Deep Temporal Analysis for Non-Acted Body Affect Recognition
In the field of body affect recognition, the majority of literature is based on experiments performed on datasets where trained actors simulate emotional reactions. These acted and unnatural expressions differ from the more challenging genuine emotions, thus leading to less valuable results. In this...
Saved in:
Published in | IEEE transactions on affective computing Vol. 13; no. 3; pp. 1366 - 1377 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1949-3045 1949-3045 |
DOI | 10.1109/TAFFC.2020.3003816 |
Cover
Loading…
Abstract | In the field of body affect recognition, the majority of literature is based on experiments performed on datasets where trained actors simulate emotional reactions. These acted and unnatural expressions differ from the more challenging genuine emotions, thus leading to less valuable results. In this article, a solution for basic non-acted emotion recognition based on 3D skeleton and Deep Neural Networks (DNNs) is provided. The proposed work introduces three majors contributions. First, temporal local movements performed by subjects are examined frame-by-frame, unlike the current state-of-the-art in non-acted body affect recognition where only static or global body features are considered. Second, an original set of global and time-dependent features for body movement description is provided. Third, this is one of the first works to use deep learning methods in the current non-acted body affect recognition literature. Due to the novelty of the topic, only the UCLIC dataset is currently considered the benchmark for comparative tests. On the latter, the proposed method outperforms all the competitors. |
---|---|
AbstractList | In the field of body affect recognition, the majority of literature is based on experiments performed on datasets where trained actors simulate emotional reactions. These acted and unnatural expressions differ from the more challenging genuine emotions, thus leading to less valuable results. In this article, a solution for basic non-acted emotion recognition based on 3D skeleton and Deep Neural Networks (DNNs) is provided. The proposed work introduces three majors contributions. First, temporal local movements performed by subjects are examined frame-by-frame, unlike the current state-of-the-art in non-acted body affect recognition where only static or global body features are considered. Second, an original set of global and time-dependent features for body movement description is provided. Third, this is one of the first works to use deep learning methods in the current non-acted body affect recognition literature. Due to the novelty of the topic, only the UCLIC dataset is currently considered the benchmark for comparative tests. On the latter, the proposed method outperforms all the competitors. |
Author | Foresti, Gian Luca Cinque, Luigi Fagioli, Alessio Massaroni, Cristiano Avola, Danilo |
Author_xml | – sequence: 1 givenname: Danilo orcidid: 0000-0001-9437-6217 surname: Avola fullname: Avola, Danilo email: avola@di.uniroma1.it organization: Department of Computer Science, Sapienza University, Rome, Italy – sequence: 2 givenname: Luigi orcidid: 0000-0001-9149-2175 surname: Cinque fullname: Cinque, Luigi email: cinque@di.uniroma1.it organization: Department of Computer Science, Sapienza University, Rome, Italy – sequence: 3 givenname: Alessio orcidid: 0000-0002-8111-9120 surname: Fagioli fullname: Fagioli, Alessio email: fagioli@di.uniroma1.it organization: Department of Computer Science, Sapienza University, Rome, Italy – sequence: 4 givenname: Gian Luca orcidid: 0000-0002-8425-6892 surname: Foresti fullname: Foresti, Gian Luca email: gianluca.foresti@uniud.it organization: Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy – sequence: 5 givenname: Cristiano orcidid: 0000-0002-6942-4851 surname: Massaroni fullname: Massaroni, Cristiano email: massaroni@di.uniroma1.it organization: Department of Computer Science, Sapienza University, Rome, Italy |
BookMark | eNp9kE1LAzEQhoMoWGv_gF4WPG_N52YDXtZqVSgKUs8hZieyZbtZk_TQf-_WFhEPzmXm8D7Dy3OGjjvfAUIXBE8Jwep6Wc3nsynFFE8ZxqwkxREaEcVVzjAXx7_uUzSJcYWHYYwVVI7QzR1Any1h3ftg2qzqTLuNTcycD9mz7_LKJqizW19vs8o5sCl7Bes_uiY1vjtHJ860ESaHPUZv8_vl7DFfvDw8zapFbqkSKZeKSMlJDVJa4EZJXhtTlgZqYLR-F4Ja6ogkhmHJOOUll2VNLQjriCuEZGN0tf_bB_-5gZj0ym_CUDVqKrEioigEGVLlPmWDjzGA07ZJZtczBdO0mmC906W_demdLn3QNaD0D9qHZm3C9n_ocg81APADKEJJoQT7AhiAdaU |
CODEN | ITACBQ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3534145 crossref_primary_10_1016_j_knosys_2024_111856 crossref_primary_10_1109_TAI_2022_3159614 crossref_primary_10_3390_app132413322 crossref_primary_10_1016_j_eswa_2025_126427 crossref_primary_10_1007_s11042_020_10106_1 crossref_primary_10_1109_TSMC_2024_3523342 crossref_primary_10_3390_info15110721 crossref_primary_10_1016_j_eswa_2023_121419 crossref_primary_10_1142_S0129065720500689 crossref_primary_10_1142_S0129065724500242 crossref_primary_10_1016_j_knosys_2024_112744 crossref_primary_10_1142_S012906572250040X crossref_primary_10_1016_j_eswa_2023_121981 crossref_primary_10_3390_disabilities2040044 crossref_primary_10_1038_s41598_021_98856_2 |
Cites_doi | 10.1109/T-AFFC.2012.16 10.1109/TAFFC.2017.2740923 10.1109/TAFFC.2015.2390627 10.1073/pnas.0507650102 10.1109/ACIIW.2019.8925084 10.1016/j.ijhcs.2007.02.003 10.1145/3341163.3347728 10.1109/TMM.2019.2960588 10.1109/T-AFFC.2011.7 10.1109/T-AFFC.2013.29 10.1109/TAFFC.2018.2817622 10.1002/ejsp.2420010307 10.1167/4.8.232 10.3758/bf03192758 10.1007/11573548_1 10.1109/ACII.2009.5349316 10.1109/ICCVW.2011.6130446 10.1145/954339.954342 10.1109/TPAMI.2008.52 10.1109/TASLP.2017.2764271 10.1109/CVPR.2016.115 10.1016/j.intcom.2006.04.003 10.1177/0092070399272005 10.1162/neco.1997.9.8.1735 10.1007/978-3-540-74889-2_5 10.1109/TASLP.2019.2948773 10.1109/ICCV.2017.236 10.1109/TCIAIG.2012.2202663 10.1109/TAFFC.2018.2798576 10.1037/h0027349 10.2478/v10053-008-0006-3 10.1109/ICCVW.2017.327 10.1109/TPAMI.2016.2515606 10.1037/1528-3542.7.3.487 10.1109/TSMCB.2010.2103557 10.1109/TMM.2018.2856094 10.1109/TAFFC.2018.2874986 10.1016/j.neunet.2008.05.003 10.1023/b:jonb.0000023655.25550.be 10.1109/FUZZ-IEEE.2012.6250780 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TAFFC.2020.3003816 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1949-3045 |
EndPage | 1377 |
ExternalDocumentID | 10_1109_TAFFC_2020_3003816 9121695 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministero dell’Istruzione, dell’Università e della Ricerca; MIUR funderid: 10.13039/501100003407 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNI RZB AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-7917741de77ce4a974daa88aede32db552c2f171a30734248478d2ce5cf1f6573 |
IEDL.DBID | RIE |
ISSN | 1949-3045 |
IngestDate | Sun Jun 29 16:13:20 EDT 2025 Thu Apr 24 23:00:45 EDT 2025 Tue Jul 01 02:57:53 EDT 2025 Wed Aug 27 02:29:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-7917741de77ce4a974daa88aede32db552c2f171a30734248478d2ce5cf1f6573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9437-6217 0000-0002-8425-6892 0000-0002-6942-4851 0000-0001-9149-2175 0000-0002-8111-9120 |
PQID | 2709156651 |
PQPubID | 2040414 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2709156651 crossref_citationtrail_10_1109_TAFFC_2020_3003816 ieee_primary_9121695 crossref_primary_10_1109_TAFFC_2020_3003816 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on affective computing |
PublicationTitleAbbrev | TAFFC |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Hermans (ref44) ref12 ref15 ref14 Jozefowicz (ref50) ref11 ref10 ref54 Tamara (ref3) 2014; 5 ref17 ref16 ref19 ref18 Chung (ref51) Popescu (ref20) 2009; 8 Zoph (ref53) ref46 ref45 ref42 ref41 Ekman (ref7) 1978 ref43 ref9 ref4 ref6 ref5 ref40 Grafsgaard (ref35) ref34 ref37 ref36 ref31 ref30 Abadi (ref48) 2015 ref33 ref32 ref2 ref39 ref38 Greenwald (ref1) 1989; 3 Srivastava (ref49) 2014; 15 ref24 ref23 ref26 ref25 ref22 ref21 Duchi (ref47) 2011; 12 ref28 Collins (ref52) ref27 Michael (ref8) 1988 ref29 |
References_xml | – volume: 5 start-page: 859 issue: 8 year: 2014 ident: ref3 article-title: A longitudinal analysis of the relationship between positive and negative affect and health, publication-title: J. Psychol. – ident: ref29 doi: 10.1109/T-AFFC.2012.16 – ident: ref27 doi: 10.1109/TAFFC.2017.2740923 – start-page: 438 volume-title: Proc. Int. Florida Artif. Intell. Res. Soc. Conf. ident: ref35 article-title: Analyzing posture and affect in task-oriented tutoring – ident: ref38 doi: 10.1109/TAFFC.2015.2390627 – ident: ref9 doi: 10.1073/pnas.0507650102 – ident: ref41 doi: 10.1109/ACIIW.2019.8925084 – ident: ref34 doi: 10.1016/j.ijhcs.2007.02.003 – ident: ref40 doi: 10.1145/3341163.3347728 – ident: ref18 doi: 10.1109/TMM.2019.2960588 – ident: ref11 doi: 10.1109/T-AFFC.2011.7 – ident: ref31 doi: 10.1109/T-AFFC.2013.29 – ident: ref23 doi: 10.1109/TAFFC.2018.2817622 – ident: ref43 doi: 10.1002/ejsp.2420010307 – ident: ref36 doi: 10.1167/4.8.232 – ident: ref13 doi: 10.3758/bf03192758 – ident: ref12 doi: 10.1007/11573548_1 – ident: ref24 doi: 10.1109/ACII.2009.5349316 – ident: ref25 doi: 10.1109/ICCVW.2011.6130446 – ident: ref5 doi: 10.1145/954339.954342 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: ref49 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref4 doi: 10.1109/TPAMI.2008.52 – ident: ref21 doi: 10.1109/TASLP.2017.2764271 – ident: ref54 doi: 10.1109/CVPR.2016.115 – volume-title: Bodily Communication year: 1988 ident: ref8 – volume-title: Facial Action Coding System (FACS): Manual year: 1978 ident: ref7 – volume: 8 start-page: 579 issue: 7 year: 2009 ident: ref20 article-title: Multilayer perceptron and neural networks publication-title: WSEAS Trans. Circuits Syst. – ident: ref32 doi: 10.1016/j.intcom.2006.04.003 – ident: ref2 doi: 10.1177/0092070399272005 – ident: ref19 doi: 10.1162/neco.1997.9.8.1735 – ident: ref33 doi: 10.1007/978-3-540-74889-2_5 – volume: 12 start-page: 2121 year: 2011 ident: ref47 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – ident: ref22 doi: 10.1109/TASLP.2019.2948773 – start-page: 190 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref44 article-title: Training and analyzing deep recurrent neural networks – ident: ref46 doi: 10.1109/ICCV.2017.236 – ident: ref37 doi: 10.1109/TCIAIG.2012.2202663 – ident: ref39 doi: 10.1109/TAFFC.2018.2798576 – ident: ref42 doi: 10.1037/h0027349 – ident: ref28 doi: 10.2478/v10053-008-0006-3 – year: 2015 ident: ref48 article-title: TensorFlow: Large-scale machine learning on heterogeneous systems – ident: ref26 doi: 10.1109/ICCVW.2017.327 – ident: ref6 doi: 10.1109/TPAMI.2016.2515606 – ident: ref10 doi: 10.1037/1528-3542.7.3.487 – ident: ref16 doi: 10.1109/TSMCB.2010.2103557 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref52 article-title: Capacity and trainability in recurrent neural networks – ident: ref45 doi: 10.1109/TMM.2018.2856094 – start-page: 2342 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref50 article-title: An empirical exploration of recurrent network architectures – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref53 article-title: Neural architecture search with reinforcement learning – ident: ref30 doi: 10.1109/TAFFC.2018.2874986 – volume: 3 start-page: 51 issue: 1 year: 1989 ident: ref1 article-title: Affective judgment and psychophysiological response: Dimensional covariation in the evaluation of pictorial stimuli publication-title: J. Psychophysiol. – ident: ref15 doi: 10.1016/j.neunet.2008.05.003 – ident: ref14 doi: 10.1023/b:jonb.0000023655.25550.be – ident: ref17 doi: 10.1109/FUZZ-IEEE.2012.6250780 – start-page: 1 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref51 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling |
SSID | ssj0000333627 |
Score | 2.4088273 |
Snippet | In the field of body affect recognition, the majority of literature is based on experiments performed on datasets where trained actors simulate emotional... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1366 |
SubjectTerms | 3D skeleton Artificial neural networks automatic emotion recognition body movement Datasets deep learning Emotion recognition Emotions Feature extraction Games long short-term memory (LSTM) Machine learning Non-acted affective computing Pain recurrent neural network (RNN) Skeleton Task analysis Three-dimensional displays |
Title | Deep Temporal Analysis for Non-Acted Body Affect Recognition |
URI | https://ieeexplore.ieee.org/document/9121695 https://www.proquest.com/docview/2709156651 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nVgoUBCFgjywQdrYieNEYimFqEJqB9RK3aL4kQWUVJAO8OuxnYfEQ4jNw1myfD7fd_bddwBXgXCpCKPM0c5GOH7m-k7IU-LwjHCsqA6LLMXGYhnM1_7jhm46cNPWwiilbPKZGpuh_cuXhdiZp7JJhAkOItqFrg7cqlqt9j3F9Tx9F7OmLsaNJqtpHM90BEh0YFp9kH3xPbaZyo8b2LqVuA-LZkFVNsnzeFfysfj4xtX43xUfwH6NL9G0OhCH0FH5EfSb3g2oNuUB3N4rtUWriphKy9fcJEhjWLQscmcqNBRFd4V8R1Ob8oGemlSjIj-Gdfywms2dupOCI0hES8NJqWEelooxofxUxxAyTcMwVVJ5RHJKiSAZZjg1Fu8TX7usUBKhqMhwFlDmnUAvL3J1Coh6nHOSMcFdZYhlIkmZEKZnucvTQOIh4GaPE1HTjJtuFy-JDTfcKLF6SYxeklovQ7hu52wrko0_pQdmo1vJeo-HMGpUmdR2-JYQpvGQRqwUn_0-6xz2iClosAm4I-iVrzt1oWFGyS_t-foENS_NUw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsBCgYIoFPDABmljJ85DYgmFqkDbAbVStyh-ZAElFbQD_Hps5yHxEGLzcJYsn8_3nX33HcCFx23KgzC1lLPhlpvarhWwhFgsJQxLqsIiQ7ExmXqjufuwoIsGXNW1MFJKk3wme3po_vJFztf6qawfYoK9kG7ApvL7blhUa9UvKrbjqNvYrypj7LA_i4bDgYoBiQpNiy-yL97HtFP5cQcbxzJswaRaUpFP8txbr1iPf3xja_zvmndhp0SYKCqOxB40ZLYPrap7AyqNuQ3Xt1Iu0aygplLyJTsJUigWTfPMirgCo-gmF-8oMkkf6KlKNsqzA5gP72aDkVX2UrA4CelKs1IqoIeF9H0u3URFESJJgiCRQjpEMEoJJyn2caJt3iWuclqBIFxSnuLUo75zCM0sz-QRIOowxkjqc2ZLTS0TCupzrruW2yzxBO4ArvY45iXRuO538RKbgMMOY6OXWOslLvXSgct6zrKg2fhTuq03upYs97gD3UqVcWmJbzHxFSJSmJXi499nncPWaDYZx-P76eMJbBNd3mDScbvQXL2u5akCHSt2Zs7aJylq0KM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Temporal+Analysis+for+Non-Acted+Body+Affect+Recognition&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Avola%2C+Danilo&rft.au=Cinque%2C+Luigi&rft.au=Fagioli%2C+Alessio&rft.au=esti%2C+Gian+Luca&rft.date=2022-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=1949-3045&rft.volume=13&rft.issue=3&rft.spage=1366&rft_id=info:doi/10.1109%2FTAFFC.2020.3003816&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |