Generating High-Order Transverse Patterns in Optically Pumped Semiconductor Lasers

High-order pattern formation in an optically pumped semiconductor laser (OPSL) under a selective pumping with varying spatial overlap between the pump beam and transverse modes is explored. In contrast to transverse pattern generation by off-axis pumped solid-state lasers where the mode order can be...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in quantum electronics Vol. 25; no. 6; pp. 1 - 7
Main Authors Tuan, Pi-Hui, Hsieh, Yen-Hui, Tu, Chin-Wei, Lee, Chi-Chun, Tsou, Chia-Han, Liang, Hsin-Chih, Huang, Kai-Feng, Chen, Yung-Fu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High-order pattern formation in an optically pumped semiconductor laser (OPSL) under a selective pumping with varying spatial overlap between the pump beam and transverse modes is explored. In contrast to transverse pattern generation by off-axis pumped solid-state lasers where the mode order can be flexibly increased, experimental results reveal that the selective pumping fails to realize high-order mode operation in OPSLs when the pump-to-mode size ratio and pump power are insufficiently large. On the other hand, several high-order patterns belonging to the Hermite-Laguerre-Gaussian (HLG) modes are observed when scanning a large-ratio pump beam to specific positions on the gain chip. These HLG modes are experimentally confirmed to mainly originate from the transverse non-uniformity of present OPSL chip, while their structural features cannot be simply correlated with the pump scanning positions. Nevertheless, it is believed that the first-time observation of pure HLG modes under the large-ratio pumping can offer useful insights into the high-order pattern manipulation in OPSLs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2019.2921380