Spatial-Temporal Based Multihead Self-Attention for Remote Sensing Image Change Detection

The neural network-based remote sensing image change detection method faces a large amount of imaging interference and severe class imbalance problems under high-resolution conditions, which bring new challenges to the accuracy of the detection network. In this work, to address the imaging interfere...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 10; pp. 6615 - 6626
Main Authors Zhou, Yong, Wang, Fengkai, Zhao, Jiaqi, Yao, Rui, Chen, Silin, Ma, Heping
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1051-8215
1558-2205
DOI10.1109/TCSVT.2022.3176055

Cover

Loading…
Abstract The neural network-based remote sensing image change detection method faces a large amount of imaging interference and severe class imbalance problems under high-resolution conditions, which bring new challenges to the accuracy of the detection network. In this work, to address the imaging interference caused by different imaging angles and times, the siamese strategy and multi-head self-attention mechanism are used to reduce the imaging differences between the dual-temporal images and fully exploit the inter-temporal information. Secondly, a learnable multi-part feature learning module is used to adaptively exploit features from different scales to obtain more comprehensive features. Finally, a mixed loss function strategy is used to ensure that the network converges effectively and excludes the adverse interference of a large number of negative samples to the network. Extensive experiments show that our method outperforms numerous methods on LEVIR-CD, WHU, and DSIFN datasets.
AbstractList The neural network-based remote sensing image change detection method faces a large amount of imaging interference and severe class imbalance problems under high-resolution conditions, which bring new challenges to the accuracy of the detection network. In this work, to address the imaging interference caused by different imaging angles and times, the siamese strategy and multi-head self-attention mechanism are used to reduce the imaging differences between the dual-temporal images and fully exploit the inter-temporal information. Secondly, a learnable multi-part feature learning module is used to adaptively exploit features from different scales to obtain more comprehensive features. Finally, a mixed loss function strategy is used to ensure that the network converges effectively and excludes the adverse interference of a large number of negative samples to the network. Extensive experiments show that our method outperforms numerous methods on LEVIR-CD, WHU, and DSIFN datasets.
Author Yao, Rui
Wang, Fengkai
Zhou, Yong
Chen, Silin
Zhao, Jiaqi
Ma, Heping
Author_xml – sequence: 1
  givenname: Yong
  orcidid: 0000-0001-6207-0299
  surname: Zhou
  fullname: Zhou, Yong
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
– sequence: 2
  givenname: Fengkai
  orcidid: 0000-0002-3814-0274
  surname: Wang
  fullname: Wang, Fengkai
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
– sequence: 3
  givenname: Jiaqi
  orcidid: 0000-0002-3564-5090
  surname: Zhao
  fullname: Zhao, Jiaqi
  email: jiaqizhao@cumt.edu.cn
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
– sequence: 4
  givenname: Rui
  orcidid: 0000-0003-2734-915X
  surname: Yao
  fullname: Yao, Rui
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
– sequence: 5
  givenname: Silin
  surname: Chen
  fullname: Chen, Silin
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
– sequence: 6
  givenname: Heping
  surname: Ma
  fullname: Ma, Heping
  organization: Shanghai Royal View Company Ltd., Shanghai, China
BookMark eNp9UMtOwzAQtFCRaAs_AJdInFNsx46TYwmvSkVINCBxspxk07pK7OK4B_6ehFYcOHCalXZmZ2cmaGSsAYQuCZ4RgtObPFu95zOKKZ1FRMSY8xM0JpwnIaWYj_oZcxImlPAzNOm6LcaEJUyM0cdqp7xWTZhDu7NONcGt6qAKnveN1xtQVbCCpg7n3oPx2pqgti54hdZ66Dem02YdLFq1hiDbKNPDHXgoB-Y5Oq1V08HFEafo7eE-z57C5cvjIpsvw5Km3IcJJ1Uh6oLHlOFUcAVKRKTkpKbA-zdxJZiI06KAkhUR7QmMRAmJC87SGEcsmqLrw92ds5976Lzc2r0zvaWkghJGE5wOLHpglc52nYNa7pxulfuSBMuhQvlToRwqlMcKe1HyR1Rqr4Zw3ind_C-9Okg1APx6pUL0WXD0DYoDf50
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TGRS_2024_3415618
crossref_primary_10_1109_TGRS_2025_3540864
crossref_primary_10_1109_TAI_2024_3363685
crossref_primary_10_1371_journal_pone_0306755
crossref_primary_10_3390_rs16234569
crossref_primary_10_1109_TCSVT_2023_3343881
crossref_primary_10_1109_TGRS_2023_3278739
crossref_primary_10_1109_TGRS_2023_3295992
crossref_primary_10_1109_TIM_2025_3540121
crossref_primary_10_1109_TCSVT_2023_3296745
crossref_primary_10_1109_TGRS_2024_3411714
crossref_primary_10_3390_rs15071887
crossref_primary_10_1016_j_isprsjprs_2022_07_016
crossref_primary_10_1109_TCSVT_2024_3407138
crossref_primary_10_3389_fnins_2023_1290803
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_1109_TGRS_2024_3352816
crossref_primary_10_1109_TCSVT_2024_3349909
crossref_primary_10_1109_TCSVT_2024_3370668
crossref_primary_10_1109_TGRS_2024_3424532
crossref_primary_10_1016_j_ejrh_2024_102023
crossref_primary_10_1109_TCSVT_2023_3344092
crossref_primary_10_1109_TGRS_2023_3325829
crossref_primary_10_1109_TCSVT_2024_3445337
crossref_primary_10_1109_TGRS_2024_3490773
crossref_primary_10_1016_j_knosys_2024_111672
crossref_primary_10_1109_TCSVT_2024_3494820
crossref_primary_10_1109_ACCESS_2023_3333360
crossref_primary_10_1109_JSTARS_2024_3466901
crossref_primary_10_1109_TGRS_2023_3325220
crossref_primary_10_1016_j_patrec_2023_12_023
crossref_primary_10_1109_TCSVT_2024_3452135
crossref_primary_10_1109_TGRS_2025_3536473
crossref_primary_10_1016_j_eswa_2024_125505
crossref_primary_10_3390_s24031010
crossref_primary_10_3390_s23115166
crossref_primary_10_1117_1_JRS_18_044508
crossref_primary_10_3390_s25051595
crossref_primary_10_1109_JSTARS_2024_3350129
crossref_primary_10_1109_TCSVT_2023_3312321
crossref_primary_10_1109_TCSVT_2024_3502136
crossref_primary_10_1016_j_isprsjprs_2023_05_033
crossref_primary_10_1109_TCSVT_2022_3227172
crossref_primary_10_1007_s10489_024_05359_4
crossref_primary_10_1109_TCSVT_2022_3224068
crossref_primary_10_1109_TGRS_2024_3383800
crossref_primary_10_1016_j_isprsjprs_2023_07_001
crossref_primary_10_1109_TGRS_2024_3470314
Cites_doi 10.1080/01431161.2011.648285
10.1016/j.isprsjprs.2021.05.001
10.5555/3045118.3045336
10.1016/j.neucom.2021.06.059
10.1109/CVPR46437.2021.00863
10.1109/TIP.2020.3031173
10.1109/TGRS.2022.3160007
10.1109/CVPR.2018.00636
10.1109/TCSVT.2019.2950526
10.1109/TGRS.2021.3095166
10.1109/TCSVT.2020.2975671
10.3390/rs11111292
10.1109/TCYB.2021.3086884
10.1109/ICIP.2018.8451652
10.1109/CVPR.2017.106
10.1109/LGRS.2019.2948660
10.1109/JSTARS.2019.2929514
10.1109/LGRS.2019.2916601
10.1109/SMC.2018.00289
10.1109/CVPRW.2019.00062
10.1109/TCSVT.2021.3066675
10.1109/LGRS.2017.2738149
10.1109/TCSVT.2022.3142771
10.1109/ICCV.2019.00200
10.1109/JSTARS.2021.3077545
10.3390/rs12121933
10.1109/Multi-Temp.2019.8866971
10.1109/LGRS.2019.2945906
10.1109/Multi-Temp.2019.8866947
10.1109/LGRS.2019.2955309
10.1016/j.jag.2019.102011
10.1109/ICCV.2017.324
10.1109/IGARSS.2019.8898146
10.1016/j.isprsjprs.2020.06.003
10.1016/j.neucom.2019.10.022
10.1109/TCSVT.2018.2875449
10.1109/JSTARS.2020.3037893
10.3390/rs12020205
10.1109/CVPR.2016.90
10.1109/3DV.2016.79
10.1109/LGRS.2020.2988032
10.1016/j.neucom.2021.01.030
10.1109/TGRS.2022.3168331
10.1109/LGRS.2018.2868704
10.1016/j.rse.2015.01.006
10.1109/TIP.2021.3089361
10.1016/j.isprsjprs.2021.05.002
10.1007/978-3-030-58452-8_13
10.1109/TGRS.2018.2858817
10.3390/rs12060901
10.1109/LGRS.2021.3056416
10.1016/j.jag.2021.102348
10.3390/rs12101662
10.1109/TGRS.2019.2956756
10.1109/LGRS.2019.2953754
10.1016/j.isprsjprs.2021.03.005
10.1109/TGRS.2019.2948659
10.3390/rs12030484
10.1109/TPAMI.2021.3050918
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3176055
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 6626
ExternalDocumentID 10_1109_TCSVT_2022_3176055
9777690
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20201346; BK20180639
  funderid: 10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 61806206; 62172417
  funderid: 10.13039/501100001809
– fundername: Six Talent Peaks Project in Jiangsu Province
  grantid: 2015-DZXX-010; 2018-XYDXX-044
  funderid: 10.13039/501100010014
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-851db7fb56240975aea731c51f2e50010d74769bbec4b3275a413816b54960343
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Sun Jun 29 16:57:06 EDT 2025
Tue Jul 01 00:41:17 EDT 2025
Thu Apr 24 22:57:04 EDT 2025
Wed Aug 27 02:14:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-851db7fb56240975aea731c51f2e50010d74769bbec4b3275a413816b54960343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2734-915X
0000-0002-3814-0274
0000-0002-3564-5090
0000-0001-6207-0299
PQID 2721428094
PQPubID 85433
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2022_3176055
proquest_journals_2721428094
crossref_primary_10_1109_TCSVT_2022_3176055
ieee_primary_9777690
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
Weber (ref5) 2020
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref3
ref6
ref40
Goodfellow (ref20); 27
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref26
ref25
ref64
ref63
ref22
ref21
ref28
ref27
ref29
Xu (ref4) 2019
Vaswani (ref23)
ref60
ref62
ref61
Dai (ref35) 2021
References_xml – ident: ref2
  doi: 10.1080/01431161.2011.648285
– ident: ref48
  doi: 10.1016/j.isprsjprs.2021.05.001
– ident: ref59
  doi: 10.5555/3045118.3045336
– volume: 27
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref20
  article-title: Generative adversarial nets
– ident: ref53
  doi: 10.1016/j.neucom.2021.06.059
– year: 2019
  ident: ref4
  article-title: Building damage detection in satellite imagery using convolutional neural networks
  publication-title: arXiv:1910.06444
– ident: ref34
  doi: 10.1109/CVPR46437.2021.00863
– ident: ref62
  doi: 10.1109/TIP.2020.3031173
– ident: ref57
  doi: 10.1109/TGRS.2022.3160007
– ident: ref60
  doi: 10.1109/CVPR.2018.00636
– ident: ref39
  doi: 10.1109/TCSVT.2019.2950526
– ident: ref64
  doi: 10.1109/TGRS.2021.3095166
– ident: ref36
  doi: 10.1109/TCSVT.2020.2975671
– ident: ref14
  doi: 10.3390/rs11111292
– ident: ref19
  doi: 10.1109/TCYB.2021.3086884
– ident: ref22
  doi: 10.1109/ICIP.2018.8451652
– ident: ref37
  doi: 10.1109/CVPR.2017.106
– ident: ref29
  doi: 10.1109/LGRS.2019.2948660
– ident: ref49
  doi: 10.1109/JSTARS.2019.2929514
– ident: ref9
  doi: 10.1109/LGRS.2019.2916601
– ident: ref38
  doi: 10.1109/SMC.2018.00289
– ident: ref6
  doi: 10.1109/CVPRW.2019.00062
– ident: ref40
  doi: 10.1109/TCSVT.2021.3066675
– ident: ref11
  doi: 10.1109/LGRS.2017.2738149
– ident: ref32
  doi: 10.1109/TCSVT.2022.3142771
– ident: ref61
  doi: 10.1109/ICCV.2019.00200
– ident: ref26
  doi: 10.1109/JSTARS.2021.3077545
– ident: ref50
  doi: 10.3390/rs12121933
– ident: ref3
  doi: 10.1109/Multi-Temp.2019.8866971
– ident: ref13
  doi: 10.1109/LGRS.2019.2945906
– ident: ref43
  doi: 10.1109/Multi-Temp.2019.8866947
– ident: ref44
  doi: 10.1109/LGRS.2019.2955309
– start-page: 5998
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref23
  article-title: Attention is all you need
– ident: ref8
  doi: 10.1016/j.jag.2019.102011
– ident: ref51
  doi: 10.1109/ICCV.2017.324
– year: 2020
  ident: ref5
  article-title: Building disaster damage assessment in satellite imagery with multi-temporal fusion
  publication-title: arXiv:2004.05525
– ident: ref10
  doi: 10.1109/IGARSS.2019.8898146
– ident: ref25
  doi: 10.1016/j.isprsjprs.2020.06.003
– ident: ref45
  doi: 10.1016/j.neucom.2019.10.022
– ident: ref42
  doi: 10.1109/TCSVT.2018.2875449
– ident: ref24
  doi: 10.1109/JSTARS.2020.3037893
– ident: ref18
  doi: 10.3390/rs12020205
– ident: ref58
  doi: 10.1109/CVPR.2016.90
– ident: ref52
  doi: 10.1109/3DV.2016.79
– ident: ref54
  doi: 10.1109/LGRS.2020.2988032
– ident: ref46
  doi: 10.1016/j.neucom.2021.01.030
– ident: ref56
  doi: 10.1109/TGRS.2022.3168331
– ident: ref21
  doi: 10.1109/LGRS.2018.2868704
– ident: ref1
  doi: 10.1016/j.rse.2015.01.006
– ident: ref41
  doi: 10.1109/TIP.2021.3089361
– ident: ref28
  doi: 10.1016/j.isprsjprs.2021.05.002
– ident: ref33
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref63
  doi: 10.1109/TGRS.2018.2858817
– ident: ref7
  doi: 10.3390/rs12060901
– ident: ref55
  doi: 10.1109/LGRS.2021.3056416
– ident: ref27
  doi: 10.1016/j.jag.2021.102348
– ident: ref17
  doi: 10.3390/rs12101662
– ident: ref15
  doi: 10.1109/TGRS.2019.2956756
– ident: ref12
  doi: 10.1109/LGRS.2019.2953754
– ident: ref47
  doi: 10.1016/j.isprsjprs.2021.03.005
– ident: ref16
  doi: 10.1109/TGRS.2019.2948659
– year: 2021
  ident: ref35
  article-title: CoAtNet: Marrying convolution and attention for all data sizes
  publication-title: arXiv:2106.04803
– ident: ref30
  doi: 10.3390/rs12030484
– ident: ref31
  doi: 10.1109/TPAMI.2021.3050918
SSID ssj0014847
Score 2.5819314
Snippet The neural network-based remote sensing image change detection method faces a large amount of imaging interference and severe class imbalance problems under...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6615
SubjectTerms attention mechanism
Building change detection
Change detection
Computer vision
deep learning
Feature extraction
Imaging
Interference
multi-scale
Neural networks
Remote sensing
Task analysis
Transformers
Title Spatial-Temporal Based Multihead Self-Attention for Remote Sensing Image Change Detection
URI https://ieeexplore.ieee.org/document/9777690
https://www.proquest.com/docview/2721428094
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFgjywgdvGifMYS6EqSGWgKSpTFMfOQkkRpAu_nrPzEC8htkixI8vn-L7PvvsO4CyVWmWfpzRgaUoddLhUMCaoSm2f88SVrtLnHdM7dzJ3bhd80YCLOhdGKWWCz1RPP5q7fLlK1vqorI9YxUM214QmErciV6u-MXB8U0wM4YJFffRjVYLMIOiHo9lDiFSQMWSoHuJ3_sUJmaoqP7Zi41_G2zCtRlaElTz11rnoJe_fRBv_O_Qd2CqBJhkWK2MXGirbg81P8oNteNT1iHH90bDQp1qSS_RpkpikXNykJZmpZUqHeV7ERBIEuOReoXEVvsn0KQO5ecYNiRQ5CuRK5SayK9uH-fg6HE1oWWqBJizgOUXcJYWXCkRDWgCLxyr2bCvhVsoU17xRIu1wA4EWd4TNsAE6P99yBdJLd2A79gG0slWmDoEM4iDgUtoxdjFRVL4bI-myY-RmnuR-B6xq7qOk1CHX5TCWkeEjgyAy9oq0vaLSXh04r_u8FCocf7ZuawPULcu570C3MnFU_qhvEfOM5hyS3KPfex3Dhv52Eb_XhVb-ulYniENycWoW4AdBMtbm
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BOQAHtoIoqw_cwCVx4ixHVpWlPdAUwSmKY-dCSRGkF76esbOITYhbpNiK5ed45tkzbwAOMqlV9nlGQ5Zl1EWDSwVjgqrMCThPPekpfd7RH3i9kXv9wB9m4KjJhVFKmeAz1dWP5i5fTtKpPio7Rl_FRzY3C3No992wzNZq7gzcwJQTQ4fBpgFasjpFxgqPo7PhfYRkkDHkqD568PyLGTJ1VX5sxsbCXC5Dvx5bGVjy1J0Wopu-f5Nt_O_gV2CpcjXJSbk2VmFG5Wuw-EmAsA2PuiIxrkAalQpVY3KKVk0Sk5aL27QkQzXO6ElRlFGRBF1ccqcQXoVvcn3OQK6ecUsiZZYCOVeFie3K12F0eRGd9WhVbIGmLOQFRc9LCj8T6A9pCSyeqMR37JTbGVNcM0eJxMMLBWLuCodhAzR_ge0JBMKzHNfZgFY-ydUmECsJQy6lk2AXE0cVeAnSLidBduZLHnTAruc-Tislcl0QYxwbRmKFscEr1njFFV4dOGz6vJQ6HH-2bmsAmpbV3Hdgp4Y4rn7Vt5j5RnUOae7W7732Yb4X9W_j26vBzTYs6O-U0Xw70Cpep2oXvZJC7JnF-AG2Tdo2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial-Temporal+Based+Multihead+Self-Attention+for+Remote+Sensing+Image+Change+Detection&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhou%2C+Yong&rft.au=Wang%2C+Fengkai&rft.au=Zhao%2C+Jiaqi&rft.au=Yao%2C+Rui&rft.date=2022-10-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=10&rft.spage=6615&rft.epage=6626&rft_id=info:doi/10.1109%2FTCSVT.2022.3176055&rft.externalDocID=9777690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon