A Novel Wavelet-Based Ensemble Method for Short-Term Load Forecasting with Hybrid Neural Networks and Feature Selection

In this paper, a new ensemble forecasting model for short-term load forecasting (STLF) is proposed based on extreme learning machine (ELM). Four important improvements are used to support the ELM for increased forecasting performance. First, a novel wavelet-based ensemble scheme is carried out to ge...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 31; no. 3; pp. 1788 - 1798
Main Authors Song Li, Peng Wang, Goel, Lalit
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a new ensemble forecasting model for short-term load forecasting (STLF) is proposed based on extreme learning machine (ELM). Four important improvements are used to support the ELM for increased forecasting performance. First, a novel wavelet-based ensemble scheme is carried out to generate the individual ELM-based forecasters. Second, a hybrid learning algorithm blending ELM and the Levenberg-Marquardt method is proposed to improve the learning accuracy of neural networks. Third, a feature selection method based on the conditional mutual information is developed to select a compact set of input variables for the forecasting model. Fourth, to realize an accurate ensemble forecast, partial least squares regression is utilized as a combining approach to aggregate the individual forecasts. Numerical testing shows that proposed method can obtain better forecasting results in comparison with other standard and state-of-the-art methods.
AbstractList In this paper, a new ensemble forecasting model for short-term load forecasting (STLF) is proposed based on extreme learning machine (ELM). Four important improvements are used to support the ELM for increased forecasting performance. First, a novel wavelet-based ensemble scheme is carried out to generate the individual ELM-based forecasters. Second, a hybrid learning algorithm blending ELM and the Levenberg-Marquardt method is proposed to improve the learning accuracy of neural networks. Third, a feature selection method based on the conditional mutual information is developed to select a compact set of input variables for the forecasting model. Fourth, to realize an accurate ensemble forecast, partial least squares regression is utilized as a combining approach to aggregate the individual forecasts. Numerical testing shows that proposed method can obtain better forecasting results in comparison with other standard and state-of-the-art methods.
Author Peng Wang
Song Li
Goel, Lalit
Author_xml – sequence: 1
  surname: Song Li
  fullname: Song Li
  email: sli5@e.ntu.edu.sg
  organization: Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
– sequence: 2
  surname: Peng Wang
  fullname: Peng Wang
  email: epwang@ntu.edu.sg
  organization: Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
– sequence: 3
  givenname: Lalit
  surname: Goel
  fullname: Goel, Lalit
  email: elkgoel@ntu.edu.sg
  organization: Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
BookMark eNp9kEtPwzAQhC1UJFrgD8DFEueUtR0nzrGg8pDKQ7Sox8hxNjSQxmC7VPx7Ulpx4MBl57Dz7WhnQHqtbZGQEwZDxiA7nz3On6ZDDkwOeSyU4HyP9JmUKoIkzXqkD0rJSGUSDsjA-1cASLpFn6xH9N5-YkPnupsYogvtsaTj1uOyaJDeYVjYklbW0enCuhDN0C3pxOqSXlmHRvtQty90XYcFvfkqXF3Se1w53XQS1ta9earbzos6rBzSaZdhQm3bI7Jf6cbj8U4PyfPVeHZ5E00erm8vR5PI8EyGSCVQICtAY2UyjEtuMAGZVloVZWbKVMagmBKFMKoCnRqhuZBSZgkzUDERi0Nytr377uzHCn3IX-3KtV1kzlKVMgmJkJ2Lb13GWe8dVvm7q5fafeUM8k3B-U_B-abgfFdwB6k_kKmD3jwXnK6b_9HTLVoj4m9WyngsYya-AdjIi9c
CODEN ITPSEG
CitedBy_id crossref_primary_10_1016_j_energy_2018_07_019
crossref_primary_10_1002_tee_23536
crossref_primary_10_1007_s42835_020_00460_3
crossref_primary_10_1016_j_scs_2021_103484
crossref_primary_10_1007_s11227_022_04659_1
crossref_primary_10_3390_su12010232
crossref_primary_10_1109_ACCESS_2022_3232526
crossref_primary_10_1016_j_engappai_2024_108702
crossref_primary_10_3390_en11071638
crossref_primary_10_1016_j_rser_2022_112429
crossref_primary_10_1109_TPWRS_2017_2780986
crossref_primary_10_1002_2050_7038_12571
crossref_primary_10_1080_15325008_2022_2135051
crossref_primary_10_3390_en10101613
crossref_primary_10_3390_w16152150
crossref_primary_10_3390_s22186913
crossref_primary_10_1016_j_epsr_2022_108119
crossref_primary_10_3390_en12244654
crossref_primary_10_3390_en15145299
crossref_primary_10_1109_ACCESS_2021_3066915
crossref_primary_10_1007_s12065_020_00466_w
crossref_primary_10_1016_j_epsr_2023_109967
crossref_primary_10_1049_iet_gtd_2019_1612
crossref_primary_10_1088_1757_899X_884_1_012075
crossref_primary_10_3390_en11061449
crossref_primary_10_1016_j_engappai_2023_106773
crossref_primary_10_3390_app9204215
crossref_primary_10_1109_JSYST_2020_3037341
crossref_primary_10_1016_j_eswa_2022_117689
crossref_primary_10_1109_TCYB_2018_2794503
crossref_primary_10_1016_j_jaridenv_2021_104478
crossref_primary_10_1016_j_jhydrol_2018_05_003
crossref_primary_10_1109_TPWRS_2022_3217579
crossref_primary_10_1016_j_energy_2024_132192
crossref_primary_10_1016_j_energy_2021_120309
crossref_primary_10_1016_j_scs_2020_102052
crossref_primary_10_3390_appliedmath5010006
crossref_primary_10_4018_IJSIR_317112
crossref_primary_10_1109_ACCESS_2020_3036096
crossref_primary_10_1016_j_conengprac_2019_05_009
crossref_primary_10_1109_TSG_2018_2844307
crossref_primary_10_1016_j_energy_2020_117858
crossref_primary_10_1109_TSG_2021_3066567
crossref_primary_10_1049_iet_gtd_2018_6687
crossref_primary_10_1049_iet_gtd_2018_5472
crossref_primary_10_3390_en9120994
crossref_primary_10_1007_s00521_024_10280_5
crossref_primary_10_1016_j_energy_2022_123418
crossref_primary_10_1007_s42835_022_01296_9
crossref_primary_10_3390_en13092390
crossref_primary_10_1016_j_neucom_2017_01_090
crossref_primary_10_1049_gtd2_12007
crossref_primary_10_3390_su17020500
crossref_primary_10_1016_j_energy_2019_06_075
crossref_primary_10_1016_j_neucom_2019_05_030
crossref_primary_10_1109_TII_2017_2676879
crossref_primary_10_1016_j_scs_2020_102320
crossref_primary_10_3390_en14175510
crossref_primary_10_1109_ACCESS_2019_2936497
crossref_primary_10_3390_app132011408
crossref_primary_10_1016_j_seta_2022_102337
crossref_primary_10_3390_en14113249
crossref_primary_10_3390_s21165650
crossref_primary_10_1007_s40313_021_00726_9
crossref_primary_10_1109_TSG_2020_2972513
crossref_primary_10_1016_j_epsr_2019_106025
crossref_primary_10_3390_en11040825
crossref_primary_10_1016_j_measurement_2024_116189
crossref_primary_10_1016_j_jhydrol_2020_125127
crossref_primary_10_1016_j_apenergy_2021_117992
crossref_primary_10_1109_ACCESS_2019_2949726
crossref_primary_10_1109_TIA_2019_2936330
crossref_primary_10_1016_j_aej_2022_07_050
crossref_primary_10_1109_ACCESS_2020_3036675
crossref_primary_10_1109_TSG_2018_2807985
crossref_primary_10_1108_JEDT_12_2019_0337
crossref_primary_10_3390_app10238634
crossref_primary_10_1109_ACCESS_2021_3059730
crossref_primary_10_1109_TPWRS_2024_3431880
crossref_primary_10_1016_j_eswa_2021_115748
crossref_primary_10_1016_j_enbuild_2018_06_050
crossref_primary_10_1109_TSG_2016_2563461
crossref_primary_10_1016_j_epsr_2024_111330
crossref_primary_10_1007_s12652_021_03636_5
crossref_primary_10_1186_s42162_018_0007_5
crossref_primary_10_1109_TIA_2023_3244171
crossref_primary_10_1109_TII_2022_3160628
crossref_primary_10_1109_TSG_2019_2937072
crossref_primary_10_1109_JSYST_2019_2939500
crossref_primary_10_1016_j_energy_2018_10_119
crossref_primary_10_3390_s20113289
crossref_primary_10_1016_j_apenergy_2017_10_058
crossref_primary_10_1002_tee_23603
crossref_primary_10_1016_j_energy_2024_134168
crossref_primary_10_1016_j_ijepes_2021_107818
crossref_primary_10_1007_s00202_022_01533_4
crossref_primary_10_1109_ACCESS_2023_3236663
crossref_primary_10_1007_s00521_019_04310_w
crossref_primary_10_1016_j_energy_2019_116324
crossref_primary_10_1016_j_asoc_2019_02_006
crossref_primary_10_1109_TII_2019_2930064
crossref_primary_10_1109_TSG_2017_2651499
crossref_primary_10_1016_j_apenergy_2021_118341
crossref_primary_10_1016_j_energy_2020_118265
crossref_primary_10_1109_TSG_2019_2942024
crossref_primary_10_3390_en11010224
crossref_primary_10_1007_s40565_018_0496_z
crossref_primary_10_1016_j_enbuild_2020_110450
crossref_primary_10_3390_en11010184
crossref_primary_10_3390_math10122148
crossref_primary_10_1016_j_egyr_2022_09_068
crossref_primary_10_1016_j_apenergy_2022_118938
crossref_primary_10_1007_s40974_021_00224_3
crossref_primary_10_1007_s11947_016_1851_6
crossref_primary_10_3389_fenrg_2022_1038819
crossref_primary_10_3390_inventions3030045
crossref_primary_10_1109_ACCESS_2018_2888978
crossref_primary_10_1109_TIA_2020_3009313
crossref_primary_10_1080_15325008_2023_2235586
crossref_primary_10_1002_tee_22697
crossref_primary_10_1155_2023_2425608
crossref_primary_10_1016_j_matpr_2021_01_191
crossref_primary_10_1145_3209888
crossref_primary_10_3390_en15103637
crossref_primary_10_1088_1742_6596_1682_1_012007
crossref_primary_10_3390_electronics10202455
crossref_primary_10_1109_TIA_2023_3344540
crossref_primary_10_1049_tje2_12151
crossref_primary_10_1088_1742_6596_2010_1_012104
crossref_primary_10_1109_TSG_2020_2991335
crossref_primary_10_1016_j_asoc_2020_106070
crossref_primary_10_3390_e18090330
crossref_primary_10_3390_electronics7120431
crossref_primary_10_1016_j_epsr_2022_108923
crossref_primary_10_1109_TPWRS_2019_2941277
crossref_primary_10_1007_s11063_021_10651_2
crossref_primary_10_3390_app13116845
crossref_primary_10_1109_TSG_2018_2833869
crossref_primary_10_1049_elp2_12175
Cites_doi 10.1109/TPWRS.2011.2174659
10.1109/TPWRS.2012.2190627
10.1109/72.701180
10.1016/j.energy.2011.07.015
10.1109/TPWRS.2009.2030426
10.1109/TPWRS.2003.811010
10.1016/j.epsr.2015.01.002
10.1016/j.epsr.2004.09.007
10.1109/59.41700
10.1109/TPAMI.2002.1114861
10.1049/iet-gtd.2012.0541
10.1109/TPWRS.2005.860944
10.1109/59.496169
10.1109/TPWRS.2003.820695
10.1016/0003-2670(86)80028-9
10.1109/TPWRS.2008.2008606
10.1109/TPWRS.2010.2042471
10.1109/TPWRS.2004.840380
10.1023/A:1010933404324
10.1016/j.energy.2012.01.007
10.1109/72.329697
10.1049/ip-gtd:19951602
10.1049/ip-gtd:20010286
10.1109/TPWRS.2002.800906
10.1109/MCI.2011.941590
10.1109/TPWRS.2012.2184308
10.1109/PICA.2001.932351
10.1137/1.9781611970104
10.1109/TPWRS.2010.2048585
10.1049/ip-gtd:19960314
10.1016/0169-7439(93)85002-X
10.1109/TPWRS.2013.2269803
10.1016/j.energy.2008.09.020
10.1109/TPWRS.2012.2197639
10.1109/59.982201
10.1023/A:1025667309714
10.1109/TSMCB.2011.2168604
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TPWRS.2015.2438322
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 1798
ExternalDocumentID 4046972991
10_1109_TPWRS_2015_2438322
7124541
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c295t-860be1b0aefc9e4d2ce6057fa8bd9cd75408183b3c8f0a7c3a23555961c0f1343
IEDL.DBID RIE
ISSN 0885-8950
IngestDate Mon Jun 30 10:21:04 EDT 2025
Thu Apr 24 23:20:39 EDT 2025
Tue Jul 01 01:35:34 EDT 2025
Wed Aug 27 02:51:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-860be1b0aefc9e4d2ce6057fa8bd9cd75408183b3c8f0a7c3a23555961c0f1343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1787150635
PQPubID 85441
PageCount 11
ParticipantIDs ieee_primary_7124541
crossref_citationtrail_10_1109_TPWRS_2015_2438322
crossref_primary_10_1109_TPWRS_2015_2438322
proquest_journals_1787150635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-May
2016-5-00
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-May
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References marko (ref35) 2003; 53
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
guyon (ref20) 2003; 3
ref11
ref10
ref2
ref39
ref17
ref38
ref19
ref18
cover (ref32) 2006
haykin (ref23) 1999
ref24
ref26
bunn (ref1) 1985
ref25
ref42
ref41
ref22
ref21
ref43
ref28
ref29
ref8
ref7
ref9
ref4
ranaweera (ref40) 1995; 142
ref3
brown (ref16) 2005; 6
ref6
ref5
fleuret (ref33) 2004; 5
reis (ref27) 2005; 20
References_xml – year: 1999
  ident: ref23
  publication-title: Neural Networks A Comprehensive Foundation
– ident: ref8
  doi: 10.1109/TPWRS.2011.2174659
– ident: ref9
  doi: 10.1109/TPWRS.2012.2190627
– ident: ref24
  doi: 10.1109/72.701180
– ident: ref7
  doi: 10.1016/j.energy.2011.07.015
– ident: ref28
  doi: 10.1109/TPWRS.2009.2030426
– ident: ref3
  doi: 10.1109/TPWRS.2003.811010
– ident: ref11
  doi: 10.1016/j.epsr.2015.01.002
– ident: ref13
  doi: 10.1016/j.epsr.2004.09.007
– ident: ref39
  doi: 10.1109/59.41700
– ident: ref34
  doi: 10.1109/TPAMI.2002.1114861
– ident: ref10
  doi: 10.1049/iet-gtd.2012.0541
– ident: ref6
  doi: 10.1109/TPWRS.2005.860944
– ident: ref2
  doi: 10.1109/59.496169
– ident: ref43
  doi: 10.1109/TPWRS.2003.820695
– ident: ref30
  doi: 10.1016/0003-2670(86)80028-9
– ident: ref17
  doi: 10.1109/TPWRS.2008.2008606
– ident: ref29
  doi: 10.1109/TPWRS.2010.2042471
– volume: 20
  start-page: 189
  year: 2005
  ident: ref27
  article-title: Feature extraction via multiresolution analysis for short-term load forecasting
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2004.840380
– ident: ref36
  doi: 10.1023/A:1010933404324
– year: 2006
  ident: ref32
  publication-title: Elements of Information Theory
– ident: ref42
  doi: 10.1016/j.energy.2012.01.007
– ident: ref21
  doi: 10.1109/72.329697
– volume: 142
  start-page: 45
  year: 1995
  ident: ref40
  article-title: Application of radial basis function neural network model for short-term load forecasting
  publication-title: Generation Transmission and Distribution IEE Proceedings-
  doi: 10.1049/ip-gtd:19951602
– ident: ref19
  doi: 10.1049/ip-gtd:20010286
– ident: ref12
  doi: 10.1109/TPWRS.2002.800906
– ident: ref14
  doi: 10.1109/MCI.2011.941590
– ident: ref15
  doi: 10.1109/TPWRS.2012.2184308
– ident: ref37
  doi: 10.1109/PICA.2001.932351
– ident: ref25
  doi: 10.1137/1.9781611970104
– ident: ref18
  doi: 10.1109/TPWRS.2010.2048585
– ident: ref5
  doi: 10.1049/ip-gtd:19960314
– year: 1985
  ident: ref1
  publication-title: Comparative Models for Electrical Load Forecasting
– ident: ref31
  doi: 10.1016/0169-7439(93)85002-X
– volume: 6
  start-page: 1621
  year: 2005
  ident: ref16
  article-title: Managing diversity in regression ensembles
  publication-title: J Mach Learning Res
– volume: 5
  start-page: 1531
  year: 2004
  ident: ref33
  article-title: Fast binary feature selection with conditional mutual information
  publication-title: J Mach Learning Res
– ident: ref41
  doi: 10.1109/TPWRS.2013.2269803
– ident: ref26
  doi: 10.1016/j.energy.2008.09.020
– ident: ref38
  doi: 10.1109/TPWRS.2012.2197639
– ident: ref4
  doi: 10.1109/59.982201
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref20
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learning Res
– volume: 53
  start-page: 23
  year: 2003
  ident: ref35
  article-title: Theoretical and empirical analysis of ReliefF and RReliefF
  publication-title: Mach Learning
  doi: 10.1023/A:1025667309714
– ident: ref22
  doi: 10.1109/TSMCB.2011.2168604
SSID ssj0006679
Score 2.581775
Snippet In this paper, a new ensemble forecasting model for short-term load forecasting (STLF) is proposed based on extreme learning machine (ELM). Four important...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1788
SubjectTerms Accuracy
Ensemble method
extreme learning machine
Forecasting
Forecasting techniques
load forecast
Load forecasting
Neural networks
partial least-squares regression
Training
wavelet transform
Wavelet transforms
Title A Novel Wavelet-Based Ensemble Method for Short-Term Load Forecasting with Hybrid Neural Networks and Feature Selection
URI https://ieeexplore.ieee.org/document/7124541
https://www.proquest.com/docview/1787150635
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLe2neCwDQpaoSAfuEG62IkT59hNnSpEK0RbbbfIsZ81aSVFNB2Cv37vOWnFlxCXKAc7sfSe34f93u_H2BvpnMs8pqmpVjJKrTGR0ULgw2eoXkBXVVRtMcsmy_T9jbo5YO_2vTAAEIrPYEiv4S7fre2WjsrOc3RGirrUDzFxa3u19lY3y1pcPa1VpAsV7xpk4uJ88fH605yquNRQEjKnlL84ocCq8ocpDv7l6oRNdytry0ruhtumGtofv4E2_u_ST9lxF2jyUasZT9gB1E_Z45_gB3vs24jP1vew4teG6Cea6AJdmuPjegOfqxXwaWCX5hjW8vkthunRAs04_7A2jhOjpzUbqpnmdJTLJ9-p9YsT1gf-ddYWl2-4qXEsBPBQPg-UO6gHz9jyary4nEQdEUNkZaGaSGdxBaKKDXhbQOqkBcyCcm905Qrrcoz60O8nVWK1j01uEyMxjFFFJmzsRZImz9lRva7hjHGR5l4Qw7FWNo29NLmoCguYd3mPkZLpM7GTTGk7lHIiy1iVIVuJizJIsyRplp00--ztfs6XFqPjn6N7JJ79yE4yfTbYKUDZbeNNKdCcEQRjol78fdZL9gi_nbUVkAN21HzdwiuMUprqdVDPBzJq4wM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VcgAOfBXEQgEf4ISyjZ04cQ4cCrTa0u0KsVu1t-DYYyGxZBHJUpXfwl_hvzF2siu-xK0SlygHO1acF8-M_eYNwBNhrc0champkiJKjdaRVpzTxWUEL_RHVZ5tMclGx-nrU3m6Ad_WuTCIGMhnOPS34SzfLszSb5Xt5GSMZMp7CuUhnp9RgNY8P3hFX_OpEPt7s5ejqK8hEBlRyDZSWVwhr2KNzhSYWmGQHPjcaVXZwticHBYyWUmVGOVinZtEC7LAssi4iR1P0oSeewkuk58hRZcdtl7ns6xT8lNKRqqQ8SolJy52Zm9O3k49b0wOhdcCFeIXsxfquPyx-AeLtn8Dvq_moiOyfBgu22povv4mE_m_TtZNuN670my3w_4t2MD6Nlz7SWBxC8522WTxBefsRPsCG230goy2ZXt1gx-rObKjUD-bkePOpu8pEIlmZKjYeKEt8zVLjW48K5z5zWo2OvfJbcyrmdCok44-3zBdU1sM8qhsGooKEdLvwPGFvPld2KwXNd4DxtPccV_DWUmTxk7onFeFQYosnSNfUA-Ar5BQml6H3ZcDmZchHouLMqCn9Ogpe_QM4Nm6z6dOheSfrbc8HNYteyQMYHsFuLJfqJqS04LtRSYTef_vvR7DldHsaFyODyaHD-AqjZN1fM9t2Gw_L_Eh-WRt9Sj8GgzeXTS8fgCyqUC-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Wavelet-Based+Ensemble+Method+for+Short-Term+Load+Forecasting+with+Hybrid+Neural+Networks+and+Feature+Selection&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Li%2C+Song&rft.au=Wang%2C+Peng&rft.au=Goel%2C+Lalit&rft.date=2016-05-01&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=31&rft.issue=3&rft.spage=1788&rft.epage=1798&rft_id=info:doi/10.1109%2FTPWRS.2015.2438322&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRS_2015_2438322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon