Unsupervised Health Indicator Construction by a Novel Degradation-Trend-Constrained Variational Autoencoder and Its Applications

Health indicator (HI) affects the accuracy and reliability of the remaining useful life (RUL) prediction model. The hidden variables of variational autoencoder (VAE) can represent the HI values for a life-cycle dataset with obvious degradation trend. However, for an irregular dataset of a rotary mac...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 27; no. 3; pp. 1447 - 1456
Main Authors Qin, Yi, Zhou, Jianghong, Chen, Dingliang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1083-4435
1941-014X
DOI10.1109/TMECH.2021.3098737

Cover

Loading…
Abstract Health indicator (HI) affects the accuracy and reliability of the remaining useful life (RUL) prediction model. The hidden variables of variational autoencoder (VAE) can represent the HI values for a life-cycle dataset with obvious degradation trend. However, for an irregular dataset of a rotary machine, it is still a great challenge to construct the HI that can effectively represent the machinery degradation tendency. Therefore, this article proposes a novel degradation-trend-constrained VAE (DTC-VAE) to construct the HI vector with the distinct degradation trend. First, the multidimensional time-domain and frequency-domain characteristics are calculated via the collected vibration samples. Second, a new degradation-constraint loss term is proposed and introduced into VAE for constructing DTC-VAE. Third, with the multidimensional features and DTC-VAE, various HIs can be generated without supervision. The proposed method is applied to construct the HI vectors of bearing life-cycle datasets and gear fatigue datasets, and then macroscopic-microscopic-attention-based long short term memory (MMALSTM) is used to predict the corresponding RULs with the constructed HIs. Via several contrast experiments, the results prove that the proposed unsupervised HI construction approach is superior to other typical methods, and the obtained HI vectors are more suitable for the RUL prediction.
AbstractList Health indicator (HI) affects the accuracy and reliability of the remaining useful life (RUL) prediction model. The hidden variables of variational autoencoder (VAE) can represent the HI values for a life-cycle dataset with obvious degradation trend. However, for an irregular dataset of a rotary machine, it is still a great challenge to construct the HI that can effectively represent the machinery degradation tendency. Therefore, this article proposes a novel degradation-trend-constrained VAE (DTC-VAE) to construct the HI vector with the distinct degradation trend. First, the multidimensional time-domain and frequency-domain characteristics are calculated via the collected vibration samples. Second, a new degradation-constraint loss term is proposed and introduced into VAE for constructing DTC-VAE. Third, with the multidimensional features and DTC-VAE, various HIs can be generated without supervision. The proposed method is applied to construct the HI vectors of bearing life-cycle datasets and gear fatigue datasets, and then macroscopic-microscopic-attention-based long short term memory (MMALSTM) is used to predict the corresponding RULs with the constructed HIs. Via several contrast experiments, the results prove that the proposed unsupervised HI construction approach is superior to other typical methods, and the obtained HI vectors are more suitable for the RUL prediction.
Author Zhou, Jianghong
Qin, Yi
Chen, Dingliang
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0002-2160-4300
  surname: Qin
  fullname: Qin, Yi
  email: qy_808@cqu.edu.cn
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Jianghong
  orcidid: 0000-0002-3180-7654
  surname: Zhou
  fullname: Zhou, Jianghong
  email: 20161927@cqu.edu.cn
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Dingliang
  orcidid: 0000-0001-7338-2407
  surname: Chen
  fullname: Chen, Dingliang
  email: cdl2230@163.com
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China
BookMark eNp9kE1v1DAQhi1UJNrSPwAXS5yzeGxnbR9XS-muVOCyRb1Fjj2BVMEOtlOpN356k92KAwdOM5p5n_l4L8hZiAEJeQdsBcDMx8OX6-1uxRmHlWBGK6FekXMwEioG8v5szpkWlZSifkMucn5gjElgcE7-3IU8jZge-4ye7tAO5SfdB987W2Ki2xhySZMrfQy0faKWfo2PONBP-CNZb5dydUgYfHVS2j7MY77b1B97dqCbqUQMLnpM1AZP9yXTzTgOy4JZkd-S150dMl69xEty9_n6sN1Vt99u9tvNbeW4qUulDJOolVcgedeCbJmzRltlBVhkThvPa6lb5bnr1shNa2zL1gBgOxDKGXFJPpzmjin-njCX5iFOab4wN3yt1krpGupZpU8ql2LOCbvG9eV46PLb0ABrFr-bo9_N4nfz4veM8n_QMfW_bHr6P_T-BPWI-Bcw0nAtpHgGrz6QWg
CODEN IATEFW
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106845
crossref_primary_10_1088_1361_6501_ad8b62
crossref_primary_10_1016_j_ress_2024_110288
crossref_primary_10_1109_TIM_2024_3462989
crossref_primary_10_1109_TIM_2022_3184352
crossref_primary_10_1109_TIM_2025_3529072
crossref_primary_10_1109_TMECH_2022_3202642
crossref_primary_10_1016_j_ress_2022_108916
crossref_primary_10_1109_TIM_2023_3300435
crossref_primary_10_1016_j_ymssp_2023_110688
crossref_primary_10_1088_1361_6501_ad38d4
crossref_primary_10_1016_j_ymssp_2024_111256
crossref_primary_10_1016_j_ymssp_2025_112589
crossref_primary_10_1109_TCYB_2022_3228524
crossref_primary_10_1109_TII_2023_3240599
crossref_primary_10_1109_TIM_2022_3193196
crossref_primary_10_1109_TR_2022_3190514
crossref_primary_10_1109_TIM_2024_3413142
crossref_primary_10_7232_JKIIE_2022_48_4_367
crossref_primary_10_1109_TII_2022_3217758
crossref_primary_10_1177_01423312231190237
crossref_primary_10_1016_j_aei_2023_101973
crossref_primary_10_1109_ACCESS_2023_3234286
crossref_primary_10_1109_TIM_2024_3383052
crossref_primary_10_1016_j_engappai_2024_109356
crossref_primary_10_1016_j_ymssp_2022_109603
crossref_primary_10_1016_j_ymssp_2024_111722
crossref_primary_10_1016_j_isatra_2024_06_015
crossref_primary_10_1109_TAI_2023_3333767
crossref_primary_10_1016_j_ress_2024_110653
crossref_primary_10_1016_j_jestch_2023_101409
crossref_primary_10_1155_2023_2332669
crossref_primary_10_1007_s11431_023_2610_4
crossref_primary_10_1016_j_eswa_2024_126111
crossref_primary_10_1016_j_ymssp_2024_111122
crossref_primary_10_1108_EC_12_2022_0747
crossref_primary_10_1109_TIM_2024_3412223
crossref_primary_10_1177_14759217241293373
crossref_primary_10_1016_j_aei_2022_101682
crossref_primary_10_1109_ACCESS_2024_3381492
crossref_primary_10_1109_TIM_2024_3393537
crossref_primary_10_1109_TIM_2023_3291801
crossref_primary_10_1109_TMECH_2023_3244282
crossref_primary_10_1016_j_mechmachtheory_2023_105437
crossref_primary_10_3390_s24113454
crossref_primary_10_1016_j_ress_2025_111039
crossref_primary_10_1016_j_ymssp_2023_110187
crossref_primary_10_1109_ACCESS_2023_3267960
crossref_primary_10_1109_TR_2023_3311769
crossref_primary_10_1016_j_measurement_2023_112830
crossref_primary_10_1109_TIM_2024_3378256
crossref_primary_10_1016_j_procs_2025_01_226
crossref_primary_10_1088_1361_6501_ad4fb1
crossref_primary_10_1088_1361_6501_ad8940
crossref_primary_10_1016_j_measurement_2023_113888
crossref_primary_10_1109_TIM_2023_3322478
crossref_primary_10_1109_TII_2022_3218665
crossref_primary_10_1109_ACCESS_2022_3140755
crossref_primary_10_3390_app132212332
crossref_primary_10_1016_j_engfailanal_2025_109315
crossref_primary_10_1088_1361_6501_ad03b4
crossref_primary_10_1088_1361_6501_ad2bcc
crossref_primary_10_1088_1361_6501_ad66f2
Cites_doi 10.1016/j.ymssp.2019.05.005
10.1109/TIE.2019.2959492
10.1002/qre.1771
10.1109/TMECH.2020.2971503
10.1109/TMECH.2020.2978136
10.1109/PHM-Paris.2019.00070
10.1109/TIE.2018.2811366
10.1177/1475921718788299
10.1109/TII.2018.2881543
10.1016/j.neucom.2017.02.045
10.1109/IJCNN.2017.7965877
10.1016/j.ymssp.2017.11.016
10.1016/j.jmsy.2019.11.008
10.1016/j.ymssp.2017.02.003
10.1109/ICSRS.2018.8688720
10.1109/TII.2020.2999442
10.1007/s40430-019-2010-6
10.1109/ACCESS.2017.2774261
10.1016/j.mechmachtheory.2019.103627
10.1109/ICPHM.2019.8819434
10.1109/I2MTC.2018.8409638
10.1016/j.compind.2019.04.013
10.1109/ITOEC.2018.8740504
10.1177/1475921720980718
10.1109/TMECH.2017.2713722
10.1016/j.measurement.2020.107902
10.1109/TIE.2019.2924605
10.1126/science.1127647
10.1109/ACCESS.2019.2940769
10.1016/j.ymssp.2020.107471
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TMECH.2021.3098737
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-014X
EndPage 1456
ExternalDocumentID 10_1109_TMECH_2021_3098737
9492834
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52175075; 62033001; 91748116
  funderid: 10.13039/501100001809
– fundername: Graduate Scientific and Innovation Foundation of Chongqing
  grantid: CYS21009
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACKIV
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-7904e87d7142fb14b0ca98a7a31ae0c89d2548b7d2cf6e29b9ab06111af137c93
IEDL.DBID RIE
ISSN 1083-4435
IngestDate Mon Jun 30 04:43:35 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Tue Jul 01 04:23:22 EDT 2025
Wed Aug 27 02:14:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-7904e87d7142fb14b0ca98a7a31ae0c89d2548b7d2cf6e29b9ab06111af137c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3180-7654
0000-0002-2160-4300
0000-0001-7338-2407
PQID 2676778515
PQPubID 85420
PageCount 10
ParticipantIDs proquest_journals_2676778515
ieee_primary_9492834
crossref_citationtrail_10_1109_TMECH_2021_3098737
crossref_primary_10_1109_TMECH_2021_3098737
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-June
2022-6-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ASME transactions on mechatronics
PublicationTitleAbbrev TMECH
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref30
ref11
ref10
ref2
ref1
ref16
ref19
Zhang (ref27) 2019
ref18
Nectoux (ref33)
Kingma (ref28) 2013
ref24
ref23
ref26
Doersch (ref31) 2016
ref25
ref20
Glorot (ref32)
ref22
ref21
Chen (ref17)
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref23
  doi: 10.1016/j.ymssp.2019.05.005
– ident: ref30
  doi: 10.1109/TIE.2019.2959492
– ident: ref34
  doi: 10.1002/qre.1771
– ident: ref1
  doi: 10.1109/TMECH.2020.2971503
– start-page: 1
  volume-title: Proc. IEEE Int. Conf. Prognostics Health Manage.
  ident: ref33
  article-title: PRONOSTIA: An experimental platform for bearings accelerated degradation tests
– ident: ref8
  doi: 10.1109/TMECH.2020.2978136
– ident: ref11
  doi: 10.1109/PHM-Paris.2019.00070
– ident: ref18
  doi: 10.1109/TIE.2018.2811366
– ident: ref26
  doi: 10.1177/1475921718788299
– ident: ref22
  doi: 10.1109/TII.2018.2881543
– year: 2013
  ident: ref28
  article-title: Auto-encoding variational bayes
– ident: ref10
  doi: 10.1016/j.neucom.2017.02.045
– ident: ref24
  doi: 10.1109/IJCNN.2017.7965877
– ident: ref35
  doi: 10.1016/j.ymssp.2017.11.016
– year: 2019
  ident: ref27
  article-title: Semi-supervised learning of bearing anomaly detection via deep variational autoencoders
– ident: ref13
  doi: 10.1016/j.jmsy.2019.11.008
– ident: ref15
  doi: 10.1016/j.ymssp.2017.02.003
– ident: ref21
  doi: 10.1109/ICSRS.2018.8688720
– ident: ref7
  doi: 10.1109/TII.2020.2999442
– ident: ref12
  doi: 10.1007/s40430-019-2010-6
– start-page: 249
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref32
  article-title: Understanding the difficulty of training deep feedforward neural networks
– ident: ref4
  doi: 10.1109/ACCESS.2017.2774261
– ident: ref3
  doi: 10.1016/j.mechmachtheory.2019.103627
– ident: ref29
  doi: 10.1109/ICPHM.2019.8819434
– ident: ref16
  doi: 10.1109/I2MTC.2018.8409638
– ident: ref5
  doi: 10.1016/j.compind.2019.04.013
– ident: ref20
  doi: 10.1109/ITOEC.2018.8740504
– ident: ref36
  doi: 10.1177/1475921720980718
– ident: ref6
  doi: 10.1109/TMECH.2017.2713722
– ident: ref14
  doi: 10.1016/j.measurement.2020.107902
– ident: ref9
  doi: 10.1109/TIE.2019.2924605
– year: 2016
  ident: ref31
  article-title: Tutorial on variational autoencoders
– start-page: 1035
  volume-title: Proc. IEEE Symp. Ser. Comput. Intell.
  ident: ref17
  article-title: Prediction of bearing degradation trend based on LSTM
– ident: ref19
  doi: 10.1126/science.1127647
– ident: ref25
  doi: 10.1109/ACCESS.2019.2940769
– ident: ref2
  doi: 10.1016/j.ymssp.2020.107471
SSID ssj0004101
Score 2.6005173
Snippet Health indicator (HI) affects the accuracy and reliability of the remaining useful life (RUL) prediction model. The hidden variables of variational autoencoder...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1447
SubjectTerms Constraints
Datasets
Degradation
Feature extraction
Gears
Health indicator (HI)
Mechatronics
multidimensional features
nonsupervision
Prediction models
remaining useful life (RUL)
Rotary machines
variational autoencoder (VAE)
Vibrations
Title Unsupervised Health Indicator Construction by a Novel Degradation-Trend-Constrained Variational Autoencoder and Its Applications
URI https://ieeexplore.ieee.org/document/9492834
https://www.proquest.com/docview/2676778515
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD2yQEsduU48VDxWkMlHEFvlxWUApoikSTPx0zk5SKkCILYMTOfps3_fZvu8AjkkicxSoI513JQkURXNOdw0ROa2sy10qgk_B8LY7GMmbh87DApzOcmEQMVw-w7Z_DGf5bmynfqvsTElF0VAuwiIJtypX6ysHkodSx5woRSSJAzQJMrE6uxteng9ICia8LWLS2L7m-VwQClVVfizFIb5crcGw6Vl1reSxPS1N275_M238b9fXYbUmmqxfjYwNWMBiE1bm7Ae34GNUTKbPfrGYoGNVQhK7LvzJDSlx5mt5Nu6yzLwxzW7Hr_jELry_RFWKKQpXaqOqpaYvO3ZP4rveYGT9aTn2RpkOX5guHLsuJ6w_d2K-DaOry7vzQVRXZIhsojpllKpYYi91KZdJbrg0sdWqp1MtuMbY9pQjvdkzqUts3sVEGaUNEQbOdc5FapXYgaViXOAuMOQ091Ep25FW2kQrUssURa0Qjgta-VrAG4gyW9uV-z95yoJsiVUWYM08rFkNawtOZu88V2Ydf7be8jjNWtYQteCgGQlZPZ8nWeJ97VJip52939_ah-XEJ0aE_ZkDWCJ48JDoSmmOwjj9BL-K53A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a4wA78Gsgygb4wA3SxbHb9B2rsamFtacW7Rb5x8uFKZ1oOglO-9P37CRdBQhxy8GJHH223_fZft8D-MASWZIik5hyqFmgIM85M7RM5Aw6X_pcRZ-C2Xw4Weovl4PLPfi0zYUhonj5jPrhMZ7l-5XbhK2yE9TI0VA_gIcc9zU22Vr3WZAyFjuWTCoSzSygS5FJ8WQxOzudsBjMZF-lrLJD1fOdMBTrqvyxGMcIc_4UZl3fmosl3_ub2vbdr99sG_-388_gSUs1xbgZG89hj6oXcLBjQHgIt8tqvbkOy8WavGhSksS0Cmc3rMVFqObZ-csK-1MYMV_d0JX4HBwmmmJMSbxUmzQtDX_Zi28sv9stRjHe1KtglenphzCVF9N6LcY7Z-YvYXl-tjidJG1NhsRlOKiTHFNNo9znUmelldqmzuDI5EZJQ6kboWfFObK5z1w5pAwtGsuUQUpTSpU7VK9gv1pV9BoESZ79hOgG2mmXGWS9zHHUKeWl4rWvB7KDqHCtYXn4k6siCpcUiwhrEWAtWlh78HH7znVj1_HP1ocBp23LFqIeHHcjoWhn9LrIgrNdzvx08Obvb72HR5PF7KK4mM6_HsHjLKRJxN2aY9hnqOgtk5favotj9g4KherA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Health+Indicator+Construction+by+a+Novel+Degradation-Trend-Constrained+Variational+Autoencoder+and+Its+Applications&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Qin%2C+Yi&rft.au=Zhou%2C+Jianghong&rft.au=Chen%2C+Dingliang&rft.date=2022-06-01&rft.pub=IEEE&rft.issn=1083-4435&rft.volume=27&rft.issue=3&rft.spage=1447&rft.epage=1456&rft_id=info:doi/10.1109%2FTMECH.2021.3098737&rft.externalDocID=9492834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon