PQA-Net: Deep No Reference Point Cloud Quality Assessment via Multi-View Projection
Recently, 3D point cloud is becoming popular due to its capability to represent the real world for advanced content modality in modern communication systems. In view of its wide applications, especially for immersive communication towards human perception, quality metrics for point clouds are essent...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 31; no. 12; pp. 4645 - 4660 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, 3D point cloud is becoming popular due to its capability to represent the real world for advanced content modality in modern communication systems. In view of its wide applications, especially for immersive communication towards human perception, quality metrics for point clouds are essential. Existing point cloud quality evaluations rely on a full or certain portion of the original point cloud, which severely limits their applications. To overcome this problem, we propose a novel deep learning-based no reference point cloud quality assessment method, namely PQA-Net. Specifically, the PQA-Net consists of a multi-view-based joint feature extraction and fusion (MVFEF) module, a distortion type identification (DTI) module, and a quality vector prediction (QVP) module. The DTI and QVP modules share the feature generated from the MVFEF module. By using the distortion type labels, the DTI and the MVFEF modules are first pre-trained to initialize the network parameters, based on which the whole network is then jointly trained to finally evaluate the point cloud quality. Experimental results on the Waterloo Point Cloud dataset show that PQA-Net achieves better or equivalent performance comparing with the state-of-the-art quality assessment methods. The code of the proposed model will be made publicly available to facilitate reproducible research https://github.com/qdushl/PQA-Net . |
---|---|
AbstractList | Recently, 3D point cloud is becoming popular due to its capability to represent the real world for advanced content modality in modern communication systems. In view of its wide applications, especially for immersive communication towards human perception, quality metrics for point clouds are essential. Existing point cloud quality evaluations rely on a full or certain portion of the original point cloud, which severely limits their applications. To overcome this problem, we propose a novel deep learning-based no reference point cloud quality assessment method, namely PQA-Net. Specifically, the PQA-Net consists of a multi-view-based joint feature extraction and fusion (MVFEF) module, a distortion type identification (DTI) module, and a quality vector prediction (QVP) module. The DTI and QVP modules share the feature generated from the MVFEF module. By using the distortion type labels, the DTI and the MVFEF modules are first pre-trained to initialize the network parameters, based on which the whole network is then jointly trained to finally evaluate the point cloud quality. Experimental results on the Waterloo Point Cloud dataset show that PQA-Net achieves better or equivalent performance comparing with the state-of-the-art quality assessment methods. The code of the proposed model will be made publicly available to facilitate reproducible research https://github.com/qdushl/PQA-Net . |
Author | Liu, Hao Su, Honglei Wang, Yu Yang, Huan Hou, Junhui Yuan, Hui Liu, Qi |
Author_xml | – sequence: 1 givenname: Qi orcidid: 0000-0002-3958-9962 surname: Liu fullname: Liu, Qi email: sdqi.liu@gmail.com organization: School of Control Science and Engineering, Shandong University, Jinan, China – sequence: 2 givenname: Hui orcidid: 0000-0001-5212-3393 surname: Yuan fullname: Yuan, Hui email: huiyuan@sdu.edu.cn organization: School of Control Science and Engineering, Shandong University, Jinan, China – sequence: 3 givenname: Honglei orcidid: 0000-0001-6144-4930 surname: Su fullname: Su, Honglei email: suhonglei@qdu.edu.cn organization: School of Electronic Information, Qingdao University, Qingdao, China – sequence: 4 givenname: Hao orcidid: 0000-0003-0246-2527 surname: Liu fullname: Liu, Hao email: liuhaoxb@gmail.com organization: School of Information Science and Engineering, Shandong University, Qingdao, China – sequence: 5 givenname: Yu surname: Wang fullname: Wang, Yu email: armstrong_wangyu@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 6 givenname: Huan orcidid: 0000-0001-5810-0248 surname: Yang fullname: Yang, Huan email: cathy_huanyang@hotmail.com organization: College of Computer Science and Technology, Qingdao University, Qingdao, China – sequence: 7 givenname: Junhui orcidid: 0000-0003-3431-2021 surname: Hou fullname: Hou, Junhui email: jh.hou@cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong |
BookMark | eNp9kEtPwzAQhC1UJFrgD8DFEucUPxLH5laVp1SgQOk1cpO15CqNi-2A-u9JacWBA6ddaefb0cwA9RrXAEJnlAwpJepyNn6bz4aMMDrklBAm2QHq0yyTCWMk63U7yWgiGc2O0CCEJSE0lWneR2_Tl1HyBPEKXwOs8ZPDr2DAQ1MCnjrbRDyuXVvhl1bXNm7wKAQIYQXd4dNq_NjW0SZzC1946t0Symhdc4IOja4DnO7nMXq_vZmN75PJ893DeDRJSqaymEihKm1ApcoIo9KUVZDmcgE85UoYaSAtVUVyqgWIXGploOKLhaF0YSrNteLH6GL3d-3dRwshFkvX-qazLJggWU4ynotOxXaq0rsQPJhi7e1K-01BSbEtr_gpr9iWV-zL6yD5Bypt1Ntw0Wtb_4-e71ALAL9eXUohOOffn7d-3g |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_125039 crossref_primary_10_1016_j_displa_2023_102450 crossref_primary_10_1109_TIP_2023_3253252 crossref_primary_10_1007_s11760_024_03444_2 crossref_primary_10_1109_ACCESS_2024_3521093 crossref_primary_10_1109_TBC_2022_3192997 crossref_primary_10_1109_TMM_2022_3158809 crossref_primary_10_1109_TVCG_2023_3282802 crossref_primary_10_3390_s24227383 crossref_primary_10_1109_ACCESS_2024_3383536 crossref_primary_10_1109_TCSVT_2024_3362369 crossref_primary_10_1109_LSP_2024_3452556 crossref_primary_10_32604_cmc_2024_056141 crossref_primary_10_1109_LSP_2023_3264105 crossref_primary_10_1109_TCE_2024_3367539 crossref_primary_10_1145_3550274 crossref_primary_10_1109_TCSVT_2023_3247506 crossref_primary_10_1109_TIM_2025_3541782 crossref_primary_10_1016_j_ins_2022_07_053 crossref_primary_10_1016_j_displa_2024_102882 crossref_primary_10_1016_j_displa_2023_102540 crossref_primary_10_1109_ACCESS_2022_3198995 crossref_primary_10_3390_electronics13010220 crossref_primary_10_1109_TIP_2024_3468893 crossref_primary_10_1016_j_image_2024_117239 crossref_primary_10_1007_s41233_023_00057_4 crossref_primary_10_1109_TCSVT_2024_3350180 crossref_primary_10_1186_s13640_024_00626_3 crossref_primary_10_3390_jimaging10060129 crossref_primary_10_1109_TIM_2025_3529543 crossref_primary_10_1016_j_image_2025_117262 crossref_primary_10_1109_TVCG_2023_3338359 crossref_primary_10_1109_TBC_2023_3311339 crossref_primary_10_1145_3715134 crossref_primary_10_1109_TCSVT_2022_3170588 crossref_primary_10_1109_TCSVT_2024_3410052 crossref_primary_10_1109_TIP_2025_3539465 crossref_primary_10_1109_TETCI_2022_3201619 crossref_primary_10_1109_TIP_2023_3330086 crossref_primary_10_3389_frsip_2024_1420060 crossref_primary_10_1016_j_measurement_2024_114400 crossref_primary_10_1145_3643817 crossref_primary_10_1109_TCSVT_2022_3186894 crossref_primary_10_1007_s00371_024_03352_z crossref_primary_10_1109_TCE_2024_3423830 crossref_primary_10_1109_TCSVT_2024_3420150 crossref_primary_10_1016_j_cag_2025_104176 crossref_primary_10_1109_TMM_2024_3443634 crossref_primary_10_1016_j_displa_2025_103007 crossref_primary_10_1109_TVCG_2022_3167151 crossref_primary_10_1145_3592786 crossref_primary_10_1016_j_patcog_2025_111361 crossref_primary_10_1016_j_rcim_2024_102863 crossref_primary_10_1109_TMM_2023_3340894 crossref_primary_10_1016_j_aej_2024_02_007 crossref_primary_10_1145_3664199 crossref_primary_10_1109_TBC_2021_3114510 crossref_primary_10_1109_TCSVT_2023_3341622 crossref_primary_10_1016_j_jag_2024_103951 crossref_primary_10_1016_j_measurement_2023_112592 crossref_primary_10_1109_TMM_2024_3407698 crossref_primary_10_1109_TCSVT_2022_3179575 crossref_primary_10_1109_TIM_2023_3290291 crossref_primary_10_1109_TBC_2024_3482173 crossref_primary_10_1109_TIM_2023_3322475 crossref_primary_10_1109_LSP_2022_3198601 crossref_primary_10_37188_lam_2022_035 crossref_primary_10_1109_TPAMI_2024_3422490 crossref_primary_10_1016_j_eswa_2023_122438 crossref_primary_10_1016_j_eswa_2023_122953 crossref_primary_10_1109_TIP_2023_3327003 crossref_primary_10_1109_TMM_2023_3347638 |
Cites_doi | 10.1109/QoMEX.2019.8743313 10.1109/TIP.2012.2221725 10.1017/ATSIP.2019.20 10.1109/ICIP.2019.8803298 10.1109/ICIP.2017.8296925 10.1109/VCIP.2017.8305132 10.1109/ICME.2018.8486512 10.1136/bmj.e4483 10.1016/j.neucom.2020.07.014 10.1109/TBC.2019.2957652 10.1109/QoMEX.2019.8743277 10.1109/LSP.2020.3024065 10.1016/j.neucom.2020.05.086 10.1007/s11831-019-09320-4 10.1109/TIP.2005.859378 10.1109/ICMEW46912.2020.9106005 10.1109/JETCAS.2018.2885981 10.23919/APSIPA.2018.8659653 10.1109/LSP.2019.2963793 10.1109/TIP.2017.2707807 10.1109/JSTSP.2009.2014497 10.1109/LSP.2019.2951533 10.1109/TCSVT.2016.2543039 10.1109/QoMEX48832.2020.9123087 10.1109/TIP.2018.2799331 10.1109/MMSP.2017.8122239 10.1109/QoMEX48832.2020.9123147 10.1109/QoMEX48832.2020.9123076 10.1109/TIP.2017.2774045 10.1109/ACSSC.2003.1292216 10.1111/j.1467-8659.2012.03188.x 10.1109/ICCV.2015.169 10.1109/TIP.2003.819861 10.1016/j.neucom.2020.03.086 10.1145/3240508.3240643 10.1109/QoMEX48832.2020.9123089 10.1109/MMSP48831.2020.9287154 10.1109/ICMEW46912.2020.9106052 10.1109/TCSVT.2020.2966118 10.1109/ICIP40778.2020.9190956 10.1109/LSP.2020.3010128 10.1109/TIP.2019.2936738 10.1007/s11036-020-01570-y 10.1109/VCIP47243.2019.8965861 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2021.3100282 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 4660 |
ExternalDocumentID | 10_1109_TCSVT_2021_3100282 9496633 |
Genre | orig-research |
GrantInformation_xml | – fundername: Shandong Provincial Natural Science Foundation, China grantid: ZR2018PF002 funderid: 10.13039/501100007129 – fundername: Hong Kong Research Grant Council (RGC) grantid: 9042955 (CityU 11202320) funderid: 10.13039/501100002920 – fundername: National Natural Science Foundation of China grantid: 61871342 funderid: 10.13039/501100001809 – fundername: Open Project Program of the State Key Laboratory of Virtual Reality Technology and Systems, Beihang University grantid: VRLAB2021A01 funderid: 10.13039/501100011160 – fundername: OPPO Research Fund |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-869dafe949f6f9442de478be34396f8fe4c9d071a6e678a9fed3bbf11bfda3a93 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Sun Jun 29 15:53:30 EDT 2025 Tue Jul 01 00:41:16 EDT 2025 Thu Apr 24 23:04:16 EDT 2025 Wed Aug 27 05:01:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-869dafe949f6f9442de478be34396f8fe4c9d071a6e678a9fed3bbf11bfda3a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6144-4930 0000-0001-5212-3393 0000-0003-0246-2527 0000-0003-3431-2021 0000-0001-5810-0248 0000-0002-3958-9962 |
PQID | 2605705376 |
PQPubID | 85433 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1109_TCSVT_2021_3100282 proquest_journals_2605705376 crossref_primary_10_1109_TCSVT_2021_3100282 ieee_primary_9496633 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref55 ref11 ref54 ref10 sheskin (ref49) 2007 liu (ref38) 2020 ref17 yang (ref27) 2021 ref19 ref18 yang (ref56) 2020 ballé (ref42) 2019 ref51 meynet (ref57) 2021 ref50 liu (ref35) 2020 ref46 javaheri (ref65) 2020 ref48 ting (ref61) 2010 ref44 ref43 yang (ref36) 2020 (ref60) 2000 (ref45) 2010 ref8 (ref16) 2020 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ballé (ref41) 2016 wolf (ref30) 2009 ref34 ref37 mekuria (ref52) 2016 ref31 ref33 ref32 ref2 alexiou (ref58) 2020 ref1 kingma (ref47) 2014 ref24 ref23 ref25 ref64 ref20 ref63 ref66 ref22 yang (ref26) 2020 ref21 (ref39) 2006 ref28 torlig (ref29) 2018; 10752 ref62 viola (ref59) 2020 |
References_xml | – ident: ref20 doi: 10.1109/QoMEX.2019.8743313 – ident: ref50 doi: 10.1109/TIP.2012.2221725 – ident: ref66 doi: 10.1017/ATSIP.2019.20 – ident: ref12 doi: 10.1109/ICIP.2019.8803298 – ident: ref17 doi: 10.1109/ICIP.2017.8296925 – year: 2020 ident: ref38 article-title: Reduced reference perceptual quality model and application to rate control for 3D point cloud compression publication-title: arXiv 2011 12688 – year: 2021 ident: ref27 article-title: Point cloud distortion quantification based on potential energy for human and machine perception publication-title: arXiv 2103 02850 – ident: ref53 doi: 10.1109/VCIP.2017.8305132 – ident: ref18 doi: 10.1109/ICME.2018.8486512 – ident: ref48 doi: 10.1136/bmj.e4483 – ident: ref62 doi: 10.1016/j.neucom.2020.07.014 – ident: ref11 doi: 10.1109/TBC.2019.2957652 – year: 2014 ident: ref47 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – year: 2020 ident: ref26 article-title: Inferring point cloud quality via graph similarity publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: ref46 doi: 10.1109/QoMEX.2019.8743277 – year: 2010 ident: ref45 publication-title: PhotoScan Agisoft – ident: ref54 doi: 10.1109/LSP.2020.3024065 – year: 2020 ident: ref35 article-title: Model-based joint bit allocation between geometry and color for video-based 3D point cloud compression publication-title: IEEE Trans Multimedia – ident: ref1 doi: 10.1016/j.neucom.2020.05.086 – ident: ref9 doi: 10.1007/s11831-019-09320-4 – ident: ref32 doi: 10.1109/TIP.2005.859378 – ident: ref37 doi: 10.1109/ICMEW46912.2020.9106005 – ident: ref10 doi: 10.1109/JETCAS.2018.2885981 – start-page: 1 year: 2019 ident: ref42 article-title: End-to-end optimized image compression publication-title: Proc 5th Int Conf Learn Represent (ICLR) – ident: ref6 doi: 10.23919/APSIPA.2018.8659653 – ident: ref8 doi: 10.1109/LSP.2019.2963793 – year: 2020 ident: ref65 article-title: Point cloud rendering after coding: Impacts on subjective and objective quality publication-title: IEEE Trans Multimedia – volume: 10752 year: 2018 ident: ref29 article-title: A novel methodology for quality assessment of voxelized point clouds publication-title: Proc SPIE – ident: ref34 doi: 10.1109/TIP.2017.2707807 – ident: ref40 doi: 10.1109/JSTSP.2009.2014497 – year: 2021 ident: ref57 publication-title: PCQM – ident: ref63 doi: 10.1109/LSP.2019.2951533 – ident: ref55 doi: 10.1109/TCSVT.2016.2543039 – ident: ref19 doi: 10.1109/QoMEX48832.2020.9123087 – ident: ref51 doi: 10.1109/TIP.2018.2799331 – ident: ref13 doi: 10.1109/MMSP.2017.8122239 – year: 2020 ident: ref36 article-title: Predicting the perceptual quality of point cloud: A 3D-to-2D projection-based exploration publication-title: IEEE Trans Multimedia – ident: ref22 doi: 10.1109/QoMEX48832.2020.9123147 – ident: ref24 doi: 10.1109/QoMEX48832.2020.9123076 – year: 2020 ident: ref56 publication-title: Inferring Point Cloud Quality Via Graph Similarity – year: 2020 ident: ref16 publication-title: Common Test Conditions for Point Cloud Compression – ident: ref14 doi: 10.1109/TIP.2017.2774045 – ident: ref33 doi: 10.1109/ACSSC.2003.1292216 – year: 2020 ident: ref58 publication-title: PointSSIM Point Cloud Structural Similarity Metric – ident: ref44 doi: 10.1111/j.1467-8659.2012.03188.x – ident: ref64 doi: 10.1109/ICCV.2015.169 – ident: ref31 doi: 10.1109/TIP.2003.819861 – start-page: 1353 year: 2007 ident: ref49 article-title: Spearman's rank-order correlation coefficient publication-title: Handbook of Parametric and Nonparametric Statistical Procedures – start-page: 1 year: 2016 ident: ref41 article-title: Density modeling of images using a generalized normalization transformation publication-title: Proc 4th Int Conf Learn Represent (ICLR) – year: 2009 ident: ref30 publication-title: Reference algorithm for computing Peak Signal to Noise Ratio (PSNR) of a video sequence with a constant delay – year: 2020 ident: ref59 publication-title: PCM_RR – ident: ref2 doi: 10.1016/j.neucom.2020.03.086 – ident: ref15 doi: 10.1145/3240508.3240643 – ident: ref21 doi: 10.1109/QoMEX48832.2020.9123089 – year: 2000 ident: ref60 publication-title: Final report from the video quality experts group on the validation of objective models of video quality assessment – ident: ref23 doi: 10.1109/MMSP48831.2020.9287154 – year: 2006 ident: ref39 publication-title: Vocabulary for Performance and Quality of Service – ident: ref3 doi: 10.1109/ICMEW46912.2020.9106052 – ident: ref7 doi: 10.1109/TCSVT.2020.2966118 – ident: ref25 doi: 10.1109/ICIP40778.2020.9190956 – ident: ref28 doi: 10.1109/LSP.2020.3010128 – ident: ref4 doi: 10.1109/TIP.2019.2936738 – year: 2016 ident: ref52 publication-title: Evaluation Criteria for PCC (Point Cloud Compression) – ident: ref5 doi: 10.1007/s11036-020-01570-y – start-page: 209 year: 2010 ident: ref61 publication-title: Confusion Matrix – ident: ref43 doi: 10.1109/VCIP47243.2019.8965861 |
SSID | ssj0014847 |
Score | 2.6718812 |
Snippet | Recently, 3D point cloud is becoming popular due to its capability to represent the real world for advanced content modality in modern communication systems.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4645 |
SubjectTerms | Communications systems deep neural network Distortion Feature extraction Forecasting Geometry Image color analysis Learning systems Machine learning Measurement Modules multi-task learning multi-view Multitasking No-reference point cloud quality assessment Point cloud compression Quality assessment Three dimensional models Three-dimensional displays |
Title | PQA-Net: Deep No Reference Point Cloud Quality Assessment via Multi-View Projection |
URI | https://ieeexplore.ieee.org/document/9496633 https://www.proquest.com/docview/2605705376 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PZUDHy2IhVL5wA28TWzHsbmtllYVUleLuq16ixx7LK1abao2C4Jfj-1koxYQ4paDHY1mbM8be-YNwHsrPJaMeVoyyamwVlITzkoa28DnsjS2ULFQ-GwmTy_El6viags-DrUwiJiSz3AcP9NbvmvsOl6VHWkRwDnn27AdAreuVmt4MRAqNRMLcCGnKvixTYFMpo8W0_PLRQgFWT6O19lMsUdOKHVV-eMoTv7l5BmcbSTr0kqux-u2Htufv5E2_q_oz-FpDzTJpFsZL2ALV3vw5AH94D6cz79O6AzbT-Qz4i2ZNWSgnSXzZrlqyfSmWTvS8Wz8IJOBxZN8WxqSanfp5RK_k3l3nxNs_BIuTo4X01PaN1mglumipUpqZzwG-bz0WgjmUJSqRh6QivTKo7DaBRxiJAa_ZrRHx-va53ntneFG81ews2pW-BqIykxRsFpkhjvh64BESuF95krDvfVKjiDfaL2yPQN5bIRxU6VIJNNVslQVLVX1lhrBh2HObce_8c_R-1H1w8he6yM42Bi36rfofRUDuTKx2bz5-6y3sBv_3eWuHMBOe7fGdwGBtPVhWnq_ACDb1pU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N8QA8bMCY6BjgB97AXWI7js1b1TEVWKuiddPeIsc5SxVTM7F0CP56bCeN-CXEWx5s5XRn-76z774DeGWFw5wxR3MmORXWSmr8WUlDG_hU5sZmKhQKT2dyci4-XGaXW_Cmr4VBxJh8hsPwGd_yq9quw1XZkRYenHN-B-56v5-lbbVW_2YgVGwn5gFDSpX3ZJsSmUQfLcZnFwsfDLJ0GC60mWK_uKHYV-WPwzh6mJNdmG5kaxNLPg_XTTm033-jbfxf4R_CTgc1yahdG49gC1eP4cFPBIR7cDb_NKIzbN6SY8RrMqtJTzxL5vVy1ZDxVb2uSMu08Y2Meh5Pcrs0JFbv0oslfiXz9kbHW_kJnJ-8W4wntGuzQC3TWUOV1JVx6OVz0mkhWIUiVyVyj1WkUw6F1ZVHIkai92xGO6x4Wbo0LV1luNF8H7ZX9QqfAlGJyTJWisTwSrjSY5FcOJdUueHOOiUHkG60XtiOgzy0wrgqYiyS6CJaqgiWKjpLDeB1P-e6ZeD45-i9oPp-ZKf1ARxujFt0m_SmCKFcHvlsDv4-6yXcmyymp8Xp-9nHZ3A__KfNZDmE7ebLGp97PNKUL-Iy_AF9E9ne |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PQA-Net%3A+Deep+No+Reference+Point+Cloud+Quality+Assessment+via+Multi-View+Projection&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Liu%2C+Qi&rft.au=Yuan%2C+Hui&rft.au=Su%2C+Honglei&rft.au=Liu%2C+Hao&rft.date=2021-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=31&rft.issue=12&rft.spage=4645&rft_id=info:doi/10.1109%2FTCSVT.2021.3100282&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |