Multiscale Low-Light Image Enhancement Network With Illumination Constraint

Images captured under low-light environments typically have poor visibility, affecting many advanced computer vision tasks. In recent years, there have been some low-light image enhancement models based on deep learning, but they have not been able to effectively mine the deep multiscale features in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 11; pp. 7403 - 7417
Main Authors Fan, Guo-Dong, Fan, Bi, Gan, Min, Chen, Guang-Yong, Chen, C. L. Philip
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Images captured under low-light environments typically have poor visibility, affecting many advanced computer vision tasks. In recent years, there have been some low-light image enhancement models based on deep learning, but they have not been able to effectively mine the deep multiscale features in the image, resulting in poor generalization performance and instability of the model. The disadvantages are mainly reflected in the color distortion, color unsaturation and artifacts. Current methods unable to adjust the exposure effectively, resulting in uneven exposure or partial overexposure. To address these issues, we propose an end-to-end low-light image enhancement model, which is called multiscale low-light image enhancement network with illumination constraint (MLLEN-IC), to achieve preferable generalization ability and stable performance. On the one hand, we use the squeeze-and-excitation-Res2Net block (SE-Res2block) as a base unit to enhance the model's ability by extracting deep multiscale features. On the other hand, to make the model more adaptable in low-light image enhancement tasks, we calculate the illumination constraint by the low-light itself to prevent overexposure, uneven exposure, and unsaturated colors. Extensive experiments are conducted to demonstrate MLLEN-IC not only adjusts light levels, but also has a more natural visual effect, and avoids problems such as color distortion, artifacts, and uneven exposure. In particular, MLLEN-IC has pretty generalization and stability performance. The source code and supplementary are available at https://github.com/CCECfgd/MLLEN-IC .
AbstractList Images captured under low-light environments typically have poor visibility, affecting many advanced computer vision tasks. In recent years, there have been some low-light image enhancement models based on deep learning, but they have not been able to effectively mine the deep multiscale features in the image, resulting in poor generalization performance and instability of the model. The disadvantages are mainly reflected in the color distortion, color unsaturation and artifacts. Current methods unable to adjust the exposure effectively, resulting in uneven exposure or partial overexposure. To address these issues, we propose an end-to-end low-light image enhancement model, which is called multiscale low-light image enhancement network with illumination constraint (MLLEN-IC), to achieve preferable generalization ability and stable performance. On the one hand, we use the squeeze-and-excitation-Res2Net block (SE-Res2block) as a base unit to enhance the model’s ability by extracting deep multiscale features. On the other hand, to make the model more adaptable in low-light image enhancement tasks, we calculate the illumination constraint by the low-light itself to prevent overexposure, uneven exposure, and unsaturated colors. Extensive experiments are conducted to demonstrate MLLEN-IC not only adjusts light levels, but also has a more natural visual effect, and avoids problems such as color distortion, artifacts, and uneven exposure. In particular, MLLEN-IC has pretty generalization and stability performance. The source code and supplementary are available at https://github.com/CCECfgd/MLLEN-IC .
Author Chen, C. L. Philip
Fan, Guo-Dong
Fan, Bi
Gan, Min
Chen, Guang-Yong
Author_xml – sequence: 1
  givenname: Guo-Dong
  orcidid: 0000-0003-0382-6142
  surname: Fan
  fullname: Fan, Guo-Dong
  email: fgd96@outlook.com
  organization: College of Computer Science and Technology, Qingdao University, Qingdao, China
– sequence: 2
  givenname: Bi
  orcidid: 0000-0003-2193-6943
  surname: Fan
  fullname: Fan, Bi
  email: fanbi@outlook.com
  organization: College of Management, Research Institute of Business Analytics and Supply Chain Management, Shenzhen University, Shenzhen, China
– sequence: 3
  givenname: Min
  orcidid: 0000-0002-2756-0054
  surname: Gan
  fullname: Gan, Min
  email: aganmin@aliyun.com
  organization: College of Computer Science and Technology, Qingdao University, Qingdao, China
– sequence: 4
  givenname: Guang-Yong
  orcidid: 0000-0003-2088-9188
  surname: Chen
  fullname: Chen, Guang-Yong
  email: cgykeda@mail.ustc.edu.cn
  organization: College of Computer and Date Science, Fuzhou University, Fuzhou, China
– sequence: 5
  givenname: C. L. Philip
  orcidid: 0000-0001-5451-7230
  surname: Chen
  fullname: Chen, C. L. Philip
  email: philip.chen@ieee.org
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
BookMark eNp9kLtOwzAUhi1UJNrCC8ASiTnFl7hxRhQVqAgwUGC0nPSkdUntYjuqeHvSixgYmM4Z_u9cvgHqGWsAoUuCR4Tg7GaWv77PRhRTOmJEjIXAJ6hPOBcxpZj3uh5zEgtK-BkaeL_CmCQiSfvo8altgvaVaiAq7DYu9GIZoulaLSCamKUyFazBhOgZwta6z-hDh2U0bZp2rY0K2poot8YHp7QJ5-i0Vo2Hi2Mdore7ySx_iIuX-2l-W8QVzXiIBeAsK6tEKahLUdeKqbLM5ixNasZxyYWYCybmaQKMAREqVRQ4IUlS8bRUrGZDdH2Yu3H2qwUf5Mq2znQrJU1pNmYdPu5S4pCqnPXeQS0rHfYn765tJMFyp07u1cmdOnlU16H0D7pxeq3c9__Q1QHSAPALZKJ7NhPsBwxHfUg
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2023_3325357
crossref_primary_10_1016_j_dsp_2024_104524
crossref_primary_10_1016_j_optlastec_2023_110025
crossref_primary_10_1109_TCSVT_2024_3408007
crossref_primary_10_3390_e26030184
crossref_primary_10_1016_j_eswa_2025_126609
crossref_primary_10_3390_electronics12143038
crossref_primary_10_1016_j_engappai_2023_106969
crossref_primary_10_3390_jmse11071285
crossref_primary_10_3390_electronics13183695
crossref_primary_10_1016_j_engappai_2023_107462
crossref_primary_10_1016_j_eswa_2023_122844
crossref_primary_10_1109_TETCI_2024_3358200
crossref_primary_10_1109_TGRS_2023_3299442
crossref_primary_10_1109_TPAMI_2024_3416731
crossref_primary_10_1016_j_jksuci_2024_102234
crossref_primary_10_1016_j_neunet_2023_11_008
crossref_primary_10_1016_j_procs_2023_10_641
crossref_primary_10_1016_j_eswa_2023_120271
crossref_primary_10_1016_j_knosys_2024_111958
crossref_primary_10_1016_j_engappai_2023_106457
crossref_primary_10_1016_j_engappai_2023_106972
crossref_primary_10_1016_j_cag_2023_08_004
crossref_primary_10_1007_s13042_023_01991_7
crossref_primary_10_1145_3689642
crossref_primary_10_1109_ACCESS_2023_3305680
crossref_primary_10_1016_j_cviu_2024_104276
crossref_primary_10_1109_LSP_2024_3480831
crossref_primary_10_1007_s11760_024_03787_w
crossref_primary_10_1016_j_cviu_2024_104079
crossref_primary_10_1109_TIM_2023_3317384
crossref_primary_10_1016_j_jvcir_2023_103978
crossref_primary_10_1109_ACCESS_2024_3403452
crossref_primary_10_1117_1_JEI_33_1_013027
crossref_primary_10_1016_j_engappai_2024_109236
crossref_primary_10_1016_j_engappai_2023_107793
crossref_primary_10_1109_TCSVT_2023_3241162
crossref_primary_10_1145_3665498
crossref_primary_10_1016_j_jvcir_2024_104051
crossref_primary_10_1109_TCSVT_2023_3323128
crossref_primary_10_1016_j_engappai_2023_107638
crossref_primary_10_1109_JSTARS_2025_3526208
crossref_primary_10_1016_j_cviu_2024_103952
crossref_primary_10_1109_TGRS_2024_3434416
crossref_primary_10_1038_s41598_025_86949_1
crossref_primary_10_1109_TCSVT_2024_3487849
crossref_primary_10_1109_TIM_2024_3353285
crossref_primary_10_1117_1_JEI_31_6_063015
crossref_primary_10_1109_TCSII_2024_3361561
crossref_primary_10_1109_TCSVT_2023_3313348
crossref_primary_10_1016_j_asoc_2024_112000
crossref_primary_10_1016_j_inffus_2022_12_012
crossref_primary_10_1109_TCSVT_2023_3286802
crossref_primary_10_1007_s11042_024_18459_7
crossref_primary_10_1109_TCSVT_2023_3260212
crossref_primary_10_1109_TCSVT_2023_3294938
crossref_primary_10_1109_TIM_2024_3370779
crossref_primary_10_1109_TCSVT_2024_3482548
crossref_primary_10_1016_j_jvcir_2024_104224
crossref_primary_10_1007_s11263_024_02318_x
crossref_primary_10_1109_TCSVT_2024_3377108
crossref_primary_10_3390_agronomy14112526
crossref_primary_10_1016_j_neucom_2024_127688
crossref_primary_10_1007_s11760_024_03733_w
crossref_primary_10_1109_TCSVT_2023_3340506
crossref_primary_10_1117_1_JEI_32_2_023005
crossref_primary_10_1016_j_neucom_2024_128974
crossref_primary_10_1109_TCSVT_2024_3414677
crossref_primary_10_1117_1_JEI_34_1_013007
crossref_primary_10_1016_j_inffus_2024_102810
crossref_primary_10_1109_TCSVT_2023_3343696
Cites_doi 10.1109/TCSVT.2020.3037947
10.1109/TPAMI.2019.2938758
10.1109/TCSVT.2018.2828141
10.1364/JOSA.61.000001
10.1109/TIP.2018.2794218
10.1109/CVPR46437.2021.01539
10.1109/TMM.2020.2975922
10.1109/TCSVT.2022.3141578
10.1007/978-3-642-33765-9_55
10.1109/LSP.2012.2227726
10.1007/978-3-319-24574-4_28
10.1109/TIP.2013.2261309
10.1109/CVPR.2000.855874
10.1007/978-3-319-46475-6_43
10.1016/j.patcog.2020.107639
10.1109/TGRS.2021.3113984
10.1109/CVPR.2016.90
10.1145/2964284.2967188
10.1109/ICIP.2015.7351501
10.1016/S0734-189X(87)80186-X
10.1109/CVPR46437.2021.01322
10.1109/TMM.2020.2969790
10.1049/itr2.12173
10.1109/CVPR42600.2020.00185
10.1007/s10489-021-02236-2
10.1109/TCSVT.2021.3049940
10.1109/CVPR42600.2020.00288
10.1016/j.dsp.2003.07.002
10.1109/CVPR.2009.5206848
10.1109/CVPR.2019.00406
10.1109/30.754419
10.1109/CVPR46437.2021.01042
10.1109/TCYB.2020.2983860
10.1007/BF03178082
10.1109/CVPR.2018.00745
10.1109/30.580378
10.1007/s11263-020-01407-x
10.1109/TCYB.2020.2970104
10.1109/TCSVT.2017.2770319
10.1109/TIP.2021.3051462
10.1109/ICCV.2019.00280
10.1109/IGARSS.2019.8900390
10.1109/TCSVT.2019.2917315
10.1145/3343031.3350926
10.1109/TCSVT.2021.3073371
10.1109/TCSVT.2019.2930305
10.1145/1186822.1073272
10.1145/3458754
10.1109/TCSVT.2022.3146731
10.1109/TNNLS.2021.3071245
10.1109/TIP.2021.3064229
10.1109/TIP.2013.2284059
10.1109/ISCAS.2018.8351427
10.1016/j.cviu.2018.10.010
10.1109/TCSVT.2022.3142771
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3186880
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 7417
ExternalDocumentID 10_1109_TCSVT_2022_3186880
9809998
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province
  grantid: 2022A1515011009
  funderid: 10.13039/501100003453
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2021A1515011860
– fundername: Science and Technology Major Project of Guangzhou
  grantid: 202007030006
– fundername: Taishan Scholar Program of Shandong Province
  funderid: 10.13039/501100010029
– fundername: National Natural Science Foundation of China
  grantid: 62073082; 62173091; 71701136; U1813203; U1801262
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-8e099bc4aaefb8ffa3abb9d374f350b588d838d74e33e18a7a2e51144c57ba3f3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 05:49:20 EDT 2025
Tue Jul 01 00:41:18 EDT 2025
Thu Apr 24 23:12:22 EDT 2025
Wed Aug 27 02:14:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-8e099bc4aaefb8ffa3abb9d374f350b588d838d74e33e18a7a2e51144c57ba3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2756-0054
0000-0001-5451-7230
0000-0003-0382-6142
0000-0003-2193-6943
0000-0003-2088-9188
PQID 2729638386
PQPubID 85433
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2022_3186880
ieee_primary_9809998
proquest_journals_2729638386
crossref_primary_10_1109_TCSVT_2022_3186880
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Wei (ref15) 2018
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
McCartney (ref2) 1977; 28
References_xml – ident: ref4
  doi: 10.1109/TCSVT.2020.3037947
– ident: ref21
  doi: 10.1109/TPAMI.2019.2938758
– ident: ref31
  doi: 10.1109/TCSVT.2018.2828141
– ident: ref1
  doi: 10.1364/JOSA.61.000001
– ident: ref54
  doi: 10.1109/TIP.2018.2794218
– ident: ref14
  doi: 10.1109/CVPR46437.2021.01539
– ident: ref8
  doi: 10.1109/TMM.2020.2975922
– ident: ref41
  doi: 10.1109/TCSVT.2022.3141578
– ident: ref28
  doi: 10.1007/978-3-642-33765-9_55
– ident: ref58
  doi: 10.1109/LSP.2012.2227726
– ident: ref47
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref57
  doi: 10.1109/TIP.2013.2261309
– ident: ref3
  doi: 10.1109/CVPR.2000.855874
– ident: ref50
  doi: 10.1007/978-3-319-46475-6_43
– year: 2018
  ident: ref15
  article-title: Deep retinex decomposition for low-light enhancement
  publication-title: arXiv:1808.04560
– ident: ref11
  doi: 10.1016/j.patcog.2020.107639
– ident: ref9
  doi: 10.1109/TGRS.2021.3113984
– ident: ref48
  doi: 10.1109/CVPR.2016.90
– ident: ref29
  doi: 10.1145/2964284.2967188
– ident: ref32
  doi: 10.1109/ICIP.2015.7351501
– ident: ref25
  doi: 10.1016/S0734-189X(87)80186-X
– ident: ref45
  doi: 10.1109/CVPR46437.2021.01322
– ident: ref37
  doi: 10.1109/TMM.2020.2969790
– ident: ref6
  doi: 10.1049/itr2.12173
– ident: ref40
  doi: 10.1109/CVPR42600.2020.00185
– ident: ref43
  doi: 10.1007/s10489-021-02236-2
– ident: ref19
  doi: 10.1109/TCSVT.2021.3049940
– ident: ref42
  doi: 10.1109/CVPR42600.2020.00288
– ident: ref22
  doi: 10.1016/j.dsp.2003.07.002
– ident: ref53
  doi: 10.1109/CVPR.2009.5206848
– volume: 28
  start-page: 521
  issue: 11
  year: 1977
  ident: ref2
  article-title: Optics of the atmosphere: Scattering by molecules and particles
  publication-title: Int. J. Comput. Vis.
– ident: ref49
  doi: 10.1109/CVPR.2019.00406
– ident: ref24
  doi: 10.1109/30.754419
– ident: ref16
  doi: 10.1109/CVPR46437.2021.01042
– ident: ref33
  doi: 10.1109/TCYB.2020.2983860
– ident: ref26
  doi: 10.1007/BF03178082
– ident: ref46
  doi: 10.1109/CVPR.2018.00745
– ident: ref23
  doi: 10.1109/30.580378
– ident: ref36
  doi: 10.1007/s11263-020-01407-x
– ident: ref34
  doi: 10.1109/TCYB.2020.2970104
– ident: ref5
  doi: 10.1109/TCSVT.2017.2770319
– ident: ref20
  doi: 10.1109/TIP.2021.3051462
– ident: ref51
  doi: 10.1109/ICCV.2019.00280
– ident: ref52
  doi: 10.1109/IGARSS.2019.8900390
– ident: ref12
  doi: 10.1109/TCSVT.2019.2917315
– ident: ref35
  doi: 10.1145/3343031.3350926
– ident: ref39
  doi: 10.1109/TCSVT.2021.3073371
– ident: ref10
  doi: 10.1109/TCSVT.2019.2930305
– ident: ref27
  doi: 10.1145/1186822.1073272
– ident: ref7
  doi: 10.1145/3458754
– ident: ref18
  doi: 10.1109/TCSVT.2021.3073371
– ident: ref38
  doi: 10.1109/TCSVT.2022.3146731
– ident: ref17
  doi: 10.1109/TNNLS.2021.3071245
– ident: ref13
  doi: 10.1109/TIP.2021.3064229
– ident: ref56
  doi: 10.1109/TIP.2013.2284059
– ident: ref30
  doi: 10.1109/ISCAS.2018.8351427
– ident: ref55
  doi: 10.1016/j.cviu.2018.10.010
– ident: ref44
  doi: 10.1109/TCSVT.2022.3142771
SSID ssj0014847
Score 2.627863
Snippet Images captured under low-light environments typically have poor visibility, affecting many advanced computer vision tasks. In recent years, there have been...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7403
SubjectTerms Atmospheric modeling
Color
Computer vision
Deep learning
Distortion
Exposure
Feature extraction
Histograms
Illumination
Image color analysis
Image enhancement
image processing
Light
Light levels
Lighting
Low-light image enhancement
Res2Net
SENet
Source code
Task analysis
U-Net
Visibility
Visual effects
Title Multiscale Low-Light Image Enhancement Network With Illumination Constraint
URI https://ieeexplore.ieee.org/document/9809998
https://www.proquest.com/docview/2729638386
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExx4I8ZLOXCDjrVJW_eIpiHeF8bjVuUpELAh6ITEr8dJuwkBQtxySCIrdmJ_SfwZYNcK6Ym8bETOyETCOElbyqgInbFkArnW4QX_4jI7vhand-ndFOxPcmGsteHzmW37ZnjLN0M98ldlBwX6eAanYZqAW52rNXkxEBiKiVG4EEdIfmycINMpDvrdq5s-QcEkIYSKGXoKyC9OKFRV-XEUB_9ytAAXY8nqbyWP7VGl2vrjG2njf0VfhPkm0GSHtWUswZQdLMPcF_rBFTgL2bdvpCXLzofv0bkH6uzkmY4Y1hvce3vws7LL-qs4u32o7tmJL438UN8hMl_uMxSZqFbh-qjX7x5HTXGFSCdFWkVoSSClhZTWKXROcqlUYXguHE87KkU0yNHkwnJuY5S5TEh5BL90mivJHV-DmcFwYNeBxU4bwbVKKXrybDUoCNNkCnmmEqNc3IJ4vNqlbpjHvWxPZUAgnaIMGiq9hspGQy3Ym4x5qXk3_uy94pd80rNZ7RZsjZVaNlvzrUwITtChwzHb-H3UJsz6ueuEwy2YqV5Hdpsij0rtBJP7BHbb1U0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOACH5S26y4IPe4OUJnaSyXGFQC20vWzZ5Rb5KRDQIkiFtL9-x05aIVghbjnYzsgz9sxne74B-GGF9EReNiJnZCJhnKQlZVSEzlgygVzrcIM_GGbdK3FxnV4vwPE8F8ZaGx6f2bb_DHf5ZqKn_qjspEAfz-AiLJPfT-M6W2t-ZyAwlBOjgCGOkDzZLEWmU5yMTn_9HhEYTBLCqJihJ4F85YZCXZV3m3HwMOfrMJjJVj8suWtPK9XWf9_QNn5W-A340oSa7GdtG5uwYMdbsPaKgHAbLkP-7TPpybL-5CXqe6jOeg-0ybCz8Y23CD8qG9aPxdmf2-qG9Xxx5Nv6FJH5gp-hzES1A1fnZ6PTbtSUV4h0UqRVhJYEUlpIaZ1C5ySXShWG58LxtKNSRIMcTS4s5zZGmcuE1EcATKe5ktzxXVgaT8Z2D1jstBFcq5TiJ89Xg4JQTaaQZyoxysUtiGezXeqGe9zLdl8GDNIpyqCh0muobDTUgqN5n8eaeePD1tt-yuctm9luwf5MqWWzOJ_LhAAFbTscs6__73UIK93RoF_2e8PLb7Dq_1OnH-7DUvU0td8pDqnUQTC_f8I92JY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+Low-Light+Image+Enhancement+Network+With+Illumination+Constraint&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Guo-Dong%2C+Fan&rft.au=Bi+Fan&rft.au=Gan%2C+Min&rft.au=Chen%2C+Guang-Yong&rft.date=2022-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=11&rft.spage=7403&rft_id=info:doi/10.1109%2FTCSVT.2022.3186880&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon