Unsupervised Health Indicator Construction by a Novel Degradation-Trend-Constrained Variational Autoencoder and Its Applications
Health indicator (HI) affects the accuracy and reliability of the remaining useful life (RUL) prediction model. The hidden variables of variational autoencoder (VAE) can represent the HI values for a life-cycle dataset with obvious degradation trend. However, for an irregular dataset of a rotary mac...
Saved in:
Published in | IEEE/ASME transactions on mechatronics Vol. 27; no. 3; pp. 1447 - 1456 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1083-4435 1941-014X |
DOI | 10.1109/TMECH.2021.3098737 |
Cover
Loading…
Abstract | Health indicator (HI) affects the accuracy and reliability of the remaining useful life (RUL) prediction model. The hidden variables of variational autoencoder (VAE) can represent the HI values for a life-cycle dataset with obvious degradation trend. However, for an irregular dataset of a rotary machine, it is still a great challenge to construct the HI that can effectively represent the machinery degradation tendency. Therefore, this article proposes a novel degradation-trend-constrained VAE (DTC-VAE) to construct the HI vector with the distinct degradation trend. First, the multidimensional time-domain and frequency-domain characteristics are calculated via the collected vibration samples. Second, a new degradation-constraint loss term is proposed and introduced into VAE for constructing DTC-VAE. Third, with the multidimensional features and DTC-VAE, various HIs can be generated without supervision. The proposed method is applied to construct the HI vectors of bearing life-cycle datasets and gear fatigue datasets, and then macroscopic-microscopic-attention-based long short term memory (MMALSTM) is used to predict the corresponding RULs with the constructed HIs. Via several contrast experiments, the results prove that the proposed unsupervised HI construction approach is superior to other typical methods, and the obtained HI vectors are more suitable for the RUL prediction. |
---|---|
AbstractList | Health indicator (HI) affects the accuracy and reliability of the remaining useful life (RUL) prediction model. The hidden variables of variational autoencoder (VAE) can represent the HI values for a life-cycle dataset with obvious degradation trend. However, for an irregular dataset of a rotary machine, it is still a great challenge to construct the HI that can effectively represent the machinery degradation tendency. Therefore, this article proposes a novel degradation-trend-constrained VAE (DTC-VAE) to construct the HI vector with the distinct degradation trend. First, the multidimensional time-domain and frequency-domain characteristics are calculated via the collected vibration samples. Second, a new degradation-constraint loss term is proposed and introduced into VAE for constructing DTC-VAE. Third, with the multidimensional features and DTC-VAE, various HIs can be generated without supervision. The proposed method is applied to construct the HI vectors of bearing life-cycle datasets and gear fatigue datasets, and then macroscopic-microscopic-attention-based long short term memory (MMALSTM) is used to predict the corresponding RULs with the constructed HIs. Via several contrast experiments, the results prove that the proposed unsupervised HI construction approach is superior to other typical methods, and the obtained HI vectors are more suitable for the RUL prediction. |
Author | Zhou, Jianghong Qin, Yi Chen, Dingliang |
Author_xml | – sequence: 1 givenname: Yi orcidid: 0000-0002-2160-4300 surname: Qin fullname: Qin, Yi email: qy_808@cqu.edu.cn organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China – sequence: 2 givenname: Jianghong orcidid: 0000-0002-3180-7654 surname: Zhou fullname: Zhou, Jianghong email: 20161927@cqu.edu.cn organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China – sequence: 3 givenname: Dingliang orcidid: 0000-0001-7338-2407 surname: Chen fullname: Chen, Dingliang email: cdl2230@163.com organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China |
BookMark | eNp9kE1v1DAQhi1UJNrSPwAXS5yzeGxnbR9XS-muVOCyRb1Fjj2BVMEOtlOpN356k92KAwdOM5p5n_l4L8hZiAEJeQdsBcDMx8OX6-1uxRmHlWBGK6FekXMwEioG8v5szpkWlZSifkMucn5gjElgcE7-3IU8jZge-4ye7tAO5SfdB987W2Ki2xhySZMrfQy0faKWfo2PONBP-CNZb5dydUgYfHVS2j7MY77b1B97dqCbqUQMLnpM1AZP9yXTzTgOy4JZkd-S150dMl69xEty9_n6sN1Vt99u9tvNbeW4qUulDJOolVcgedeCbJmzRltlBVhkThvPa6lb5bnr1shNa2zL1gBgOxDKGXFJPpzmjin-njCX5iFOab4wN3yt1krpGupZpU8ql2LOCbvG9eV46PLb0ABrFr-bo9_N4nfz4veM8n_QMfW_bHr6P_T-BPWI-Bcw0nAtpHgGrz6QWg |
CODEN | IATEFW |
CitedBy_id | crossref_primary_10_1016_j_engappai_2023_106845 crossref_primary_10_1088_1361_6501_ad8b62 crossref_primary_10_1016_j_ress_2024_110288 crossref_primary_10_1109_TIM_2024_3462989 crossref_primary_10_1109_TIM_2022_3184352 crossref_primary_10_1109_TIM_2025_3529072 crossref_primary_10_1109_TMECH_2022_3202642 crossref_primary_10_1016_j_ress_2022_108916 crossref_primary_10_1109_TIM_2023_3300435 crossref_primary_10_1016_j_ymssp_2023_110688 crossref_primary_10_1088_1361_6501_ad38d4 crossref_primary_10_1016_j_ymssp_2024_111256 crossref_primary_10_1016_j_ymssp_2025_112589 crossref_primary_10_1109_TCYB_2022_3228524 crossref_primary_10_1109_TII_2023_3240599 crossref_primary_10_1109_TIM_2022_3193196 crossref_primary_10_1109_TR_2022_3190514 crossref_primary_10_1109_TIM_2024_3413142 crossref_primary_10_7232_JKIIE_2022_48_4_367 crossref_primary_10_1109_TII_2022_3217758 crossref_primary_10_1177_01423312231190237 crossref_primary_10_1016_j_aei_2023_101973 crossref_primary_10_1109_ACCESS_2023_3234286 crossref_primary_10_1109_TIM_2024_3383052 crossref_primary_10_1016_j_engappai_2024_109356 crossref_primary_10_1016_j_ymssp_2022_109603 crossref_primary_10_1016_j_ymssp_2024_111722 crossref_primary_10_1016_j_isatra_2024_06_015 crossref_primary_10_1109_TAI_2023_3333767 crossref_primary_10_1016_j_ress_2024_110653 crossref_primary_10_1016_j_jestch_2023_101409 crossref_primary_10_1155_2023_2332669 crossref_primary_10_1007_s11431_023_2610_4 crossref_primary_10_1016_j_eswa_2024_126111 crossref_primary_10_1016_j_ymssp_2024_111122 crossref_primary_10_1108_EC_12_2022_0747 crossref_primary_10_1109_TIM_2024_3412223 crossref_primary_10_1177_14759217241293373 crossref_primary_10_1016_j_aei_2022_101682 crossref_primary_10_1109_ACCESS_2024_3381492 crossref_primary_10_1109_TIM_2024_3393537 crossref_primary_10_1109_TIM_2023_3291801 crossref_primary_10_1109_TMECH_2023_3244282 crossref_primary_10_1016_j_mechmachtheory_2023_105437 crossref_primary_10_3390_s24113454 crossref_primary_10_1016_j_ress_2025_111039 crossref_primary_10_1016_j_ymssp_2023_110187 crossref_primary_10_1109_ACCESS_2023_3267960 crossref_primary_10_1109_TR_2023_3311769 crossref_primary_10_1016_j_measurement_2023_112830 crossref_primary_10_1109_TIM_2024_3378256 crossref_primary_10_1016_j_procs_2025_01_226 crossref_primary_10_1088_1361_6501_ad4fb1 crossref_primary_10_1088_1361_6501_ad8940 crossref_primary_10_1016_j_measurement_2023_113888 crossref_primary_10_1109_TIM_2023_3322478 crossref_primary_10_1109_TII_2022_3218665 crossref_primary_10_1109_ACCESS_2022_3140755 crossref_primary_10_3390_app132212332 crossref_primary_10_1016_j_engfailanal_2025_109315 crossref_primary_10_1088_1361_6501_ad03b4 crossref_primary_10_1088_1361_6501_ad2bcc crossref_primary_10_1088_1361_6501_ad66f2 |
Cites_doi | 10.1016/j.ymssp.2019.05.005 10.1109/TIE.2019.2959492 10.1002/qre.1771 10.1109/TMECH.2020.2971503 10.1109/TMECH.2020.2978136 10.1109/PHM-Paris.2019.00070 10.1109/TIE.2018.2811366 10.1177/1475921718788299 10.1109/TII.2018.2881543 10.1016/j.neucom.2017.02.045 10.1109/IJCNN.2017.7965877 10.1016/j.ymssp.2017.11.016 10.1016/j.jmsy.2019.11.008 10.1016/j.ymssp.2017.02.003 10.1109/ICSRS.2018.8688720 10.1109/TII.2020.2999442 10.1007/s40430-019-2010-6 10.1109/ACCESS.2017.2774261 10.1016/j.mechmachtheory.2019.103627 10.1109/ICPHM.2019.8819434 10.1109/I2MTC.2018.8409638 10.1016/j.compind.2019.04.013 10.1109/ITOEC.2018.8740504 10.1177/1475921720980718 10.1109/TMECH.2017.2713722 10.1016/j.measurement.2020.107902 10.1109/TIE.2019.2924605 10.1126/science.1127647 10.1109/ACCESS.2019.2940769 10.1016/j.ymssp.2020.107471 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TMECH.2021.3098737 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-014X |
EndPage | 1456 |
ExternalDocumentID | 10_1109_TMECH_2021_3098737 9492834 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52175075; 62033001; 91748116 funderid: 10.13039/501100001809 – fundername: Graduate Scientific and Innovation Foundation of Chongqing grantid: CYS21009 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACKIV AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 OCL RIA RIE RNS TN5 VH1 AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-7904e87d7142fb14b0ca98a7a31ae0c89d2548b7d2cf6e29b9ab06111af137c93 |
IEDL.DBID | RIE |
ISSN | 1083-4435 |
IngestDate | Mon Jun 30 04:43:35 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Tue Jul 01 04:23:22 EDT 2025 Wed Aug 27 02:14:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-7904e87d7142fb14b0ca98a7a31ae0c89d2548b7d2cf6e29b9ab06111af137c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3180-7654 0000-0002-2160-4300 0000-0001-7338-2407 |
PQID | 2676778515 |
PQPubID | 85420 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2676778515 ieee_primary_9492834 crossref_citationtrail_10_1109_TMECH_2021_3098737 crossref_primary_10_1109_TMECH_2021_3098737 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-June 2022-6-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-June |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE/ASME transactions on mechatronics |
PublicationTitleAbbrev | TMECH |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref30 ref11 ref10 ref2 ref1 ref16 ref19 Zhang (ref27) 2019 ref18 Nectoux (ref33) Kingma (ref28) 2013 ref24 ref23 ref26 Doersch (ref31) 2016 ref25 ref20 Glorot (ref32) ref22 ref21 Chen (ref17) ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref23 doi: 10.1016/j.ymssp.2019.05.005 – ident: ref30 doi: 10.1109/TIE.2019.2959492 – ident: ref34 doi: 10.1002/qre.1771 – ident: ref1 doi: 10.1109/TMECH.2020.2971503 – start-page: 1 volume-title: Proc. IEEE Int. Conf. Prognostics Health Manage. ident: ref33 article-title: PRONOSTIA: An experimental platform for bearings accelerated degradation tests – ident: ref8 doi: 10.1109/TMECH.2020.2978136 – ident: ref11 doi: 10.1109/PHM-Paris.2019.00070 – ident: ref18 doi: 10.1109/TIE.2018.2811366 – ident: ref26 doi: 10.1177/1475921718788299 – ident: ref22 doi: 10.1109/TII.2018.2881543 – year: 2013 ident: ref28 article-title: Auto-encoding variational bayes – ident: ref10 doi: 10.1016/j.neucom.2017.02.045 – ident: ref24 doi: 10.1109/IJCNN.2017.7965877 – ident: ref35 doi: 10.1016/j.ymssp.2017.11.016 – year: 2019 ident: ref27 article-title: Semi-supervised learning of bearing anomaly detection via deep variational autoencoders – ident: ref13 doi: 10.1016/j.jmsy.2019.11.008 – ident: ref15 doi: 10.1016/j.ymssp.2017.02.003 – ident: ref21 doi: 10.1109/ICSRS.2018.8688720 – ident: ref7 doi: 10.1109/TII.2020.2999442 – ident: ref12 doi: 10.1007/s40430-019-2010-6 – start-page: 249 volume-title: Proc. Int. Conf. Artif. Intell. Statist. ident: ref32 article-title: Understanding the difficulty of training deep feedforward neural networks – ident: ref4 doi: 10.1109/ACCESS.2017.2774261 – ident: ref3 doi: 10.1016/j.mechmachtheory.2019.103627 – ident: ref29 doi: 10.1109/ICPHM.2019.8819434 – ident: ref16 doi: 10.1109/I2MTC.2018.8409638 – ident: ref5 doi: 10.1016/j.compind.2019.04.013 – ident: ref20 doi: 10.1109/ITOEC.2018.8740504 – ident: ref36 doi: 10.1177/1475921720980718 – ident: ref6 doi: 10.1109/TMECH.2017.2713722 – ident: ref14 doi: 10.1016/j.measurement.2020.107902 – ident: ref9 doi: 10.1109/TIE.2019.2924605 – year: 2016 ident: ref31 article-title: Tutorial on variational autoencoders – start-page: 1035 volume-title: Proc. IEEE Symp. Ser. Comput. Intell. ident: ref17 article-title: Prediction of bearing degradation trend based on LSTM – ident: ref19 doi: 10.1126/science.1127647 – ident: ref25 doi: 10.1109/ACCESS.2019.2940769 – ident: ref2 doi: 10.1016/j.ymssp.2020.107471 |
SSID | ssj0004101 |
Score | 2.6005173 |
Snippet | Health indicator (HI) affects the accuracy and reliability of the remaining useful life (RUL) prediction model. The hidden variables of variational autoencoder... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1447 |
SubjectTerms | Constraints Datasets Degradation Feature extraction Gears Health indicator (HI) Mechatronics multidimensional features nonsupervision Prediction models remaining useful life (RUL) Rotary machines variational autoencoder (VAE) Vibrations |
Title | Unsupervised Health Indicator Construction by a Novel Degradation-Trend-Constrained Variational Autoencoder and Its Applications |
URI | https://ieeexplore.ieee.org/document/9492834 https://www.proquest.com/docview/2676778515 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD2yQEsduU48VDxWkMlHEFvlxWUApoikSTPx0zk5SKkCILYMTOfps3_fZvu8AjkkicxSoI513JQkURXNOdw0ROa2sy10qgk_B8LY7GMmbh87DApzOcmEQMVw-w7Z_DGf5bmynfqvsTElF0VAuwiIJtypX6ysHkodSx5woRSSJAzQJMrE6uxteng9ICia8LWLS2L7m-VwQClVVfizFIb5crcGw6Vl1reSxPS1N275_M238b9fXYbUmmqxfjYwNWMBiE1bm7Ae34GNUTKbPfrGYoGNVQhK7LvzJDSlx5mt5Nu6yzLwxzW7Hr_jELry_RFWKKQpXaqOqpaYvO3ZP4rveYGT9aTn2RpkOX5guHLsuJ6w_d2K-DaOry7vzQVRXZIhsojpllKpYYi91KZdJbrg0sdWqp1MtuMbY9pQjvdkzqUts3sVEGaUNEQbOdc5FapXYgaViXOAuMOQ091Ep25FW2kQrUssURa0Qjgta-VrAG4gyW9uV-z95yoJsiVUWYM08rFkNawtOZu88V2Ydf7be8jjNWtYQteCgGQlZPZ8nWeJ97VJip52939_ah-XEJ0aE_ZkDWCJ48JDoSmmOwjj9BL-K53A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a4wA78Gsgygb4wA3SxbHb9B2rsamFtacW7Rb5x8uFKZ1oOglO-9P37CRdBQhxy8GJHH223_fZft8D-MASWZIik5hyqFmgIM85M7RM5Aw6X_pcRZ-C2Xw4Weovl4PLPfi0zYUhonj5jPrhMZ7l-5XbhK2yE9TI0VA_gIcc9zU22Vr3WZAyFjuWTCoSzSygS5FJ8WQxOzudsBjMZF-lrLJD1fOdMBTrqvyxGMcIc_4UZl3fmosl3_ub2vbdr99sG_-388_gSUs1xbgZG89hj6oXcLBjQHgIt8tqvbkOy8WavGhSksS0Cmc3rMVFqObZ-csK-1MYMV_d0JX4HBwmmmJMSbxUmzQtDX_Zi28sv9stRjHe1KtglenphzCVF9N6LcY7Z-YvYXl-tjidJG1NhsRlOKiTHFNNo9znUmelldqmzuDI5EZJQ6kboWfFObK5z1w5pAwtGsuUQUpTSpU7VK9gv1pV9BoESZ79hOgG2mmXGWS9zHHUKeWl4rWvB7KDqHCtYXn4k6siCpcUiwhrEWAtWlh78HH7znVj1_HP1ocBp23LFqIeHHcjoWhn9LrIgrNdzvx08Obvb72HR5PF7KK4mM6_HsHjLKRJxN2aY9hnqOgtk5favotj9g4KherA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Health+Indicator+Construction+by+a+Novel+Degradation-Trend-Constrained+Variational+Autoencoder+and+Its+Applications&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Qin%2C+Yi&rft.au=Zhou%2C+Jianghong&rft.au=Chen%2C+Dingliang&rft.date=2022-06-01&rft.pub=IEEE&rft.issn=1083-4435&rft.volume=27&rft.issue=3&rft.spage=1447&rft.epage=1456&rft_id=info:doi/10.1109%2FTMECH.2021.3098737&rft.externalDocID=9492834 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon |