A Novel Wavelet-Based Ensemble Method for Short-Term Load Forecasting with Hybrid Neural Networks and Feature Selection
In this paper, a new ensemble forecasting model for short-term load forecasting (STLF) is proposed based on extreme learning machine (ELM). Four important improvements are used to support the ELM for increased forecasting performance. First, a novel wavelet-based ensemble scheme is carried out to ge...
Saved in:
Published in | IEEE transactions on power systems Vol. 31; no. 3; pp. 1788 - 1798 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a new ensemble forecasting model for short-term load forecasting (STLF) is proposed based on extreme learning machine (ELM). Four important improvements are used to support the ELM for increased forecasting performance. First, a novel wavelet-based ensemble scheme is carried out to generate the individual ELM-based forecasters. Second, a hybrid learning algorithm blending ELM and the Levenberg-Marquardt method is proposed to improve the learning accuracy of neural networks. Third, a feature selection method based on the conditional mutual information is developed to select a compact set of input variables for the forecasting model. Fourth, to realize an accurate ensemble forecast, partial least squares regression is utilized as a combining approach to aggregate the individual forecasts. Numerical testing shows that proposed method can obtain better forecasting results in comparison with other standard and state-of-the-art methods. |
---|---|
AbstractList | In this paper, a new ensemble forecasting model for short-term load forecasting (STLF) is proposed based on extreme learning machine (ELM). Four important improvements are used to support the ELM for increased forecasting performance. First, a novel wavelet-based ensemble scheme is carried out to generate the individual ELM-based forecasters. Second, a hybrid learning algorithm blending ELM and the Levenberg-Marquardt method is proposed to improve the learning accuracy of neural networks. Third, a feature selection method based on the conditional mutual information is developed to select a compact set of input variables for the forecasting model. Fourth, to realize an accurate ensemble forecast, partial least squares regression is utilized as a combining approach to aggregate the individual forecasts. Numerical testing shows that proposed method can obtain better forecasting results in comparison with other standard and state-of-the-art methods. |
Author | Peng Wang Song Li Goel, Lalit |
Author_xml | – sequence: 1 surname: Song Li fullname: Song Li email: sli5@e.ntu.edu.sg organization: Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore – sequence: 2 surname: Peng Wang fullname: Peng Wang email: epwang@ntu.edu.sg organization: Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore – sequence: 3 givenname: Lalit surname: Goel fullname: Goel, Lalit email: elkgoel@ntu.edu.sg organization: Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore |
BookMark | eNp9kEtPwzAQhC1UJFrgD8DFEueUtR0nzrGg8pDKQ7Sox8hxNjSQxmC7VPx7Ulpx4MBl57Dz7WhnQHqtbZGQEwZDxiA7nz3On6ZDDkwOeSyU4HyP9JmUKoIkzXqkD0rJSGUSDsjA-1cASLpFn6xH9N5-YkPnupsYogvtsaTj1uOyaJDeYVjYklbW0enCuhDN0C3pxOqSXlmHRvtQty90XYcFvfkqXF3Se1w53XQS1ta9earbzos6rBzSaZdhQm3bI7Jf6cbj8U4PyfPVeHZ5E00erm8vR5PI8EyGSCVQICtAY2UyjEtuMAGZVloVZWbKVMagmBKFMKoCnRqhuZBSZgkzUDERi0Nytr377uzHCn3IX-3KtV1kzlKVMgmJkJ2Lb13GWe8dVvm7q5fafeUM8k3B-U_B-abgfFdwB6k_kKmD3jwXnK6b_9HTLVoj4m9WyngsYya-AdjIi9c |
CODEN | ITPSEG |
CitedBy_id | crossref_primary_10_1016_j_energy_2018_07_019 crossref_primary_10_1002_tee_23536 crossref_primary_10_1007_s42835_020_00460_3 crossref_primary_10_1016_j_scs_2021_103484 crossref_primary_10_1007_s11227_022_04659_1 crossref_primary_10_3390_su12010232 crossref_primary_10_1109_ACCESS_2022_3232526 crossref_primary_10_1016_j_engappai_2024_108702 crossref_primary_10_3390_en11071638 crossref_primary_10_1016_j_rser_2022_112429 crossref_primary_10_1109_TPWRS_2017_2780986 crossref_primary_10_1002_2050_7038_12571 crossref_primary_10_1080_15325008_2022_2135051 crossref_primary_10_3390_en10101613 crossref_primary_10_3390_w16152150 crossref_primary_10_3390_s22186913 crossref_primary_10_1016_j_epsr_2022_108119 crossref_primary_10_3390_en12244654 crossref_primary_10_3390_en15145299 crossref_primary_10_1109_ACCESS_2021_3066915 crossref_primary_10_1007_s12065_020_00466_w crossref_primary_10_1016_j_epsr_2023_109967 crossref_primary_10_1049_iet_gtd_2019_1612 crossref_primary_10_1088_1757_899X_884_1_012075 crossref_primary_10_3390_en11061449 crossref_primary_10_1016_j_engappai_2023_106773 crossref_primary_10_3390_app9204215 crossref_primary_10_1109_JSYST_2020_3037341 crossref_primary_10_1016_j_eswa_2022_117689 crossref_primary_10_1109_TCYB_2018_2794503 crossref_primary_10_1016_j_jaridenv_2021_104478 crossref_primary_10_1016_j_jhydrol_2018_05_003 crossref_primary_10_1109_TPWRS_2022_3217579 crossref_primary_10_1016_j_energy_2024_132192 crossref_primary_10_1016_j_energy_2021_120309 crossref_primary_10_1016_j_scs_2020_102052 crossref_primary_10_3390_appliedmath5010006 crossref_primary_10_4018_IJSIR_317112 crossref_primary_10_1109_ACCESS_2020_3036096 crossref_primary_10_1016_j_conengprac_2019_05_009 crossref_primary_10_1109_TSG_2018_2844307 crossref_primary_10_1016_j_energy_2020_117858 crossref_primary_10_1109_TSG_2021_3066567 crossref_primary_10_1049_iet_gtd_2018_6687 crossref_primary_10_1049_iet_gtd_2018_5472 crossref_primary_10_3390_en9120994 crossref_primary_10_1007_s00521_024_10280_5 crossref_primary_10_1016_j_energy_2022_123418 crossref_primary_10_1007_s42835_022_01296_9 crossref_primary_10_3390_en13092390 crossref_primary_10_1016_j_neucom_2017_01_090 crossref_primary_10_1049_gtd2_12007 crossref_primary_10_3390_su17020500 crossref_primary_10_1016_j_energy_2019_06_075 crossref_primary_10_1016_j_neucom_2019_05_030 crossref_primary_10_1109_TII_2017_2676879 crossref_primary_10_1016_j_scs_2020_102320 crossref_primary_10_3390_en14175510 crossref_primary_10_1109_ACCESS_2019_2936497 crossref_primary_10_3390_app132011408 crossref_primary_10_1016_j_seta_2022_102337 crossref_primary_10_3390_en14113249 crossref_primary_10_3390_s21165650 crossref_primary_10_1007_s40313_021_00726_9 crossref_primary_10_1109_TSG_2020_2972513 crossref_primary_10_1016_j_epsr_2019_106025 crossref_primary_10_3390_en11040825 crossref_primary_10_1016_j_measurement_2024_116189 crossref_primary_10_1016_j_jhydrol_2020_125127 crossref_primary_10_1016_j_apenergy_2021_117992 crossref_primary_10_1109_ACCESS_2019_2949726 crossref_primary_10_1109_TIA_2019_2936330 crossref_primary_10_1016_j_aej_2022_07_050 crossref_primary_10_1109_ACCESS_2020_3036675 crossref_primary_10_1109_TSG_2018_2807985 crossref_primary_10_1108_JEDT_12_2019_0337 crossref_primary_10_3390_app10238634 crossref_primary_10_1109_ACCESS_2021_3059730 crossref_primary_10_1109_TPWRS_2024_3431880 crossref_primary_10_1016_j_eswa_2021_115748 crossref_primary_10_1016_j_enbuild_2018_06_050 crossref_primary_10_1109_TSG_2016_2563461 crossref_primary_10_1016_j_epsr_2024_111330 crossref_primary_10_1007_s12652_021_03636_5 crossref_primary_10_1186_s42162_018_0007_5 crossref_primary_10_1109_TIA_2023_3244171 crossref_primary_10_1109_TII_2022_3160628 crossref_primary_10_1109_TSG_2019_2937072 crossref_primary_10_1109_JSYST_2019_2939500 crossref_primary_10_1016_j_energy_2018_10_119 crossref_primary_10_3390_s20113289 crossref_primary_10_1016_j_apenergy_2017_10_058 crossref_primary_10_1002_tee_23603 crossref_primary_10_1016_j_energy_2024_134168 crossref_primary_10_1016_j_ijepes_2021_107818 crossref_primary_10_1007_s00202_022_01533_4 crossref_primary_10_1109_ACCESS_2023_3236663 crossref_primary_10_1007_s00521_019_04310_w crossref_primary_10_1016_j_energy_2019_116324 crossref_primary_10_1016_j_asoc_2019_02_006 crossref_primary_10_1109_TII_2019_2930064 crossref_primary_10_1109_TSG_2017_2651499 crossref_primary_10_1016_j_apenergy_2021_118341 crossref_primary_10_1016_j_energy_2020_118265 crossref_primary_10_1109_TSG_2019_2942024 crossref_primary_10_3390_en11010224 crossref_primary_10_1007_s40565_018_0496_z crossref_primary_10_1016_j_enbuild_2020_110450 crossref_primary_10_3390_en11010184 crossref_primary_10_3390_math10122148 crossref_primary_10_1016_j_egyr_2022_09_068 crossref_primary_10_1016_j_apenergy_2022_118938 crossref_primary_10_1007_s40974_021_00224_3 crossref_primary_10_1007_s11947_016_1851_6 crossref_primary_10_3389_fenrg_2022_1038819 crossref_primary_10_3390_inventions3030045 crossref_primary_10_1109_ACCESS_2018_2888978 crossref_primary_10_1109_TIA_2020_3009313 crossref_primary_10_1080_15325008_2023_2235586 crossref_primary_10_1002_tee_22697 crossref_primary_10_1155_2023_2425608 crossref_primary_10_1016_j_matpr_2021_01_191 crossref_primary_10_1145_3209888 crossref_primary_10_3390_en15103637 crossref_primary_10_1088_1742_6596_1682_1_012007 crossref_primary_10_3390_electronics10202455 crossref_primary_10_1109_TIA_2023_3344540 crossref_primary_10_1049_tje2_12151 crossref_primary_10_1088_1742_6596_2010_1_012104 crossref_primary_10_1109_TSG_2020_2991335 crossref_primary_10_1016_j_asoc_2020_106070 crossref_primary_10_3390_e18090330 crossref_primary_10_3390_electronics7120431 crossref_primary_10_1016_j_epsr_2022_108923 crossref_primary_10_1109_TPWRS_2019_2941277 crossref_primary_10_1007_s11063_021_10651_2 crossref_primary_10_3390_app13116845 crossref_primary_10_1109_TSG_2018_2833869 crossref_primary_10_1049_elp2_12175 |
Cites_doi | 10.1109/TPWRS.2011.2174659 10.1109/TPWRS.2012.2190627 10.1109/72.701180 10.1016/j.energy.2011.07.015 10.1109/TPWRS.2009.2030426 10.1109/TPWRS.2003.811010 10.1016/j.epsr.2015.01.002 10.1016/j.epsr.2004.09.007 10.1109/59.41700 10.1109/TPAMI.2002.1114861 10.1049/iet-gtd.2012.0541 10.1109/TPWRS.2005.860944 10.1109/59.496169 10.1109/TPWRS.2003.820695 10.1016/0003-2670(86)80028-9 10.1109/TPWRS.2008.2008606 10.1109/TPWRS.2010.2042471 10.1109/TPWRS.2004.840380 10.1023/A:1010933404324 10.1016/j.energy.2012.01.007 10.1109/72.329697 10.1049/ip-gtd:19951602 10.1049/ip-gtd:20010286 10.1109/TPWRS.2002.800906 10.1109/MCI.2011.941590 10.1109/TPWRS.2012.2184308 10.1109/PICA.2001.932351 10.1137/1.9781611970104 10.1109/TPWRS.2010.2048585 10.1049/ip-gtd:19960314 10.1016/0169-7439(93)85002-X 10.1109/TPWRS.2013.2269803 10.1016/j.energy.2008.09.020 10.1109/TPWRS.2012.2197639 10.1109/59.982201 10.1023/A:1025667309714 10.1109/TSMCB.2011.2168604 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TPWRS.2015.2438322 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0679 |
EndPage | 1798 |
ExternalDocumentID | 4046972991 10_1109_TPWRS_2015_2438322 7124541 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c295t-860be1b0aefc9e4d2ce6057fa8bd9cd75408183b3c8f0a7c3a23555961c0f1343 |
IEDL.DBID | RIE |
ISSN | 0885-8950 |
IngestDate | Mon Jun 30 10:21:04 EDT 2025 Thu Apr 24 23:20:39 EDT 2025 Tue Jul 01 01:35:34 EDT 2025 Wed Aug 27 02:51:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-860be1b0aefc9e4d2ce6057fa8bd9cd75408183b3c8f0a7c3a23555961c0f1343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1787150635 |
PQPubID | 85441 |
PageCount | 11 |
ParticipantIDs | ieee_primary_7124541 crossref_citationtrail_10_1109_TPWRS_2015_2438322 crossref_primary_10_1109_TPWRS_2015_2438322 proquest_journals_1787150635 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-May 2016-5-00 20160501 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-May |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on power systems |
PublicationTitleAbbrev | TPWRS |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | marko (ref35) 2003; 53 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 guyon (ref20) 2003; 3 ref11 ref10 ref2 ref39 ref17 ref38 ref19 ref18 cover (ref32) 2006 haykin (ref23) 1999 ref24 ref26 bunn (ref1) 1985 ref25 ref42 ref41 ref22 ref21 ref43 ref28 ref29 ref8 ref7 ref9 ref4 ranaweera (ref40) 1995; 142 ref3 brown (ref16) 2005; 6 ref6 ref5 fleuret (ref33) 2004; 5 reis (ref27) 2005; 20 |
References_xml | – year: 1999 ident: ref23 publication-title: Neural Networks A Comprehensive Foundation – ident: ref8 doi: 10.1109/TPWRS.2011.2174659 – ident: ref9 doi: 10.1109/TPWRS.2012.2190627 – ident: ref24 doi: 10.1109/72.701180 – ident: ref7 doi: 10.1016/j.energy.2011.07.015 – ident: ref28 doi: 10.1109/TPWRS.2009.2030426 – ident: ref3 doi: 10.1109/TPWRS.2003.811010 – ident: ref11 doi: 10.1016/j.epsr.2015.01.002 – ident: ref13 doi: 10.1016/j.epsr.2004.09.007 – ident: ref39 doi: 10.1109/59.41700 – ident: ref34 doi: 10.1109/TPAMI.2002.1114861 – ident: ref10 doi: 10.1049/iet-gtd.2012.0541 – ident: ref6 doi: 10.1109/TPWRS.2005.860944 – ident: ref2 doi: 10.1109/59.496169 – ident: ref43 doi: 10.1109/TPWRS.2003.820695 – ident: ref30 doi: 10.1016/0003-2670(86)80028-9 – ident: ref17 doi: 10.1109/TPWRS.2008.2008606 – ident: ref29 doi: 10.1109/TPWRS.2010.2042471 – volume: 20 start-page: 189 year: 2005 ident: ref27 article-title: Feature extraction via multiresolution analysis for short-term load forecasting publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2004.840380 – ident: ref36 doi: 10.1023/A:1010933404324 – year: 2006 ident: ref32 publication-title: Elements of Information Theory – ident: ref42 doi: 10.1016/j.energy.2012.01.007 – ident: ref21 doi: 10.1109/72.329697 – volume: 142 start-page: 45 year: 1995 ident: ref40 article-title: Application of radial basis function neural network model for short-term load forecasting publication-title: Generation Transmission and Distribution IEE Proceedings- doi: 10.1049/ip-gtd:19951602 – ident: ref19 doi: 10.1049/ip-gtd:20010286 – ident: ref12 doi: 10.1109/TPWRS.2002.800906 – ident: ref14 doi: 10.1109/MCI.2011.941590 – ident: ref15 doi: 10.1109/TPWRS.2012.2184308 – ident: ref37 doi: 10.1109/PICA.2001.932351 – ident: ref25 doi: 10.1137/1.9781611970104 – ident: ref18 doi: 10.1109/TPWRS.2010.2048585 – ident: ref5 doi: 10.1049/ip-gtd:19960314 – year: 1985 ident: ref1 publication-title: Comparative Models for Electrical Load Forecasting – ident: ref31 doi: 10.1016/0169-7439(93)85002-X – volume: 6 start-page: 1621 year: 2005 ident: ref16 article-title: Managing diversity in regression ensembles publication-title: J Mach Learning Res – volume: 5 start-page: 1531 year: 2004 ident: ref33 article-title: Fast binary feature selection with conditional mutual information publication-title: J Mach Learning Res – ident: ref41 doi: 10.1109/TPWRS.2013.2269803 – ident: ref26 doi: 10.1016/j.energy.2008.09.020 – ident: ref38 doi: 10.1109/TPWRS.2012.2197639 – ident: ref4 doi: 10.1109/59.982201 – volume: 3 start-page: 1157 year: 2003 ident: ref20 article-title: An introduction to variable and feature selection publication-title: J Mach Learning Res – volume: 53 start-page: 23 year: 2003 ident: ref35 article-title: Theoretical and empirical analysis of ReliefF and RReliefF publication-title: Mach Learning doi: 10.1023/A:1025667309714 – ident: ref22 doi: 10.1109/TSMCB.2011.2168604 |
SSID | ssj0006679 |
Score | 2.581775 |
Snippet | In this paper, a new ensemble forecasting model for short-term load forecasting (STLF) is proposed based on extreme learning machine (ELM). Four important... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1788 |
SubjectTerms | Accuracy Ensemble method extreme learning machine Forecasting Forecasting techniques load forecast Load forecasting Neural networks partial least-squares regression Training wavelet transform Wavelet transforms |
Title | A Novel Wavelet-Based Ensemble Method for Short-Term Load Forecasting with Hybrid Neural Networks and Feature Selection |
URI | https://ieeexplore.ieee.org/document/7124541 https://www.proquest.com/docview/1787150635 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLe2neCwDQpaoSAfuEG62IkT59hNnSpEK0RbbbfIsZ81aSVFNB2Cv37vOWnFlxCXKAc7sfSe34f93u_H2BvpnMs8pqmpVjJKrTGR0ULgw2eoXkBXVVRtMcsmy_T9jbo5YO_2vTAAEIrPYEiv4S7fre2WjsrOc3RGirrUDzFxa3u19lY3y1pcPa1VpAsV7xpk4uJ88fH605yquNRQEjKnlL84ocCq8ocpDv7l6oRNdytry0ruhtumGtofv4E2_u_ST9lxF2jyUasZT9gB1E_Z45_gB3vs24jP1vew4teG6Cea6AJdmuPjegOfqxXwaWCX5hjW8vkthunRAs04_7A2jhOjpzUbqpnmdJTLJ9-p9YsT1gf-ddYWl2-4qXEsBPBQPg-UO6gHz9jyary4nEQdEUNkZaGaSGdxBaKKDXhbQOqkBcyCcm905Qrrcoz60O8nVWK1j01uEyMxjFFFJmzsRZImz9lRva7hjHGR5l4Qw7FWNo29NLmoCguYd3mPkZLpM7GTTGk7lHIiy1iVIVuJizJIsyRplp00--ztfs6XFqPjn6N7JJ79yE4yfTbYKUDZbeNNKdCcEQRjol78fdZL9gi_nbUVkAN21HzdwiuMUprqdVDPBzJq4wM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VcgAOfBXEQgEf4ISyjZ04cQ4cCrTa0u0KsVu1t-DYYyGxZBHJUpXfwl_hvzF2siu-xK0SlygHO1acF8-M_eYNwBNhrc0champkiJKjdaRVpzTxWUEL_RHVZ5tMclGx-nrU3m6Ad_WuTCIGMhnOPS34SzfLszSb5Xt5GSMZMp7CuUhnp9RgNY8P3hFX_OpEPt7s5ejqK8hEBlRyDZSWVwhr2KNzhSYWmGQHPjcaVXZwticHBYyWUmVGOVinZtEC7LAssi4iR1P0oSeewkuk58hRZcdtl7ns6xT8lNKRqqQ8SolJy52Zm9O3k49b0wOhdcCFeIXsxfquPyx-AeLtn8Dvq_moiOyfBgu22povv4mE_m_TtZNuN670my3w_4t2MD6Nlz7SWBxC8522WTxBefsRPsCG230goy2ZXt1gx-rObKjUD-bkePOpu8pEIlmZKjYeKEt8zVLjW48K5z5zWo2OvfJbcyrmdCok44-3zBdU1sM8qhsGooKEdLvwPGFvPld2KwXNd4DxtPccV_DWUmTxk7onFeFQYosnSNfUA-Ar5BQml6H3ZcDmZchHouLMqCn9Ogpe_QM4Nm6z6dOheSfrbc8HNYteyQMYHsFuLJfqJqS04LtRSYTef_vvR7DldHsaFyODyaHD-AqjZN1fM9t2Gw_L_Eh-WRt9Sj8GgzeXTS8fgCyqUC- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Wavelet-Based+Ensemble+Method+for+Short-Term+Load+Forecasting+with+Hybrid+Neural+Networks+and+Feature+Selection&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Li%2C+Song&rft.au=Wang%2C+Peng&rft.au=Goel%2C+Lalit&rft.date=2016-05-01&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=31&rft.issue=3&rft.spage=1788&rft.epage=1798&rft_id=info:doi/10.1109%2FTPWRS.2015.2438322&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRS_2015_2438322 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |