_10_1016_j_neucom_2024_128974 crossref_primary_10_1109_TCSVT_2024_3414677 crossref_primary_10_1117_1_JEI_34_1_013007 crossref_primary_10_1016_j_inffus_2024_102810 crossref_primary_10_1109_TCSVT_2023_3343696 |
Cites_doi | 10.1109/TCSVT.2020.3037947 10.1109/TPAMI.2019.2938758 10.1109/TCSVT.2018.2828141 10.1364/JOSA.61.000001 10.1109/TIP.2018.2794218 10.1109/CVPR46437.2021.01539 10.1109/TMM.2020.2975922 10.1109/TCSVT.2022.3141578 10.1007/978-3-642-33765-9_55 10.1109/LSP.2012.2227726 10.1007/978-3-319-24574-4_28 10.1109/TIP.2013.2261309 10.1109/CVPR.2000.855874 10.1007/978-3-319-46475-6_43 10.1016/j.patcog.2020.107639 10.1109/TGRS.2021.3113984 10.1109/CVPR.2016.90 10.1145/2964284.2967188 10.1109/ICIP.2015.7351501 10.1016/S0734-189X(87)80186-X 10.1109/CVPR46437.2021.01322 10.1109/TMM.2020.2969790 10.1049/itr2.12173 10.1109/CVPR42600.2020.00185 10.1007/s10489-021-02236-2 10.1109/TCSVT.2021.3049940 10.1109/CVPR42600.2020.00288 10.1016/j.dsp.2003.07.002 10.1109/CVPR.2009.5206848 10.1109/CVPR.2019.00406 10.1109/30.754419 10.1109/CVPR46437.2021.01042 10.1109/TCYB.2020.2983860 10.1007/BF03178082 10.1109/CVPR.2018.00745 10.1109/30.580378 10.1007/s11263-020-01407-x 10.1109/TCYB.2020.2970104 10.1109/TCSVT.2017.2770319 10.1109/TIP.2021.3051462 10.1109/ICCV.2019.00280 10.1109/IGARSS.2019.8900390 10.1109/TCSVT.2019.2917315 10.1145/3343031.3350926 10.1109/TCSVT.2021.3073371 10.1109/TCSVT.2019.2930305 10.1145/1186822.1073272 10.1145/3458754 10.1109/TCSVT.2022.3146731 10.1109/TNNLS.2021.3071245 10.1109/TIP.2021.3064229 10.1109/TIP.2013.2284059 10.1109/ISCAS.2018.8351427 10.1016/j.cviu.2018.10.010 10.1109/TCSVT.2022.3142771 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2022.3186880 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 7417 |
ExternalDocumentID | 10_1109_TCSVT_2022_3186880 9809998 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Guangdong Province grantid: 2022A1515011009 funderid: 10.13039/501100003453 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2021A1515011860 – fundername: Science and Technology Major Project of Guangzhou grantid: 202007030006 – fundername: Taishan Scholar Program of Shandong Province funderid: 10.13039/501100010029 – fundername: National Natural Science Foundation of China grantid: 62073082; 62173091; 71701136; U1813203; U1801262 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-8e099bc4aaefb8ffa3abb9d374f350b588d838d74e33e18a7a2e51144c57ba3f3 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 05:49:20 EDT 2025 Tue Jul 01 00:41:18 EDT 2025 Thu Apr 24 23:12:22 EDT 2025 Wed Aug 27 02:14:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-8e099bc4aaefb8ffa3abb9d374f350b588d838d74e33e18a7a2e51144c57ba3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2756-0054 0000-0001-5451-7230 0000-0003-0382-6142 0000-0003-2193-6943 0000-0003-2088-9188 |
PQID | 2729638386 |
PQPubID | 85433 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TCSVT_2022_3186880 ieee_primary_9809998 proquest_journals_2729638386 crossref_primary_10_1109_TCSVT_2022_3186880 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Wei (ref15) 2018 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 McCartney (ref2) 1977; 28 |
References_xml | – ident: ref4 doi: 10.1109/TCSVT.2020.3037947 – ident: ref21 doi: 10.1109/TPAMI.2019.2938758 – ident: ref31 doi: 10.1109/TCSVT.2018.2828141 – ident: ref1 doi: 10.1364/JOSA.61.000001 – ident: ref54 doi: 10.1109/TIP.2018.2794218 – ident: ref14 doi: 10.1109/CVPR46437.2021.01539 – ident: ref8 doi: 10.1109/TMM.2020.2975922 – ident: ref41 doi: 10.1109/TCSVT.2022.3141578 – ident: ref28 doi: 10.1007/978-3-642-33765-9_55 – ident: ref58 doi: 10.1109/LSP.2012.2227726 – ident: ref47 doi: 10.1007/978-3-319-24574-4_28 – ident: ref57 doi: 10.1109/TIP.2013.2261309 – ident: ref3 doi: 10.1109/CVPR.2000.855874 – ident: ref50 doi: 10.1007/978-3-319-46475-6_43 – year: 2018 ident: ref15 article-title: Deep retinex decomposition for low-light enhancement publication-title: arXiv:1808.04560 – ident: ref11 doi: 10.1016/j.patcog.2020.107639 – ident: ref9 doi: 10.1109/TGRS.2021.3113984 – ident: ref48 doi: 10.1109/CVPR.2016.90 – ident: ref29 doi: 10.1145/2964284.2967188 – ident: ref32 doi: 10.1109/ICIP.2015.7351501 – ident: ref25 doi: 10.1016/S0734-189X(87)80186-X – ident: ref45 doi: 10.1109/CVPR46437.2021.01322 – ident: ref37 doi: 10.1109/TMM.2020.2969790 – ident: ref6 doi: 10.1049/itr2.12173 – ident: ref40 doi: 10.1109/CVPR42600.2020.00185 – ident: ref43 doi: 10.1007/s10489-021-02236-2 – ident: ref19 doi: 10.1109/TCSVT.2021.3049940 – ident: ref42 doi: 10.1109/CVPR42600.2020.00288 – ident: ref22 doi: 10.1016/j.dsp.2003.07.002 – ident: ref53 doi: 10.1109/CVPR.2009.5206848 – volume: 28 start-page: 521 issue: 11 year: 1977 ident: ref2 article-title: Optics of the atmosphere: Scattering by molecules and particles publication-title: Int. J. Comput. Vis. – ident: ref49 doi: 10.1109/CVPR.2019.00406 – ident: ref24 doi: 10.1109/30.754419 – ident: ref16 doi: 10.1109/CVPR46437.2021.01042 – ident: ref33 doi: 10.1109/TCYB.2020.2983860 – ident: ref26 doi: 10.1007/BF03178082 – ident: ref46 doi: 10.1109/CVPR.2018.00745 – ident: ref23 doi: 10.1109/30.580378 – ident: ref36 doi: 10.1007/s11263-020-01407-x – ident: ref34 doi: 10.1109/TCYB.2020.2970104 – ident: ref5 doi: 10.1109/TCSVT.2017.2770319 – ident: ref20 doi: 10.1109/TIP.2021.3051462 – ident: ref51 doi: 10.1109/ICCV.2019.00280 – ident: ref52 doi: 10.1109/IGARSS.2019.8900390 – ident: ref12 doi: 10.1109/TCSVT.2019.2917315 – ident: ref35 doi: 10.1145/3343031.3350926 – ident: ref39 doi: 10.1109/TCSVT.2021.3073371 – ident: ref10 doi: 10.1109/TCSVT.2019.2930305 – ident: ref27 doi: 10.1145/1186822.1073272 – ident: ref7 doi: 10.1145/3458754 – ident: ref18 doi: 10.1109/TCSVT.2021.3073371 – ident: ref38 doi: 10.1109/TCSVT.2022.3146731 – ident: ref17 doi: 10.1109/TNNLS.2021.3071245 – ident: ref13 doi: 10.1109/TIP.2021.3064229 – ident: ref56 doi: 10.1109/TIP.2013.2284059 – ident: ref30 doi: 10.1109/ISCAS.2018.8351427 – ident: ref55 doi: 10.1016/j.cviu.2018.10.010 – ident: ref44 doi: 10.1109/TCSVT.2022.3142771 |
SSID | ssj0014847 |
Score | 2.627863 |
Snippet | Images captured under low-light environments typically have poor visibility, affecting many advanced computer vision tasks. In recent years, there have been... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7403 |
SubjectTerms | Atmospheric modeling Color Computer vision Deep learning Distortion Exposure Feature extraction Histograms Illumination Image color analysis Image enhancement image processing Light Light levels Lighting Low-light image enhancement Res2Net SENet Source code Task analysis U-Net Visibility Visual effects |
Title | Multiscale Low-Light Image Enhancement Network With Illumination Constraint |
URI | https://ieeexplore.ieee.org/document/9809998 https://www.proquest.com/docview/2729638386 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExx4I8ZLOXCDjrVJW_eIpiHeF8bjVuUpELAh6ITEr8dJuwkBQtxySCIrdmJ_SfwZYNcK6Ym8bETOyETCOElbyqgInbFkArnW4QX_4jI7vhand-ndFOxPcmGsteHzmW37ZnjLN0M98ldlBwX6eAanYZqAW52rNXkxEBiKiVG4EEdIfmycINMpDvrdq5s-QcEkIYSKGXoKyC9OKFRV-XEUB_9ytAAXY8nqbyWP7VGl2vrjG2njf0VfhPkm0GSHtWUswZQdLMPcF_rBFTgL2bdvpCXLzofv0bkH6uzkmY4Y1hvce3vws7LL-qs4u32o7tmJL438UN8hMl_uMxSZqFbh-qjX7x5HTXGFSCdFWkVoSSClhZTWKXROcqlUYXguHE87KkU0yNHkwnJuY5S5TEh5BL90mivJHV-DmcFwYNeBxU4bwbVKKXrybDUoCNNkCnmmEqNc3IJ4vNqlbpjHvWxPZUAgnaIMGiq9hspGQy3Ym4x5qXk3_uy94pd80rNZ7RZsjZVaNlvzrUwITtChwzHb-H3UJsz6ueuEwy2YqV5Hdpsij0rtBJP7BHbb1U0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOACH5S26y4IPe4OUJnaSyXGFQC20vWzZ5Rb5KRDQIkiFtL9-x05aIVghbjnYzsgz9sxne74B-GGF9EReNiJnZCJhnKQlZVSEzlgygVzrcIM_GGbdK3FxnV4vwPE8F8ZaGx6f2bb_DHf5ZqKn_qjspEAfz-AiLJPfT-M6W2t-ZyAwlBOjgCGOkDzZLEWmU5yMTn_9HhEYTBLCqJihJ4F85YZCXZV3m3HwMOfrMJjJVj8suWtPK9XWf9_QNn5W-A340oSa7GdtG5uwYMdbsPaKgHAbLkP-7TPpybL-5CXqe6jOeg-0ybCz8Y23CD8qG9aPxdmf2-qG9Xxx5Nv6FJH5gp-hzES1A1fnZ6PTbtSUV4h0UqRVhJYEUlpIaZ1C5ySXShWG58LxtKNSRIMcTS4s5zZGmcuE1EcATKe5ktzxXVgaT8Z2D1jstBFcq5TiJ89Xg4JQTaaQZyoxysUtiGezXeqGe9zLdl8GDNIpyqCh0muobDTUgqN5n8eaeePD1tt-yuctm9luwf5MqWWzOJ_LhAAFbTscs6__73UIK93RoF_2e8PLb7Dq_1OnH-7DUvU0td8pDqnUQTC_f8I92JY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Low-Light+Image+Enhancement+Network+With+Illumination+Constraint&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Guo-Dong%2C+Fan&rft.au=Bi+Fan&rft.au=Gan%2C+Min&rft.au=Chen%2C+Guang-Yong&rft.date=2022-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=11&rft.spage=7403&rft_id=info:doi/10.1109%2FTCSVT.2022.3186880&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |