Attention-Driven Loss for Anomaly Detection in Video Surveillance

Recent video anomaly detection methods focus on reconstructing or predicting frames. Under this umbrella, the long-standing inter-class data-imbalance problem resorts to the imbalance between foreground and stationary background objects in video anomaly detection and this has been less investigated...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 30; no. 12; pp. 4639 - 4647
Main Authors Zhou, Joey Tianyi, Zhang, Le, Fang, Zhiwen, Du, Jiawei, Peng, Xi, Xiao, Yang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent video anomaly detection methods focus on reconstructing or predicting frames. Under this umbrella, the long-standing inter-class data-imbalance problem resorts to the imbalance between foreground and stationary background objects in video anomaly detection and this has been less investigated by existing solutions. Naively optimizing the reconstructing loss yields a biased optimization towards background reconstruction rather than the objects of interest in the foreground. To solve this, we proposed a simple yet effective solution, termed attention-driven loss to alleviate the foreground-background imbalance problem in anomaly detection. Specifically, we compute a single mask map that summarizes the frame evolution of moving foreground regions and suppresses the background in the training video clips. After that, we construct an attention map through the combination of the mask map and background to give different weights to the foreground and background region respectively. The proposed attention-driven loss is independent of backbone networks and can be easily augmented in most existing anomaly detection models. Augmented with attention-driven loss, the model is able to achieve AUC 86.0% on Avenue, 83.9% on Ped1, 96% on Ped2 datasets. Extensive experimental results and ablation studies further validate the effectiveness of our model.
AbstractList Recent video anomaly detection methods focus on reconstructing or predicting frames. Under this umbrella, the long-standing inter-class data-imbalance problem resorts to the imbalance between foreground and stationary background objects in video anomaly detection and this has been less investigated by existing solutions. Naively optimizing the reconstructing loss yields a biased optimization towards background reconstruction rather than the objects of interest in the foreground. To solve this, we proposed a simple yet effective solution, termed attention-driven loss to alleviate the foreground-background imbalance problem in anomaly detection. Specifically, we compute a single mask map that summarizes the frame evolution of moving foreground regions and suppresses the background in the training video clips. After that, we construct an attention map through the combination of the mask map and background to give different weights to the foreground and background region respectively. The proposed attention-driven loss is independent of backbone networks and can be easily augmented in most existing anomaly detection models. Augmented with attention-driven loss, the model is able to achieve AUC 86.0% on Avenue, 83.9% on Ped1, 96% on Ped2 datasets. Extensive experimental results and ablation studies further validate the effectiveness of our model.
Author Zhou, Joey Tianyi
Fang, Zhiwen
Zhang, Le
Peng, Xi
Xiao, Yang
Du, Jiawei
Author_xml – sequence: 1
  givenname: Joey Tianyi
  orcidid: 0000-0002-4675-7055
  surname: Zhou
  fullname: Zhou, Joey Tianyi
  organization: Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (ASTAR), Singapore
– sequence: 2
  givenname: Le
  orcidid: 0000-0002-6930-8674
  surname: Zhang
  fullname: Zhang, Le
  email: lzhang027@ntu.edu.sg
  organization: Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (ASTAR), Singapore
– sequence: 3
  givenname: Zhiwen
  surname: Fang
  fullname: Fang, Zhiwen
  organization: Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 4
  givenname: Jiawei
  surname: Du
  fullname: Du, Jiawei
  organization: Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (ASTAR), Singapore
– sequence: 5
  givenname: Xi
  orcidid: 0000-0002-5727-2790
  surname: Peng
  fullname: Peng, Xi
  organization: College of Computer Science, Sichuan University, Chengdu, China
– sequence: 6
  givenname: Yang
  orcidid: 0000-0002-7739-4146
  surname: Xiao
  fullname: Xiao, Yang
  organization: National Key Laboratory of Science and Technology on Multi-Spectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
BookMark eNp9kLtuwjAUhq2KSgXaF2iXSJ1DbSd27BFBbxJSByirZZxjySjY1DFIvH2Tgjp06HTO8H3n8o_QwAcPCN0TPCEEy6fVbLleTSgmckIlp5TKKzQkjImcUswGXY8ZyQUl7AaN2naLMSlFWQ3RdJoS-OSCz-fRHcFni9C2mQ0xm_qw080pm0MC0xOZ89na1RCy5SEewTWN9gZu0bXVTQt3lzpGny_Pq9lbvvh4fZ9NF7mhkqVcbLipNS-4BWYFF7VmutZFpbkEoQWArWtDNTOa1ro0G93RFRSFqDi3YmOLMXo8z93H8HWANqltOETfrVS05KJiXArcUeJMmdj9EcEq45Lur09Ru0YRrPrA1E9gqg9MXQLrVPpH3Ue30_H0v_RwlhwA_ApClgWWsvgGRYF61Q
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2022_3190539
crossref_primary_10_1007_s00530_025_01735_3
crossref_primary_10_1016_j_knosys_2022_109348
crossref_primary_10_1109_TII_2021_3122801
crossref_primary_10_1109_TCSVT_2022_3221723
crossref_primary_10_1002_aisy_202300706
crossref_primary_10_1109_TCSVT_2022_3216457
crossref_primary_10_1016_j_jvcir_2022_103739
crossref_primary_10_1007_s10489_022_03488_2
crossref_primary_10_1007_s11042_022_13643_z
crossref_primary_10_1007_s10489_022_03613_1
crossref_primary_10_1007_s10489_023_04940_7
crossref_primary_10_1016_j_neucom_2023_126561
crossref_primary_10_1109_TCSVT_2023_3338743
crossref_primary_10_3390_app13042284
crossref_primary_10_1109_TNNLS_2022_3159538
crossref_primary_10_1016_j_patcog_2021_108336
crossref_primary_10_1109_TITS_2023_3264573
crossref_primary_10_1109_TCSVT_2022_3148392
crossref_primary_10_1016_j_engappai_2023_106173
crossref_primary_10_1016_j_neucom_2023_02_027
crossref_primary_10_1109_TCSVT_2023_3321235
crossref_primary_10_1016_j_knosys_2023_111111
crossref_primary_10_1109_TCSVT_2020_3039798
crossref_primary_10_1109_TCYB_2021_3126831
crossref_primary_10_1007_s11063_023_11347_5
crossref_primary_10_1109_LSP_2021_3107750
crossref_primary_10_1109_TCSVT_2022_3218587
crossref_primary_10_1002_cpe_7056
crossref_primary_10_1016_j_cviu_2023_103686
crossref_primary_10_3390_s23104828
crossref_primary_10_1109_TCSVT_2022_3221755
crossref_primary_10_1007_s10489_021_02356_9
crossref_primary_10_1109_TCSVT_2024_3376399
crossref_primary_10_1109_TITS_2022_3157254
crossref_primary_10_1109_TCSVT_2021_3103677
crossref_primary_10_3390_s23031612
crossref_primary_10_1007_s00371_023_02882_2
crossref_primary_10_1007_s10462_022_10258_6
crossref_primary_10_1016_j_displa_2022_102327
crossref_primary_10_1007_s11760_022_02174_7
crossref_primary_10_1109_TCSVT_2024_3465517
crossref_primary_10_1016_j_eswa_2024_125581
crossref_primary_10_1016_j_neucom_2024_128673
crossref_primary_10_1016_j_neunet_2025_107299
crossref_primary_10_1109_ACCESS_2024_3435144
crossref_primary_10_3390_app13084956
crossref_primary_10_1109_TCSVT_2023_3303258
crossref_primary_10_1109_TIFS_2023_3300094
crossref_primary_10_1109_TCSVT_2022_3221622
crossref_primary_10_1016_j_comcom_2024_01_004
crossref_primary_10_1016_j_engappai_2023_107830
crossref_primary_10_1016_j_patcog_2021_108232
crossref_primary_10_1109_ACCESS_2021_3087509
crossref_primary_10_1109_TCYB_2022_3227044
crossref_primary_10_3390_electronics12071517
crossref_primary_10_1109_TPAMI_2021_3129349
crossref_primary_10_4218_etrij_2024_0115
crossref_primary_10_1016_j_imavis_2024_105139
crossref_primary_10_1016_j_jvcir_2022_103598
crossref_primary_10_1109_TCSVT_2024_3417810
crossref_primary_10_1007_s10462_023_10609_x
crossref_primary_10_1109_TCSVT_2022_3227716
crossref_primary_10_1007_s10462_024_11092_8
crossref_primary_10_1007_s11760_024_03152_x
crossref_primary_10_1109_TCSVT_2022_3181452
crossref_primary_10_1016_j_patcog_2024_110649
crossref_primary_10_1016_j_jvcir_2024_104108
crossref_primary_10_1109_TCSVT_2024_3450734
crossref_primary_10_1007_s11760_024_03570_x
crossref_primary_10_1109_JSTARS_2023_3249216
crossref_primary_10_1016_j_engappai_2024_109496
crossref_primary_10_1109_TCSVT_2021_3066675
crossref_primary_10_1007_s11042_023_17382_7
crossref_primary_10_1016_j_imavis_2024_105205
crossref_primary_10_1109_TCSVT_2024_3350084
crossref_primary_10_1016_j_neucom_2024_127444
crossref_primary_10_1016_j_neucom_2024_128698
crossref_primary_10_1109_TCSVT_2022_3205348
crossref_primary_10_1109_TCSVT_2023_3268680
crossref_primary_10_1016_j_patrec_2024_08_013
crossref_primary_10_1007_s10462_023_10557_6
crossref_primary_10_1007_s10044_020_00901_9
Cites_doi 10.1109/TNNLS.2019.2911236
10.1109/CVPR.2018.00684
10.1007/978-3-319-68548-9_70
10.1109/ICCV.2015.316
10.1016/j.cviu.2018.02.006
10.1016/j.cviu.2016.10.010
10.1109/TCSVT.2018.2870832
10.1109/ICCV.2017.315
10.1109/ICCV.2013.338
10.1109/CVPR.2009.5206569
10.1109/CVPR.2010.5539882
10.1007/978-3-319-10590-1_51
10.1109/CVPR.2016.396
10.1109/CVPRW.2016.90
10.1007/11744047_33
10.1109/ICCV.2017.324
10.1109/CVPR.2016.331
10.1109/CVPR.2016.86
10.1109/CVPR.2017.683
10.1109/CVPR.2005.316
10.1007/978-3-319-59050-9_12
10.1109/TIFS.2019.2900907
10.1109/ICME.2017.8019325
10.1109/TIP.2012.2233490
10.1109/CVPR.2011.5995524
10.1109/TITS.2016.2601655
10.1016/j.patcog.2016.09.016
10.1109/TIP.2017.2670780
10.1109/CVPR.2005.177
10.1109/TPAMI.2019.2931569
10.1109/CVPR.2010.5539872
10.1007/978-3-319-59081-3_23
10.1109/ICCV.2017.45
10.1109/CVPR.2016.580
10.1109/CVPR.2011.5995434
10.1109/TCYB.2014.2330853
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2019.2962229
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 4647
ExternalDocumentID 10_1109_TCSVT_2019_2962229
8943099
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: YJ201949
  funderid: 10.13039/501100012226
– fundername: Singapore government’s Research, Innovation and Enterprise 2020 plan (Advanced Manufacturing and Engineering domain)
  grantid: A18A1b0045
– fundername: National Natural Science Foundation of China
  grantid: 61502187; 61702182; 61806135; 61625204; 61836006
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-8b6cda636fe5f868da5ada37a69e8a8eefddc2a5ca2da4cbacda7e338766f8bf3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Sun Jun 29 13:28:15 EDT 2025
Tue Jul 01 00:41:13 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Wed Aug 27 02:32:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-8b6cda636fe5f868da5ada37a69e8a8eefddc2a5ca2da4cbacda7e338766f8bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7739-4146
0000-0002-5727-2790
0000-0002-4675-7055
0000-0002-6930-8674
PQID 2468756980
PQPubID 85433
PageCount 9
ParticipantIDs proquest_journals_2468756980
crossref_citationtrail_10_1109_TCSVT_2019_2962229
crossref_primary_10_1109_TCSVT_2019_2962229
ieee_primary_8943099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref15
ref36
ref14
ref30
ref33
ref32
ref10
mathieu (ref24) 2015
ref39
ref17
ref38
ref16
ref19
ref18
sabokrou (ref31) 2018
akcay (ref1) 2018
ren (ref27) 2016; abs 1603 4026
medel (ref25) 2016
vaswani (ref37) 2017
ref46
ref45
ref23
rei (ref26) 2016
ref47
bahdanau (ref2) 2014
ref20
ref42
ref41
ref22
ref44
he (ref13) 2008; 21
ref21
ref43
ref29
goodfellow (ref11) 2014
ref8
ref7
ronneberger (ref28) 2015
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref47
  doi: 10.1109/TNNLS.2019.2911236
– ident: ref18
  doi: 10.1109/CVPR.2018.00684
– ident: ref33
  doi: 10.1007/978-3-319-68548-9_70
– ident: ref10
  doi: 10.1109/ICCV.2015.316
– ident: ref30
  doi: 10.1016/j.cviu.2018.02.006
– ident: ref40
  doi: 10.1016/j.cviu.2016.10.010
– year: 2014
  ident: ref11
  article-title: Explaining and harnessing adversarial examples
  publication-title: arXiv 1412 6572
– ident: ref6
  doi: 10.1109/TCSVT.2018.2870832
– volume: abs 1603 4026
  start-page: 1
  year: 2016
  ident: ref27
  article-title: A comprehensive study of sparse codes on abnormality detection
  publication-title: CoRR
– ident: ref36
  doi: 10.1109/ICCV.2017.315
– ident: ref19
  doi: 10.1109/ICCV.2013.338
– ident: ref16
  doi: 10.1109/CVPR.2009.5206569
– ident: ref39
  doi: 10.1109/CVPR.2010.5539882
– start-page: 488
  year: 2018
  ident: ref31
  article-title: AVID: Adversarial visual irregularity detection
  publication-title: Proc Asian Conf Comput Vis
– ident: ref34
  doi: 10.1007/978-3-319-10590-1_51
– year: 2018
  ident: ref1
  article-title: GANomaly: Semi-supervised anomaly detection via adversarial training
  publication-title: arXiv 1805 06725
– ident: ref4
  doi: 10.1109/CVPR.2016.396
– start-page: 309
  year: 2016
  ident: ref26
  article-title: Attending to characters in neural sequence labeling models
  publication-title: Proc 26th Int Conf Comput Linguistics Tech Papers
– ident: ref15
  doi: 10.1109/CVPRW.2016.90
– ident: ref9
  doi: 10.1007/11744047_33
– ident: ref17
  doi: 10.1109/ICCV.2017.324
– ident: ref3
  doi: 10.1109/CVPR.2016.331
– ident: ref12
  doi: 10.1109/CVPR.2016.86
– start-page: 234
  year: 2015
  ident: ref28
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assisted Intervent
– year: 2016
  ident: ref25
  article-title: Anomaly detection in video using predictive convolutional long short-term memory networks
  publication-title: arXiv 1612 00390
– ident: ref38
  doi: 10.1109/CVPR.2017.683
– ident: ref43
  doi: 10.1109/CVPR.2005.316
– ident: ref32
  doi: 10.1007/978-3-319-59050-9_12
– ident: ref45
  doi: 10.1109/TIFS.2019.2900907
– ident: ref20
  doi: 10.1109/ICME.2017.8019325
– ident: ref23
  doi: 10.1109/TIP.2012.2233490
– ident: ref44
  doi: 10.1109/CVPR.2011.5995524
– start-page: 5998
  year: 2017
  ident: ref37
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 21
  start-page: 1263
  year: 2008
  ident: ref13
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans Knowl Data Eng
– ident: ref42
  doi: 10.1109/TITS.2016.2601655
– ident: ref35
  doi: 10.1016/j.patcog.2016.09.016
– ident: ref29
  doi: 10.1109/TIP.2017.2670780
– ident: ref8
  doi: 10.1109/CVPR.2005.177
– ident: ref46
  doi: 10.1109/TPAMI.2019.2931569
– ident: ref22
  doi: 10.1109/CVPR.2010.5539872
– year: 2015
  ident: ref24
  article-title: Deep multi-scale video prediction beyond mean square error
  publication-title: arXiv 1511 05440
– ident: ref5
  doi: 10.1007/978-3-319-59081-3_23
– ident: ref21
  doi: 10.1109/ICCV.2017.45
– ident: ref14
  doi: 10.1109/CVPR.2016.580
– ident: ref7
  doi: 10.1109/CVPR.2011.5995434
– ident: ref41
  doi: 10.1109/TCYB.2014.2330853
– year: 2014
  ident: ref2
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: arXiv 1409 0473
SSID ssj0014847
Score 2.633006
Snippet Recent video anomaly detection methods focus on reconstructing or predicting frames. Under this umbrella, the long-standing inter-class data-imbalance problem...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4639
SubjectTerms Ablation
Anomalies
Anomaly detection
attention
Computer networks
Convolutional codes
Deep learning
Object recognition
Optimization
Task analysis
Training data
Title Attention-Driven Loss for Anomaly Detection in Video Surveillance
URI https://ieeexplore.ieee.org/document/8943099
https://www.proquest.com/docview/2468756980
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgJzjwRgwGyoEbdLRpmibHaYAQAi6MabcqTVwJAR0aHRL8epK0m3gJcevBUS3bdfw1zmeAQ4qpiJTNfqmK4oAVNAoERQxEnCuGaSxC7dk-b_jFHbscJaMFOJ7fhUFE33yGXffoz_LNWE_dr7ITzxUu5SIsWuBW39Wanxgw4YeJ2XLBvS1KZhdkQnky6N8OB66LS3ap5G6A9ZdNyE9V-ZGK_f5yvgrXM83qtpKH7rTKu_r9G2njf1Vfg5Wm0CS9OjLWYQHLDVj-RD-4Cb1eVdXdjsHpxGU9cmW1JbaMJb1y_KQe38gpVr5XqyT3JRneGxyT2-nkFd2sIhsuW3B3fjboXwTNSIVAU5lUgci5NorHvMCkEFwYlSij4lRxiUIJxMIYTVWiFTWK6VxZ6RQtjE05L0RexNvQKscl7gApHKGoLfZUkgumjQXlTKYy11KZSGDI2hDNbJzphm_cjb14zDzuCGXm_ZI5v2SNX9pwNF_zXLNt_Cm96Qw9l2xs3IbOzJVZ80G-ZJRxi8y4FOHu76v2YIk6KO07VTrQqiZT3Lf1RpUf-ED7AH-50nE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NbxMxEB2VcIAe-CoVKQV8KCe06a7X67UPHKKGKm1DL02r3hZ_zEpRy6ZKN0Xht_BX-G_Y3k0EFHGr1Nse7JXseR7P2M9vAHYo5iJRzvvlKkkjVtIkEhQxEqlWDPNUxCaofR7z4Sk7PM_O1-DH6i0MIgbyGfb8Z7jLt1Mz90dlu0ErXMqWQnmEi28uQbv-eDBw1nxP6f6n8d4wamsIRIbKrI6E5sYqnvISs1JwYVWmrEpzxSUKJRBLaw1VmVHUKma0cq1zdHlbznkpdJm6_z6Ahy7OyGjzOmx1R8FEKF_mAhQ_viRbPsmJ5e547-Rs7Hljskcl9yWz_9j2Qh2XW84_7Gj7T-Hnci4aIstFb17rnvn-l0zkfZ2sZ_CkDaVJv8H-c1jD6gWs_yawuAH9fl03fM5oMPN-nYzc7BAXqJN-Nf2qLhdkgHVgo1VkUpGzicUpOZnPbtBXY3IL4iWc3skYNqFTTSt8BaT0kqkunFWZFsxY1CmTudRGKpsIjFkXkqVNC9MqqvvCHpdFyKxiWQQcFB4HRYuDLnxY9blq9ET-23rDG3bVsrVpF7aX0Clal3NdUMZd7smliLf-3esdPBqOP4-K0cHx0Wt4TP3BQeDlbEOnns3xjYuuav02gJzAl7sGyi-LdTaq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-Driven+Loss+for+Anomaly+Detection+in+Video+Surveillance&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhou%2C+Joey+Tianyi&rft.au=Zhang%2C+Le&rft.au=Fang%2C+Zhiwen&rft.au=Du%2C+Jiawei&rft.date=2020-12-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=30&rft.issue=12&rft.spage=4639&rft.epage=4647&rft_id=info:doi/10.1109%2FTCSVT.2019.2962229&rft.externalDocID=8943099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon