A Survey of Multiple Pedestrian Tracking Based on Tracking-by-Detection Framework

Multiple pedestrian tracking (MPT) has gained significant attention due to its huge potential in a commercial application. It aims to predict multiple pedestrian trajectories and maintain their identities, given a video sequence. In the past decade, due to the advancement in pedestrian detection alg...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 31; no. 5; pp. 1819 - 1833
Main Authors Sun, Zhihong, Chen, Jun, Chao, Liang, Ruan, Weijian, Mukherjee, Mithun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multiple pedestrian tracking (MPT) has gained significant attention due to its huge potential in a commercial application. It aims to predict multiple pedestrian trajectories and maintain their identities, given a video sequence. In the past decade, due to the advancement in pedestrian detection algorithms, Tracking-by-Detection (TBD) based algorithms have achieved tremendous successes. TBD has become the most popular MPT framework, and it has been actively studied in the past decade. In this paper, we give a comprehensive survey of recent advances in TBD-based MPT algorithms. We systematically analyze the existing TBD-based algorithms and organize the survey into four major parts. At first, this survey draws a timeline to introduce the milestones of TBD-based works which briefly reviews the development of the existing TBD-based methods. Second, the main procedures of the TBD framework are summarized, and each stage in the procedure is described in detail. Afterward, this survey analyzes the performance of existing TBD-based algorithms on MOT challenge datasets and discusses the factors that affect tracking performance. Finally, open issues and future directions in the TBD framework are discussed.
AbstractList Multiple pedestrian tracking (MPT) has gained significant attention due to its huge potential in a commercial application. It aims to predict multiple pedestrian trajectories and maintain their identities, given a video sequence. In the past decade, due to the advancement in pedestrian detection algorithms, Tracking-by-Detection (TBD) based algorithms have achieved tremendous successes. TBD has become the most popular MPT framework, and it has been actively studied in the past decade. In this paper, we give a comprehensive survey of recent advances in TBD-based MPT algorithms. We systematically analyze the existing TBD-based algorithms and organize the survey into four major parts. At first, this survey draws a timeline to introduce the milestones of TBD-based works which briefly reviews the development of the existing TBD-based methods. Second, the main procedures of the TBD framework are summarized, and each stage in the procedure is described in detail. Afterward, this survey analyzes the performance of existing TBD-based algorithms on MOT challenge datasets and discusses the factors that affect tracking performance. Finally, open issues and future directions in the TBD framework are discussed.
Author Chen, Jun
Chao, Liang
Ruan, Weijian
Sun, Zhihong
Mukherjee, Mithun
Author_xml – sequence: 1
  givenname: Zhihong
  orcidid: 0000-0002-6202-5356
  surname: Sun
  fullname: Sun, Zhihong
  email: zhihong.sun@whu.edu.cn
  organization: National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0003-1376-0167
  surname: Chen
  fullname: Chen, Jun
  email: chenj.whu@gmail.com
  organization: National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Liang
  orcidid: 0000-0002-8287-8655
  surname: Chao
  fullname: Chao, Liang
  email: cliang@whu.edu.cn
  organization: National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Weijian
  orcidid: 0000-0003-3710-8739
  surname: Ruan
  fullname: Ruan, Weijian
  email: rweij@whu.edu.cn
  organization: National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, Wuhan, China
– sequence: 5
  givenname: Mithun
  orcidid: 0000-0002-6605-180X
  surname: Mukherjee
  fullname: Mukherjee, Mithun
  email: m.mukherjee@ieee.org
  organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
BookMark eNp9kEFPwzAMhSMEEtvgD8ClEueO2E2a5jgGA6QhQCtcqzRzUbeuHWkL2r-nYxNIHDjZst5nP78-Oyyrkhg7Az4E4PoyHs9e4yFy5MOAc61AHbAeSBn5iFwedj2X4EcI8pj163rBOYhIqB57Hnmz1n3Qxqsy76EtmnxdkPdEc6obl5vSi52xy7x8865MTXOv-p346ca_poZsk3fTiTMr-qzc8oQdZaao6XRfB-xlchOP7_zp4-39eDT1LWrZ-CpURgVSZ9yqKI2EyGyqdQoQYRYZpa0AYQMbIpKQYQCkCIGMzCQqEwIEA3ax27t21Xvb2U0WVevK7mSCErF7lQfYqaKdyrqqrh1lic0bs3XcOJMXCfBkG2DyHWCyDTDZB9ih-Addu3xl3OZ_6HwH5UT0A2gQiFIGX0sgfRQ
CODEN ITCTEM
CitedBy_id crossref_primary_10_1016_j_advengsoft_2024_103687
crossref_primary_10_1016_j_inffus_2024_102793
crossref_primary_10_1016_j_compag_2023_107839
crossref_primary_10_3390_s24144747
crossref_primary_10_1016_j_neunet_2023_11_041
crossref_primary_10_3390_s24041181
crossref_primary_10_1109_TGRS_2024_3383870
crossref_primary_10_1109_TMM_2022_3206668
crossref_primary_10_1109_TCSVT_2023_3275813
crossref_primary_10_1109_TCSVT_2024_3478758
crossref_primary_10_1007_s11263_024_02102_x
crossref_primary_10_1016_j_compeleceng_2025_110116
crossref_primary_10_1016_j_physa_2023_129350
crossref_primary_10_1109_ACCESS_2023_3336592
crossref_primary_10_3390_s23167082
crossref_primary_10_1109_TITS_2024_3517162
crossref_primary_10_1016_j_neucom_2021_10_107
crossref_primary_10_1016_j_neucom_2024_128906
crossref_primary_10_1109_TCSVT_2021_3105685
crossref_primary_10_1007_s00371_023_02916_9
crossref_primary_10_1007_s11042_023_15231_1
crossref_primary_10_3390_s21093146
crossref_primary_10_3389_frai_2022_941825
crossref_primary_10_1109_TCSVT_2023_3249162
crossref_primary_10_1016_j_ijleo_2022_169279
crossref_primary_10_11834_jig_230340
crossref_primary_10_12677_CSA_2022_128196
crossref_primary_10_1109_TCSVT_2024_3392939
crossref_primary_10_1155_2021_9940126
crossref_primary_10_1016_j_imavis_2023_104797
crossref_primary_10_1109_ACCESS_2024_3439702
crossref_primary_10_1109_TIV_2022_3140344
crossref_primary_10_1109_TCSVT_2023_3244152
crossref_primary_10_1109_TCSVT_2024_3498853
crossref_primary_10_1109_TCSVT_2024_3481425
crossref_primary_10_32604_cmc_2022_028289
crossref_primary_10_7746_jkros_2022_17_2_124
crossref_primary_10_1109_TCSVT_2022_3224699
crossref_primary_10_1007_s11042_024_19997_w
crossref_primary_10_1109_TMM_2023_3256761
crossref_primary_10_1016_j_cviu_2024_104200
crossref_primary_10_1109_TII_2022_3230713
crossref_primary_10_1016_j_autcon_2024_105644
crossref_primary_10_1109_TCSVT_2024_3447670
crossref_primary_10_3390_s21227512
crossref_primary_10_1042_BST20210534
crossref_primary_10_32604_csse_2023_029005
crossref_primary_10_1007_s00371_024_03772_x
crossref_primary_10_1038_s44172_024_00191_7
crossref_primary_10_1016_j_imavis_2024_104964
crossref_primary_10_1007_s00521_022_08079_3
crossref_primary_10_1109_TCSVT_2024_3498349
crossref_primary_10_1007_s10846_022_01602_7
crossref_primary_10_1016_j_actaastro_2025_02_027
crossref_primary_10_1088_1361_6501_ad8cff
crossref_primary_10_1145_3590965
crossref_primary_10_1007_s13748_022_00290_6
crossref_primary_10_3390_app122110741
crossref_primary_10_1109_TCSVT_2022_3162599
crossref_primary_10_1109_TCSVT_2024_3404275
crossref_primary_10_1109_JSEN_2021_3124615
crossref_primary_10_1007_s10877_022_00945_8
crossref_primary_10_1007_s11227_023_05650_0
crossref_primary_10_1016_j_neucom_2024_127328
crossref_primary_10_3390_insects15120974
crossref_primary_10_3390_s23135843
crossref_primary_10_1117_1_JEI_31_6_063025
crossref_primary_10_1109_JSEN_2024_3432179
crossref_primary_10_3390_rs14163853
crossref_primary_10_1109_TCSVT_2024_3450493
Cites_doi 10.1007/978-3-642-33783-3_8
10.1109/ICCV.2015.534
10.1109/CVPR.2005.177
10.1109/ICCV.2019.00627
10.1109/CVPR.2011.5995395
10.1109/CVPRW.2019.00105
10.1109/ICSMC.2004.1400815
10.1109/CVPRW.2018.00192
10.1109/AVSS.2017.8078516
10.1109/CVPR.2015.7299138
10.1007/978-3-319-48881-3_8
10.1109/CVPR.2019.00511
10.1109/TMM.2018.2872897
10.1109/TCSVT.2020.2975842
10.1109/CVPR.2013.472
10.1007/978-3-642-33718-5_35
10.1109/TPAMI.2018.2876253
10.1049/iet-cvi.2018.5598
10.1109/ICME.2018.8486454
10.1109/ICCVW.2019.00025
10.1109/TCSVT.2018.2881123
10.1109/ICCV.2017.518
10.1109/TPAMI.2008.57
10.1109/ICRAS49812.2020.9135065
10.1109/CVPR.2017.292
10.1109/ICCVW.2019.00022
10.1109/CVPR.2016.461
10.1049/iet-cvi.2016.0178
10.1109/ICCV.2009.5459301
10.1109/CVPR.2015.7299193
10.1109/CVPR.2008.4587577
10.1007/978-3-319-48881-3_2
10.1109/TIP.2011.2159228
10.1109/ICIP.2014.7025168
10.1109/CVPRW.2017.266
10.1109/CVPR.2018.00644
10.1007/978-3-319-48881-3_7
10.1109/ICCV.2019.00409
10.1007/978-3-642-33765-9_16
10.1109/TCSVT.2018.2856540
10.1109/CVPRW.2016.161
10.1007/978-3-030-01237-3_13
10.1145/3240508.3240548
10.1109/ICCV.2019.00103
10.1109/ACCESS.2018.2881019
10.1109/ICIP.2017.8296360
10.1109/ICCV.2017.593
10.4218/etrij.15.0114.0629
10.1109/CVPR.2013.240
10.1109/TPAMI.2017.2691768
10.1109/WACV.2018.00057
10.1109/CVPR.2019.00813
10.1109/ICCV.2017.278
10.1109/ICME.2018.8486597
10.1109/CVPR.2008.4587584
10.1109/LRA.2020.2974392
10.1109/TIP.2017.2745103
10.2528/PIERB15010503
10.1109/TPAMI.2017.2691769
10.1109/WACV.2018.00128
10.1109/TPAMI.2016.2551245
10.2991/ijcis.2019.125905651
10.1109/ICCV.2017.322
10.1109/CVPR.2017.394
10.1109/ACCESS.2019.2903121
10.1007/978-81-322-1665-0_52
10.1109/ICIP.2016.7533003
10.1109/CVPR.2011.5995604
10.1016/j.neucom.2019.11.023
10.1016/j.patcog.2019.04.018
10.1109/CVPR.2016.234
10.1109/CVPR.2018.00232
10.1109/TPAMI.2015.2505309
10.1109/ICIP.2018.8451472
10.1109/LSP.2019.2940922
10.1007/s11042-018-5781-3
10.1016/j.cviu.2016.05.003
10.1145/3343031.3350984
10.1109/TMM.2016.2605058
10.1109/CVPR.2012.6247893
10.1109/CVPR.2013.241
10.1109/CVPRW.2018.00195
10.1007/s13592-011-0060-6
10.1109/ICCV.2019.00245
10.1109/CVPRW.2018.00169
10.1109/TPAMI.2012.42
10.1109/WACV.2019.00023
10.1145/3343031.3350853
10.1109/CVPR.2017.403
10.1109/GlobalSIP.2016.7905816
10.1109/CVPR.2015.7299178
10.1109/TIP.2018.2843129
10.1109/WMVC.2008.4544058
10.1007/978-3-030-01219-9_36
10.1109/TPAMI.2009.167
10.1109/CVPR.2017.495
10.1109/IVS.2019.8813779
10.1016/j.neucom.2015.07.028
10.1109/CVPR.2015.7299036
10.1109/ICCV.2015.533
10.1109/TCSVT.2018.2882192
10.1109/CVPR.2014.161
10.1109/TPAMI.2013.221
10.1007/s11263-013-0666-4
10.1109/CVPR.2015.7298718
10.1109/TPAMI.2019.2929520
10.1016/j.cviu.2016.12.003
10.1109/CVPR.2010.5540102
10.1155/2008/246309
10.1109/ROBIO.2015.7419004
10.1109/ICPCSI.2017.8392001
10.1109/ICCV.2017.41
10.1109/TPAMI.2013.103
10.1109/CVPR.2011.5995311
10.1109/CVPR.2017.206
10.1016/j.neucom.2018.02.068
10.1109/CVPR.2017.142
10.1109/CVPR.2011.5995587
10.1007/978-3-642-33715-4_43
10.1109/ICCV.2009.5459278
10.1109/ICIP.2017.8296962
10.1109/TCSVT.2018.2825679
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2020.3009717
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1833
ExternalDocumentID 10_1109_TCSVT_2020_3009717
9142255
Genre orig-research
GrantInformation_xml – fundername: National Nature Science Foundation of China
  grantid: U1611461; 61876135; 61801335; 61672390; U1736206; U1903214
  funderid: 10.13039/501100001809
– fundername: Hubei Technological Innovation Special Fund; Hubei Province Technological Innovation Major Project
  grantid: 2018AAA062; 2018CFA024; 2017AAA123; 2019CFB472
  funderid: 10.13039/501100012239
– fundername: National Key Research and Development Program of China
  grantid: 2017YFC0803700
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-767a7359f0c78b844fcb99b1182f8a79c414c3c622e45631e7e21ea5f527a6113
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 04:44:05 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Tue Jul 01 00:41:13 EDT 2025
Wed Aug 27 02:30:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-767a7359f0c78b844fcb99b1182f8a79c414c3c622e45631e7e21ea5f527a6113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6202-5356
0000-0002-8287-8655
0000-0003-1376-0167
0000-0002-6605-180X
0000-0003-3710-8739
PQID 2522215032
PQPubID 85433
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2020_3009717
ieee_primary_9142255
proquest_journals_2522215032
crossref_primary_10_1109_TCSVT_2020_3009717
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref59
ref58
ref53
ref52
ref55
ref54
dendorfer (ref70) 2019
wang (ref93) 2014; 9273
leal-taixé (ref66) 2015
ref51
ref46
ref45
ref48
yang (ref65) 2014
agarwal (ref142) 2017
ref44
ref43
milan (ref57) 2017
ma (ref114) 2018
ref49
ref7
ref9
ref3
thoreau (ref41) 2018
ref6
xing (ref47) 2009
ref5
ref100
ref101
feng (ref50) 2019
ref40
ren (ref68) 2015
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref146
ref147
gautam (ref60) 2020
ref39
ref38
ref24
ref23
ref26
shen (ref32) 2018
ref25
ref20
ref22
ref21
ref28
ref29
ref13
ref12
ref128
ref15
ref129
ref14
ref126
ref97
ref127
ref96
ref124
ref99
ref11
ref125
ref98
ref10
xu (ref117) 2019
ref17
ref16
tian (ref134) 2019; 20
ref19
ref133
ref92
ref131
ref95
ref132
ref94
ref130
ref91
ref90
xiang (ref112) 2019
ref89
ref137
ref86
ref138
ref85
ref135
sadeghi (ref67) 2014
hu (ref144) 2020
ref88
ref136
ref87
yoon (ref8) 2019
hu (ref18) 2012; 34
ref82
ref145
ref81
ref143
ref83
ref140
ref141
ref80
ref79
ref108
ref78
ref109
ref106
ref107
keuper (ref84) 2016
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
lin (ref27) 2014
ref71
ref111
ref73
ref110
song (ref72) 2019
ref119
ref69
ref118
ref64
ref115
ref63
ref116
ref113
zamir (ref42) 2012
redmon (ref139) 2018
luo (ref1) 2014
ref122
ref123
ref62
ref120
ref61
ref121
zhou (ref4) 2018
References_xml – ident: ref94
  doi: 10.1007/978-3-642-33783-3_8
– ident: ref89
  doi: 10.1109/ICCV.2015.534
– start-page: 1200
  year: 2009
  ident: ref47
  article-title: Multi-object tracking through occlusions by local tracklets filtering and global tracklets association with detection responses
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref62
  doi: 10.1109/CVPR.2005.177
– ident: ref49
  doi: 10.1109/ICCV.2019.00627
– ident: ref34
  doi: 10.1109/CVPR.2011.5995395
– ident: ref28
  doi: 10.1109/CVPRW.2019.00105
– ident: ref64
  doi: 10.1109/ICSMC.2004.1400815
– year: 2019
  ident: ref112
  article-title: End-to-end learning deep CRF models for multi-object tracking
  publication-title: arXiv 1907 12176
– ident: ref136
  doi: 10.1109/CVPRW.2018.00192
– ident: ref106
  doi: 10.1109/AVSS.2017.8078516
– ident: ref44
  doi: 10.1109/CVPR.2015.7299138
– ident: ref45
  doi: 10.1007/978-3-319-48881-3_8
– ident: ref26
  doi: 10.1109/CVPR.2019.00511
– ident: ref12
  doi: 10.1109/TMM.2018.2872897
– ident: ref146
  doi: 10.1109/TCSVT.2020.2975842
– volume: 9273
  start-page: 1
  year: 2014
  ident: ref93
  article-title: Coupled data association and L1 minimization for multiple object tracking under occlusion
  publication-title: Proc SPIE
– ident: ref36
  doi: 10.1109/CVPR.2013.472
– ident: ref14
  doi: 10.1007/978-3-642-33718-5_35
– ident: ref83
  doi: 10.1109/TPAMI.2018.2876253
– ident: ref5
  doi: 10.1049/iet-cvi.2018.5598
– ident: ref131
  doi: 10.1109/ICME.2018.8486454
– ident: ref101
  doi: 10.1109/ICCVW.2019.00025
– ident: ref113
  doi: 10.1109/TCSVT.2018.2881123
– ident: ref125
  doi: 10.1109/ICCV.2017.518
– ident: ref127
  doi: 10.1109/TPAMI.2008.57
– ident: ref61
  doi: 10.1109/ICRAS49812.2020.9135065
– ident: ref25
  doi: 10.1109/CVPR.2017.292
– ident: ref71
  doi: 10.1109/ICCVW.2019.00022
– ident: ref102
  doi: 10.1109/CVPR.2016.461
– start-page: 612
  year: 2018
  ident: ref114
  article-title: Customized multi-person tracker
  publication-title: Vision Computer
– ident: ref3
  doi: 10.1049/iet-cvi.2016.0178
– ident: ref96
  doi: 10.1109/ICCV.2009.5459301
– ident: ref24
  doi: 10.1109/CVPR.2015.7299193
– ident: ref33
  doi: 10.1109/CVPR.2008.4587577
– ident: ref129
  doi: 10.1007/978-3-319-48881-3_2
– year: 2019
  ident: ref50
  article-title: Multi-object tracking with multiple cues and switcher-aware classification
  publication-title: arXiv 1901 06129
– ident: ref51
  doi: 10.1109/TIP.2011.2159228
– ident: ref92
  doi: 10.1109/ICIP.2014.7025168
– ident: ref137
  doi: 10.1109/CVPRW.2017.266
– ident: ref140
  doi: 10.1109/CVPR.2018.00644
– ident: ref76
  doi: 10.1007/978-3-319-48881-3_7
– ident: ref103
  doi: 10.1109/ICCV.2019.00409
– ident: ref23
  doi: 10.1007/978-3-642-33765-9_16
– ident: ref95
  doi: 10.1109/TCSVT.2018.2856540
– ident: ref75
  doi: 10.1109/CVPRW.2016.161
– ident: ref85
  doi: 10.1007/978-3-030-01237-3_13
– ident: ref104
  doi: 10.1145/3240508.3240548
– ident: ref100
  doi: 10.1109/ICCV.2019.00103
– ident: ref133
  doi: 10.1109/ACCESS.2018.2881019
– ident: ref122
  doi: 10.1109/ICIP.2017.8296360
– year: 2018
  ident: ref32
  article-title: Tracklet association tracker: An end-to-end learning-based association approach for multi-object tracking
  publication-title: arXiv 1808 01562
– ident: ref115
  doi: 10.1109/ICCV.2017.593
– ident: ref77
  doi: 10.4218/etrij.15.0114.0629
– ident: ref17
  doi: 10.1109/CVPR.2013.240
– ident: ref10
  doi: 10.1109/TPAMI.2017.2691768
– ident: ref86
  doi: 10.1109/WACV.2018.00057
– ident: ref53
  doi: 10.1109/CVPR.2019.00813
– year: 2017
  ident: ref142
  article-title: Real-time multiple object tracking (MOT) for autonomous navigation
– year: 2018
  ident: ref41
  article-title: Deep similarity metric learning for real-time pedestrian tracking
  publication-title: arXiv 1806 07592
– ident: ref119
  doi: 10.1109/ICCV.2017.278
– ident: ref56
  doi: 10.1109/ICME.2018.8486597
– start-page: 65
  year: 2014
  ident: ref67
  article-title: 30 Hz object detection with DPM V5
  publication-title: Proc Eur Conf Comput Vis
– ident: ref19
  doi: 10.1109/CVPR.2008.4587584
– ident: ref145
  doi: 10.1109/LRA.2020.2974392
– ident: ref81
  doi: 10.1109/TIP.2017.2745103
– year: 2019
  ident: ref72
  article-title: Online multi-object tracking framework with the GMPHD filter and occlusion group management
  publication-title: arXiv 1907 13347
– ident: ref2
  doi: 10.2528/PIERB15010503
– ident: ref108
  doi: 10.1109/TPAMI.2017.2691769
– ident: ref90
  doi: 10.1109/WACV.2018.00128
– ident: ref126
  doi: 10.1109/TPAMI.2016.2551245
– start-page: 351
  year: 2018
  ident: ref4
  article-title: A survey of multi-object video tracking algorithms
  publication-title: Proc Adv Intell Sys Comput
  doi: 10.2991/ijcis.2019.125905651
– volume: 20
  start-page: 1
  year: 2019
  ident: ref134
  article-title: Online multi-object tracking using joint domain information in traffic scenarios
  publication-title: IEEE Trans Intell Transp Syst
– ident: ref138
  doi: 10.1109/ICCV.2017.322
– ident: ref46
  doi: 10.1109/CVPR.2017.394
– ident: ref143
  doi: 10.1109/ACCESS.2019.2903121
– ident: ref99
  doi: 10.1007/978-81-322-1665-0_52
– ident: ref107
  doi: 10.1109/ICIP.2016.7533003
– ident: ref20
  doi: 10.1109/CVPR.2011.5995604
– ident: ref6
  doi: 10.1016/j.neucom.2019.11.023
– ident: ref124
  doi: 10.1016/j.patcog.2019.04.018
– ident: ref69
  doi: 10.1109/CVPR.2016.234
– start-page: 4225
  year: 2017
  ident: ref57
  article-title: Online multi-target tracking using recurrent neural networks
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref55
  doi: 10.1109/CVPR.2018.00232
– ident: ref40
  doi: 10.1109/TPAMI.2015.2505309
– year: 2020
  ident: ref60
  article-title: SDVTracker: Real-time multi-sensor association and tracking for self-driving vehicles
  publication-title: arXiv 2003 04447
– ident: ref58
  doi: 10.1109/ICIP.2018.8451472
– ident: ref130
  doi: 10.1109/LSP.2019.2940922
– year: 2019
  ident: ref117
  article-title: How to train your deep multi-object tracker
  publication-title: arXiv 1906 06618
– ident: ref74
  doi: 10.1007/s11042-018-5781-3
– ident: ref82
  doi: 10.1016/j.cviu.2016.05.003
– ident: ref11
  doi: 10.1145/3343031.3350984
– ident: ref13
  doi: 10.1109/TMM.2016.2605058
– year: 2015
  ident: ref66
  article-title: MOTChallenge 2015: Towards a benchmark for multi-target tracking
  publication-title: arXiv 1504 01942 [cs]
– ident: ref39
  doi: 10.1109/CVPR.2012.6247893
– ident: ref22
  doi: 10.1109/CVPR.2013.241
– ident: ref110
  doi: 10.1109/CVPRW.2018.00195
– ident: ref9
  doi: 10.1007/s13592-011-0060-6
– ident: ref59
  doi: 10.1109/ICCV.2019.00245
– ident: ref73
  doi: 10.1109/CVPRW.2018.00169
– volume: 34
  start-page: 2420
  year: 2012
  ident: ref18
  article-title: Single and multiple object tracking using log-Euclidean Riemannian subspace and block-division appearance model
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.42
– ident: ref121
  doi: 10.1109/WACV.2019.00023
– ident: ref105
  doi: 10.1145/3343031.3350853
– ident: ref31
  doi: 10.1109/CVPR.2017.403
– year: 2014
  ident: ref1
  article-title: Multiple object tracking: A literature review
  publication-title: arXiv 1409 7618 [cs]
– year: 2016
  ident: ref84
  article-title: A multi-cut formulation for joint segmentation and tracking of multiple objects
  publication-title: arXiv 1607 06317
– start-page: 343
  year: 2012
  ident: ref42
  article-title: GMCP-tracker: Global multi-object tracking using generalized minimum clique graphs
  publication-title: Proc Eur Conf Comput Vis
– ident: ref48
  doi: 10.1109/GlobalSIP.2016.7905816
– ident: ref52
  doi: 10.1109/CVPR.2015.7299178
– ident: ref120
  doi: 10.1109/TIP.2018.2843129
– year: 2019
  ident: ref8
  article-title: Online multiple pedestrian tracking using deep temporal appearance matching association
  publication-title: arXiv 1907 00831
– ident: ref7
  doi: 10.1109/WMVC.2008.4544058
– year: 2018
  ident: ref139
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv 1804 02767
– ident: ref87
  doi: 10.1007/978-3-030-01219-9_36
– ident: ref63
  doi: 10.1109/TPAMI.2009.167
– ident: ref116
  doi: 10.1109/CVPR.2017.495
– ident: ref147
  doi: 10.1109/IVS.2019.8813779
– ident: ref78
  doi: 10.1016/j.neucom.2015.07.028
– ident: ref43
  doi: 10.1109/CVPR.2015.7299036
– ident: ref54
  doi: 10.1109/ICCV.2015.533
– start-page: 1
  year: 2014
  ident: ref65
  article-title: Aggregate channel features for multi-view face detection
  publication-title: Proc IEEE Int Joint Conf Biometrics
– ident: ref135
  doi: 10.1109/TCSVT.2018.2882192
– year: 2019
  ident: ref70
  article-title: CVPR19 tracking and detection challenge: How crowded can it get?
  publication-title: arXiv 1906 04567
– ident: ref111
  doi: 10.1109/CVPR.2014.161
– ident: ref15
  doi: 10.1109/TPAMI.2013.221
– ident: ref91
  doi: 10.1007/s11263-013-0666-4
– ident: ref21
  doi: 10.1109/CVPR.2015.7298718
– ident: ref141
  doi: 10.1109/TPAMI.2019.2929520
– start-page: 91
  year: 2015
  ident: ref68
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref16
  doi: 10.1016/j.cviu.2016.12.003
– ident: ref97
  doi: 10.1109/CVPR.2010.5540102
– ident: ref128
  doi: 10.1155/2008/246309
– ident: ref98
  doi: 10.1109/ROBIO.2015.7419004
– ident: ref79
  doi: 10.1109/ICPCSI.2017.8392001
– ident: ref123
  doi: 10.1109/ICCV.2017.41
– start-page: 740
  year: 2014
  ident: ref27
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proc Eur Conf Comput Vis
– ident: ref80
  doi: 10.1109/TPAMI.2013.103
– ident: ref38
  doi: 10.1109/CVPR.2011.5995311
– ident: ref132
  doi: 10.1109/CVPR.2017.206
– ident: ref109
  doi: 10.1016/j.neucom.2018.02.068
– ident: ref118
  doi: 10.1109/CVPR.2017.142
– ident: ref35
  doi: 10.1109/CVPR.2011.5995587
– ident: ref29
  doi: 10.1007/978-3-642-33715-4_43
– year: 2020
  ident: ref144
  article-title: Multi-object tracking via end-to-end tracklet searching and ranking
  publication-title: arXiv 2003 02795
– ident: ref88
  doi: 10.1109/ICCV.2009.5459278
– ident: ref30
  doi: 10.1109/ICIP.2017.8296962
– ident: ref37
  doi: 10.1109/TCSVT.2018.2825679
SSID ssj0014847
Score 2.616045
SecondaryResourceType review_article
Snippet Multiple pedestrian tracking (MPT) has gained significant attention due to its huge potential in a commercial application. It aims to predict multiple...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1819
SubjectTerms Algorithms
Computer vision
data association
Machine learning
multiple pedestrian tracking
Noise measurement
Radar tracking
Task analysis
Tracking
tracking-by-detection
Trajectory
Video sequences
Visualization
Title A Survey of Multiple Pedestrian Tracking Based on Tracking-by-Detection Framework
URI https://ieeexplore.ieee.org/document/9142255
https://www.proquest.com/docview/2522215032
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHLxp1jZtmuboaxFhRXEVbyWP6UXpinYF_fUm2XZ9It5KyUCYmfabSb6ZAdhNuIqEyi114GlpqhmnqmSaWsuQy0xFyvgC5_5FdnaTnt_xuynYn9TCIGIgn2HXP4a7fDs0I39UdiD9gQXn0zDtErdxrdbkxiDNwzAxFy7ENHc41hbIRPJgcHx9O3CpIHMZauiZJL6AUJiq8uNXHPCltwD9dmdjWsl9d1Trrnn71rTxv1tfhPkm0CSHY89YgimslmHuU_vBFbg6JNejpxd8JcOS9BtmIblEi2GYR0UckBl_lE6OHNZZMvx4Q_UrPcE68Lgq0msZXqtw0zsdHJ_RZsQCNUzymopMKJFwWUZG5DpP09JoKbXPOspcCWnSODWJyRhDF2klMQpkMSpeciZUFsfJGsxUwwrXgehMOcFMsdyUDhlRRqnlUWJKrnJm46wDcavzwjT9x_0YjIci5CGRLIKdCm-norFTB_YmMo_j7ht_rl7xip-sbHTega3WtEXzgT4XzMWdzkuihG38LrUJs8zTVwK3cQtm6qcRbrv4o9Y7wfHeAaCU1U4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoAeeBXEQgEf4IS8TSZxHB84lJbVlnYrULeot-DH5EKVRW0WtPwW_gr_DdubLE9xq8QtiuxI8XzyN2N_MwPwNBM6kbp03JOn47lBwXWNhjuHJFShE21DgvPkqBif5K9PxekafF3lwhBRFJ_RMDzGu3w3s_NwVLatwoGF6CWUB7T47AO0ixf7e96azxBHr6a7Y971EOAWlWi5LKSWmVB1YmVpyjyvrVHKBLe6LrVUNk9zm9kCkbwrkaUkCVPSohYodZGmmf_uFbjq_QyBy-yw1R1FXsb2Zd5BSXnpmbNPyUnU9nT3-N3UB5_oY-JYpUn-Qnuxj8sfm39ktNFN-NavxVLI8mE4b83QfvmtTOT_uli34EbnSrOdJfZvwxo1d2DjpwKLm_B2hx3Pzz_Rgs1qNum0k-wNOYrtShrmqdqGywL20rO5Y7Mfb7hZ8D1qo1KtYaNew3YXTi7ln-7BejNr6D4wU2g_sdBY2tpzP6kkdyLJbC10iS4tBpD2Nq5sV2E9NPo4q2Kklagq4qIKuKg6XAzg-WrOx2V9kX-O3gyGXo3sbDyArR5KVbcFXVToPWuPyiTDB3-f9QSujaeTw-pw_-jgIVzHINaJSs4tWG_P5_TIe1uteRxBz-D9ZQPnO8X9MIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Multiple+Pedestrian+Tracking+Based+on+Tracking-by-Detection+Framework&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Sun%2C+Zhihong&rft.au=Chen%2C+Jun&rft.au=Chao%2C+Liang&rft.au=Ruan%2C+Weijian&rft.date=2021-05-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=31&rft.issue=5&rft.spage=1819&rft.epage=1833&rft_id=info:doi/10.1109%2FTCSVT.2020.3009717&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2020_3009717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon