Cross-Collaborative Fusion-Encoder Network for Robust RGB-Thermal Salient Object Detection

With the prevalence of thermal cameras, RGB-T multi-modal data have become more available for salient object detection (SOD) in complex scenes. Most RGB-T SOD works first individually extract RGB and thermal features from two separate encoders and directly integrate them, which pay less attention to...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 11; pp. 7646 - 7661
Main Authors Liao, Guibiao, Gao, Wei, Li, Ge, Wang, Junle, Kwong, Sam
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the prevalence of thermal cameras, RGB-T multi-modal data have become more available for salient object detection (SOD) in complex scenes. Most RGB-T SOD works first individually extract RGB and thermal features from two separate encoders and directly integrate them, which pay less attention to the issue of defective modalities. However, such an indiscriminate feature extraction strategy may produce contaminated features and thus lead to poor SOD performance. To address this issue, we propose a novel CCFENet for a perspective to perform robust and accurate multi-modal expression encoding. First, we propose an essential cross-collaboration enhancement strategy (CCE), which concentrates on facilitating the interactions across the encoders and encouraging different modalities to complement each other during encoding. Such a cross-collaborative-encoder paradigm induces our network to collaboratively suppress the negative feature responses of defective modality data and effectively exploit modality-informative features. Moreover, as the network goes deeper, we embed several CCEs into the encoder, further enabling more representative and robust feature generation. Second, benefiting from the proposed robust encoding paradigm, a simple yet effective cross-scale cross-modal decoder (CCD) is designed to aggregate multi-level complementary multi-modal features, and thus encourages efficient and accurate RGB-T SOD. Extensive experiments reveal that our CCFENet outperforms the state-of-the-art models on three RGB-T datasets with a fast inference speed of 62 FPS. In addition, the advantages of our approach in complex scenarios (e.g., bad weather, motion blur, etc.) and RGB-D SOD further verify its robustness and generality. The source code will be publicly available via our project page: https://git.openi.org.cn/OpenVision/CCFENet .
AbstractList With the prevalence of thermal cameras, RGB-T multi-modal data have become more available for salient object detection (SOD) in complex scenes. Most RGB-T SOD works first individually extract RGB and thermal features from two separate encoders and directly integrate them, which pay less attention to the issue of defective modalities. However, such an indiscriminate feature extraction strategy may produce contaminated features and thus lead to poor SOD performance. To address this issue, we propose a novel CCFENet for a perspective to perform robust and accurate multi-modal expression encoding. First, we propose an essential cross-collaboration enhancement strategy (CCE), which concentrates on facilitating the interactions across the encoders and encouraging different modalities to complement each other during encoding. Such a cross-collaborative-encoder paradigm induces our network to collaboratively suppress the negative feature responses of defective modality data and effectively exploit modality-informative features. Moreover, as the network goes deeper, we embed several CCEs into the encoder, further enabling more representative and robust feature generation. Second, benefiting from the proposed robust encoding paradigm, a simple yet effective cross-scale cross-modal decoder (CCD) is designed to aggregate multi-level complementary multi-modal features, and thus encourages efficient and accurate RGB-T SOD. Extensive experiments reveal that our CCFENet outperforms the state-of-the-art models on three RGB-T datasets with a fast inference speed of 62 FPS. In addition, the advantages of our approach in complex scenarios (e.g., bad weather, motion blur, etc.) and RGB-D SOD further verify its robustness and generality. The source code will be publicly available via our project page: https://git.openi.org.cn/OpenVision/CCFENet .
Author Wang, Junle
Liao, Guibiao
Li, Ge
Kwong, Sam
Gao, Wei
Author_xml – sequence: 1
  givenname: Guibiao
  orcidid: 0000-0002-5714-1926
  surname: Liao
  fullname: Liao, Guibiao
  email: gbliao@stu.edu.pku.cn
  organization: School of Electronic and Computer Engineering, Peking University, Shenzhen, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-7429-5495
  surname: Gao
  fullname: Gao, Wei
  email: gaowei262@pku.edu.cn
  organization: School of Electronic and Computer Engineering, Peking University, Shenzhen, China
– sequence: 3
  givenname: Ge
  orcidid: 0000-0003-0140-0949
  surname: Li
  fullname: Li, Ge
  email: geli@pku.edu.cn
  organization: School of Electronic and Computer Engineering, Peking University, Shenzhen, China
– sequence: 4
  givenname: Junle
  surname: Wang
  fullname: Wang, Junle
  email: jljunlewang@tencent.com
  organization: Turing Laboratory, Tencent, Shenzhen, China
– sequence: 5
  givenname: Sam
  orcidid: 0000-0001-7484-7261
  surname: Kwong
  fullname: Kwong, Sam
  email: cssamk@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
BookMark eNp9kD9PwzAUxC0EEm3hC8BiidnFdv45I4S2IFVUagMDS2Q7ryIljYvtgPj2JLRiYGC6N9zvne6G6LgxDSB0weiYMZpe59nqOR9zyvk4YCIUIT1CAxZFgnBOo-PuphEjgrPoFA2d21DKOlMyQC-ZNc6RzNS1VMZKX30AnrauMg2ZNNqUYPEj-E9j3_DaWLw0qnUeL2e3JH8Fu5U1Xsm6gsbjhdqA9vgOfCcdf4ZO1rJ2cH7QEXqaTvLsnswXs4fsZk40TyNPRMxjUKpMISmpZCyIqdAiBh5QKrlKFS3DOFI8EDTWpUy01EwmPFRKgwqlCEboav93Z817C84XG9PaposseMLTOOhqJ52L7126L2xhXexstZX2q2C06DcsfjYs-g2Lw4YdJP5AuvKyL-etrOr_0cs9WgHAb1YqKBMJC74BqBmByQ
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125278
crossref_primary_10_1016_j_inffus_2025_103048
crossref_primary_10_1109_TCE_2024_3390841
crossref_primary_10_3390_a17030109
crossref_primary_10_1109_TPAMI_2024_3521416
crossref_primary_10_1016_j_aei_2024_102953
crossref_primary_10_1109_TGRS_2024_3425658
crossref_primary_10_1016_j_jksuci_2023_101702
crossref_primary_10_1109_TCSVT_2024_3489440
crossref_primary_10_1109_TMM_2024_3410542
crossref_primary_10_1016_j_engappai_2023_105919
crossref_primary_10_1016_j_measurement_2023_113180
crossref_primary_10_1016_j_knosys_2023_110322
crossref_primary_10_1016_j_knosys_2024_111597
crossref_primary_10_1109_TIP_2023_3275538
crossref_primary_10_1016_j_knosys_2024_111672
crossref_primary_10_1016_j_inffus_2024_102806
crossref_primary_10_1109_TCSVT_2024_3375505
crossref_primary_10_1109_TCSVT_2023_3286072
crossref_primary_10_1109_TMM_2023_3323890
crossref_primary_10_1117_1_JEI_34_1_013005
crossref_primary_10_1016_j_engappai_2022_105640
crossref_primary_10_1007_s00371_024_03423_1
crossref_primary_10_1016_j_engappai_2022_105707
crossref_primary_10_1016_j_patcog_2024_110868
crossref_primary_10_1016_j_optlaseng_2023_107842
crossref_primary_10_1016_j_dsp_2022_103827
crossref_primary_10_1016_j_image_2024_117165
crossref_primary_10_1109_TCSVT_2024_3414170
crossref_primary_10_1109_TIM_2024_3370783
crossref_primary_10_1016_j_inffus_2023_101828
crossref_primary_10_1145_3624984
Cites_doi 10.1109/TMM.2021.3069297
10.1109/TPAMI.2021.3051099
10.1109/ICRA.2017.7989668
10.1109/TNNLS.2020.2996406
10.1088/1742-6596/2181/1/012008
10.1007/s41095-020-0199-z
10.1109/cvpr.2016.90
10.1109/TPAMI.2017.2662005
10.1109/TIP.2020.2976689
10.1109/TIP.2022.3154931
10.1109/TCSVT.2019.2951621
10.1109/ICMLC.2016.7860880
10.1109/ICIP.2014.7025222
10.1007/978-3-319-10590-1_53
10.1109/TIP.2019.2959253
10.1109/TIP.2021.3087412
10.1088/1742-6596/2181/1/012003
10.1016/j.patcog.2019.106977
10.1109/TPAMI.2019.2905607
10.1109/TCSVT.2021.3082939
10.1109/CVPR46437.2021.01211
10.1007/978-3-319-10578-9_7
10.1109/CVPR.2018.00745
10.1007/978-3-030-58523-5_4
10.1109/TMM.2019.2924578
10.1109/TCSVT.2022.3144852
10.1109/TMM.2022.3171688
10.1109/MIPR.2019.00032
10.1109/CVPR.2019.00941
10.1109/CVPR.2018.00474
10.1109/CVPR.2016.257
10.1109/CVPR46437.2021.00935
10.1109/CVPR42600.2020.00861
10.1007/978-3-030-58520-4_39
10.1109/CVPR.2019.00612
10.1109/TPAMI.2021.3134684
10.1109/CVPR42600.2020.00312
10.1109/TIP.2020.3028289
10.1109/CVPR.2012.6247708
10.1609/aaai.v35i3.16331
10.1109/tcsvt.2020.3014663
10.1109/TCYB.2019.2932005
10.1109/TPAMI.2021.3073689
10.24963/ijcai.2018/97
10.1007/s10489-021-02984-1
10.1109/ICIP.2019.8803025
10.1109/CVPR46437.2021.00146
10.1109/CVPR.2019.00154
10.1109/CVPR42600.2020.00299
10.1007/978-3-030-58610-2_17
10.1109/TMM.2022.3174341
10.1007/978-981-13-1702-6_36
10.1109/TCSVT.2021.3102268
10.1007/978-3-030-58595-2_15
10.1109/TIP.2021.3109518
10.1109/TIP.2021.3062689
10.1109/TIP.2021.3123548
10.1109/TMM.2020.3011327
10.1145/3474085.3475601
10.1145/3394171.3413523
10.1109/CVPR42600.2020.01377
10.1109/ICCV.2019.00735
10.1016/j.patcog.2019.107130
10.1109/TIP.2021.3060167
10.1007/978-3-030-58542-6_39
10.1109/CVPR42600.2020.00353
10.1609/aaai.v35i2.16191
10.1109/TPAMI.2021.3060412
10.1109/CVPR.2009.5206596
10.1109/TCSVT.2021.3077058
10.1109/tpami.2020.3023152
10.1109/ICCV.2017.487
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3184840
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 7661
ExternalDocumentID 10_1109_TCSVT_2022_3184840
9801871
Genre orig-research
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2019A1515012031
– fundername: National Key Research and Development Program of China
  grantid: 2020AAA0103501
  funderid: 10.13039/501100012166
– fundername: Shenzhen Science and Technology Plan Basic Research Project
  grantid: JCYJ20190808161805519
– fundername: Shenzhen Fundamental Research Program
  grantid: GXWD20201231165807007-20200806163656003
  funderid: 10.13039/501100017607
– fundername: Hong Kong RGC GRF
  grantid: 9042816 (CityU 11209819); 9042958 (CityU 11203820)
  funderid: 10.13039/501100002920
– fundername: Natural Science Foundation of China
  grantid: 61801303; 62031013
  funderid: 10.13039/501100001809
– fundername: Hong Kong Innovation and Technology Commission (InnoHK) under Project CIMDA
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-8626ebbd9e7d0a113608c86e2300a2b9b0d465b23806cda7cac1a724bbceb4a83
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Sun Jun 29 15:45:01 EDT 2025
Tue Jul 01 00:41:18 EDT 2025
Thu Apr 24 22:54:15 EDT 2025
Wed Aug 27 02:14:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-8626ebbd9e7d0a113608c86e2300a2b9b0d465b23806cda7cac1a724bbceb4a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5714-1926
0000-0003-0140-0949
0000-0001-7429-5495
0000-0001-7484-7261
PQID 2729638217
PQPubID 85433
PageCount 16
ParticipantIDs proquest_journals_2729638217
crossref_primary_10_1109_TCSVT_2022_3184840
ieee_primary_9801871
crossref_citationtrail_10_1109_TCSVT_2022_3184840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref15
  doi: 10.1109/TMM.2021.3069297
– ident: ref8
  doi: 10.1109/TPAMI.2021.3051099
– ident: ref21
  doi: 10.1109/ICRA.2017.7989668
– ident: ref68
  doi: 10.1109/TNNLS.2020.2996406
– ident: ref43
  doi: 10.1088/1742-6596/2181/1/012008
– ident: ref26
  doi: 10.1007/s41095-020-0199-z
– ident: ref52
  doi: 10.1109/cvpr.2016.90
– ident: ref1
  doi: 10.1109/TPAMI.2017.2662005
– ident: ref35
  doi: 10.1109/TIP.2020.2976689
– ident: ref38
  doi: 10.1109/TIP.2022.3154931
– ident: ref44
  doi: 10.1109/TCSVT.2019.2951621
– ident: ref25
  doi: 10.1109/ICMLC.2016.7860880
– ident: ref66
  doi: 10.1109/ICIP.2014.7025222
– ident: ref54
  doi: 10.1007/978-3-319-10590-1_53
– ident: ref46
  doi: 10.1109/TIP.2019.2959253
– ident: ref16
  doi: 10.1109/TIP.2021.3087412
– ident: ref42
  doi: 10.1088/1742-6596/2181/1/012003
– ident: ref18
  doi: 10.1016/j.patcog.2019.106977
– ident: ref5
  doi: 10.1109/TPAMI.2019.2905607
– ident: ref17
  doi: 10.1109/TCSVT.2021.3082939
– ident: ref10
  doi: 10.1109/CVPR46437.2021.01211
– ident: ref27
  doi: 10.1007/978-3-319-10578-9_7
– ident: ref53
  doi: 10.1109/CVPR.2018.00745
– ident: ref31
  doi: 10.1007/978-3-030-58523-5_4
– ident: ref45
  doi: 10.1109/TMM.2019.2924578
– ident: ref39
  doi: 10.1109/TCSVT.2022.3144852
– ident: ref23
  doi: 10.1109/TMM.2022.3171688
– ident: ref58
  doi: 10.1109/MIPR.2019.00032
– ident: ref62
  doi: 10.1109/CVPR.2019.00941
– ident: ref63
  doi: 10.1109/CVPR.2018.00474
– ident: ref28
  doi: 10.1109/CVPR.2016.257
– ident: ref71
  doi: 10.1109/CVPR46437.2021.00935
– ident: ref69
  doi: 10.1109/CVPR42600.2020.00861
– ident: ref70
  doi: 10.1007/978-3-030-58520-4_39
– ident: ref6
  doi: 10.1109/CVPR.2019.00612
– ident: ref64
  doi: 10.1109/TPAMI.2021.3134684
– ident: ref32
  doi: 10.1109/CVPR42600.2020.00312
– ident: ref36
  doi: 10.1109/TIP.2020.3028289
– ident: ref67
  doi: 10.1109/CVPR.2012.6247708
– ident: ref7
  doi: 10.1609/aaai.v35i3.16331
– ident: ref47
  doi: 10.1109/tcsvt.2020.3014663
– ident: ref29
  doi: 10.1109/TCYB.2019.2932005
– ident: ref12
  doi: 10.1109/TPAMI.2021.3073689
– ident: ref61
  doi: 10.24963/ijcai.2018/97
– ident: ref51
  doi: 10.1007/s10489-021-02984-1
– ident: ref55
  doi: 10.1109/ICIP.2019.8803025
– ident: ref72
  doi: 10.1109/CVPR46437.2021.00146
– ident: ref4
  doi: 10.1109/CVPR.2019.00154
– ident: ref9
  doi: 10.1109/CVPR42600.2020.00299
– ident: ref34
  doi: 10.1007/978-3-030-58610-2_17
– ident: ref19
  doi: 10.1109/TMM.2022.3174341
– ident: ref24
  doi: 10.1007/978-981-13-1702-6_36
– ident: ref49
  doi: 10.1109/TCSVT.2021.3102268
– ident: ref57
  doi: 10.1007/978-3-030-58595-2_15
– ident: ref20
  doi: 10.1109/TIP.2021.3109518
– ident: ref14
  doi: 10.1109/TIP.2021.3062689
– ident: ref37
  doi: 10.1109/TIP.2021.3123548
– ident: ref40
  doi: 10.1109/TMM.2020.3011327
– ident: ref41
  doi: 10.1145/3474085.3475601
– ident: ref50
  doi: 10.1145/3394171.3413523
– ident: ref33
  doi: 10.1109/CVPR42600.2020.01377
– ident: ref65
  doi: 10.1109/ICCV.2019.00735
– ident: ref2
  doi: 10.1016/j.patcog.2019.107130
– ident: ref13
  doi: 10.1109/TIP.2021.3060167
– ident: ref30
  doi: 10.1007/978-3-030-58542-6_39
– ident: ref56
  doi: 10.1109/CVPR42600.2020.00353
– ident: ref22
  doi: 10.1609/aaai.v35i2.16191
– ident: ref11
  doi: 10.1109/TPAMI.2021.3060412
– ident: ref59
  doi: 10.1109/CVPR.2009.5206596
– ident: ref48
  doi: 10.1109/TCSVT.2021.3077058
– ident: ref3
  doi: 10.1109/tpami.2020.3023152
– ident: ref60
  doi: 10.1109/ICCV.2017.487
SSID ssj0014847
Score 2.6005926
Snippet With the prevalence of thermal cameras, RGB-T multi-modal data have become more available for salient object detection (SOD) in complex scenes. Most RGB-T SOD...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7646
SubjectTerms Blurring
Coders
Collaboration
cross-collaborative
Decoding
Encoding
Feature extraction
fusion-encoder
Modal data
Noise measurement
Object detection
Object recognition
RGB-thermal salient object detection
Robustness
Salience
Saliency detection
Source code
Task analysis
Title Cross-Collaborative Fusion-Encoder Network for Robust RGB-Thermal Salient Object Detection
URI https://ieeexplore.ieee.org/document/9801871
https://www.proquest.com/docview/2729638217
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYKEwy8CqK85IEN3DqpmzgjFEqFBEiloIolsp3rQpUiSBj49ZydB08htgy2Y_nOvu-z70HIYeApz0jcaQnXgokudJkUUchC--Y2VRCIqcv2eR0M78TlpDdpkOM6FgYAnPMZtO2ne8tP5ia3V2WdSNoScsh1FpC4FbFa9YuBkK6YGMIFj0m0Y1WADI864_7t_RipoO8jQ5XYkH8xQq6qyo-j2NmXwSq5qmZWuJU8tvNMt83bt6SN_536GlkpgSY9KTRjnTQg3SDLn9IPNslD386O9T9U4RXoILf3Z-w8tcHuz_S6cBOniG3paK7zl4yOLk4Zahee6DN6izAef0xvtL3PoWeQOdeudJPcDc7H_SEray0w40e9jFliA1onEYQJV7bQC5dGBoAMhStfR5onIuhpNPA8MIkKjTKeCn2htQEtlOxukcV0nsI2oSCiKe8CcCVDoZWnfAsjtOFKId4zQYt41eLHpkxEbuthzGJHSHgUO4HFVmBxKbAWOar7PBVpOP5s3bQSqFuWi98ie5WM43KnvsQ-sgs8g5CZ7fzea5cs2bGL-MM9spg957CPQCTTB04D3wEjwdkv
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxoxEB5F9NDk0BeNQkNbH3prTLyL2fUeWwolCVAJSIV6Wdne4VK0VLCbQ399x96F9KWqNx9s2fKMPd9nzwPgTRTowCo6aZkwkssudrmSScxj9-e20hjJlc_2OY1Gt_J62VsewcUhFgYRvfMZdlzT_-VnG1u6p7LLRLkScsR1HpDd74VVtNbhz0AqX06MAEPAFVmyfYiMSC4X_fnnBZHBMCSOqqij-MUM-boqf1zG3sIMH8Nkv7bKseRrpyxMx37_LW3j_y7-CTyqoSZ7V-nGUzjC_Bmc_JSAsAlf-m51vH-vDHfIhqV7QeOD3IW7b9m0chRnhG7ZbGPKXcFmH99z0i-609dsTkCeJmafjHvRYR-w8M5d-XO4HQ4W_RGvqy1wGya9gjtqg8ZkCcaZ0K7Ui1BWRUgcRejQJEZkMuoZMvEispmOrbaBjkNpjEUjteqeQiPf5HgGDGWyEl1EoVUsjQ506ICEsUJrQnw2akGw3_zU1qnIXUWMdeopiUhSL7DUCSytBdaCt4cx36pEHP_s3XQSOPSsN78F7b2M0_qs7tKQ-AXdQsTNXvx91Gt4OFpMxun4anpzDsdunioasQ2NYlviS4IlhXnltfEHo__ceQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Collaborative+Fusion-Encoder+Network+for+Robust+RGB-Thermal+Salient+Object+Detection&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Liao%2C+Guibiao&rft.au=Gao%2C+Wei&rft.au=Li%2C+Ge&rft.au=Wang%2C+Junle&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=11&rft.spage=7646&rft.epage=7661&rft_id=info:doi/10.1109%2FTCSVT.2022.3184840&rft.externalDocID=9801871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon