Divide-and-Conquer Predictor for Unbiased Scene Graph Generation

Scene Graph Generation (SGG) aims to detect the objects and their pairwise predicates in an image. Existing SGG methods mainly fulfil the challenging predicate prediction task that involves severe long-tailed data distribution with a single classifier. However, we argue that this may be enough to di...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 12; pp. 8611 - 8622
Main Authors Han, Xianjing, Dong, Xingning, Song, Xuemeng, Gan, Tian, Zhan, Yibing, Yan, Yan, Nie, Liqiang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1051-8215
1558-2205
DOI10.1109/TCSVT.2022.3193857

Cover

Abstract Scene Graph Generation (SGG) aims to detect the objects and their pairwise predicates in an image. Existing SGG methods mainly fulfil the challenging predicate prediction task that involves severe long-tailed data distribution with a single classifier. However, we argue that this may be enough to differentiate predicates that present obvious differences (e.g., <inline-formula> <tex-math notation="LaTeX">on </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">near </tex-math></inline-formula>), but not sufficient to distinguish similar predicates that only have subtle differences (e.g., <inline-formula> <tex-math notation="LaTeX">on </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">standing~on </tex-math></inline-formula>). Towards this end, we divide the predicate prediction into a few sub-tasks with a Divide-and-Conquer Predictor (DC-Predictor). Specifically, we first develop an offline pattern-predicate correlation mining algorithm to discover the similar predicates that share the same object interaction pattern. Based on that, we devise a general pattern classifier and a set of specific predicate classifiers for DC-Predictor. The former works on recognizing the pattern of a given object pair and routing it to the corresponding specific predicate classifier, while the latter aims to differentiate similar predicates in each specific pattern. In addition, we introduce the Bayesian Personalized Ranking loss in each specific predicate classifier to enhance the pairwise differentiation between head predicates and their similar ones. Experiments on VG150 and GQA datasets show the superiority of our model over state-of-the-art methods.
AbstractList Scene Graph Generation (SGG) aims to detect the objects and their pairwise predicates in an image. Existing SGG methods mainly fulfil the challenging predicate prediction task that involves severe long-tailed data distribution with a single classifier. However, we argue that this may be enough to differentiate predicates that present obvious differences (e.g., <inline-formula> <tex-math notation="LaTeX">on </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">near </tex-math></inline-formula>), but not sufficient to distinguish similar predicates that only have subtle differences (e.g., <inline-formula> <tex-math notation="LaTeX">on </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">standing~on </tex-math></inline-formula>). Towards this end, we divide the predicate prediction into a few sub-tasks with a Divide-and-Conquer Predictor (DC-Predictor). Specifically, we first develop an offline pattern-predicate correlation mining algorithm to discover the similar predicates that share the same object interaction pattern. Based on that, we devise a general pattern classifier and a set of specific predicate classifiers for DC-Predictor. The former works on recognizing the pattern of a given object pair and routing it to the corresponding specific predicate classifier, while the latter aims to differentiate similar predicates in each specific pattern. In addition, we introduce the Bayesian Personalized Ranking loss in each specific predicate classifier to enhance the pairwise differentiation between head predicates and their similar ones. Experiments on VG150 and GQA datasets show the superiority of our model over state-of-the-art methods.
Scene Graph Generation (SGG) aims to detect the objects and their pairwise predicates in an image. Existing SGG methods mainly fulfil the challenging predicate prediction task that involves severe long-tailed data distribution with a single classifier. However, we argue that this may be enough to differentiate predicates that present obvious differences (e.g., [Formula Omitted] and [Formula Omitted]), but not sufficient to distinguish similar predicates that only have subtle differences (e.g., [Formula Omitted] and [Formula Omitted]). Towards this end, we divide the predicate prediction into a few sub-tasks with a Divide-and-Conquer Predictor (DC-Predictor). Specifically, we first develop an offline pattern-predicate correlation mining algorithm to discover the similar predicates that share the same object interaction pattern. Based on that, we devise a general pattern classifier and a set of specific predicate classifiers for DC-Predictor. The former works on recognizing the pattern of a given object pair and routing it to the corresponding specific predicate classifier, while the latter aims to differentiate similar predicates in each specific pattern. In addition, we introduce the Bayesian Personalized Ranking loss in each specific predicate classifier to enhance the pairwise differentiation between head predicates and their similar ones. Experiments on VG150 and GQA datasets show the superiority of our model over state-of-the-art methods.
Author Gan, Tian
Zhan, Yibing
Nie, Liqiang
Han, Xianjing
Song, Xuemeng
Yan, Yan
Dong, Xingning
Author_xml – sequence: 1
  givenname: Xianjing
  orcidid: 0000-0001-7867-3190
  surname: Han
  fullname: Han, Xianjing
  email: hanxianjing2018@gmail.com
  organization: School of Computer Science and Technology, Shandong University, Qingdao, China
– sequence: 2
  givenname: Xingning
  surname: Dong
  fullname: Dong, Xingning
  email: pass1463365882@gmail.com
  organization: School of Computer Science and Technology, Shandong University, Qingdao, China
– sequence: 3
  givenname: Xuemeng
  orcidid: 0000-0002-5274-4197
  surname: Song
  fullname: Song, Xuemeng
  email: sxmustc@gmail.com
  organization: School of Computer Science and Technology, Shandong University, Qingdao, China
– sequence: 4
  givenname: Tian
  orcidid: 0000-0003-3197-5698
  surname: Gan
  fullname: Gan, Tian
  email: gantian@sdu.edu.cn
  organization: School of Computer Science and Technology, Shandong University, Qingdao, China
– sequence: 5
  givenname: Yibing
  surname: Zhan
  fullname: Zhan, Yibing
  email: zhanyibing@jd.com
  organization: Institution of JD Explore Academy, Beijing, China
– sequence: 6
  givenname: Yan
  surname: Yan
  fullname: Yan, Yan
  email: yyan34@iit.edu
  organization: Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
– sequence: 7
  givenname: Liqiang
  orcidid: 0000-0003-1476-0273
  surname: Nie
  fullname: Nie, Liqiang
  email: nieliqiang@gmail.com
  organization: School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China
BookMark eNp9kE1LAzEQhoNUsK3-Ab0seN6ayccmuSmrVqGg0NZryGazmFKzNbsV_PemH3jw4GGYgXmfmZd3hAahDQ6hS8ATAKxuFuX8bTEhmJAJBUUlFydoCJzLnBDMB2nGHHJJgJ-hUdetMAYmmRii23v_5WuXm1DnZRs-ty5mr9HV3vZtzJpUy1B507k6m1sXXDaNZvOeTdMYTe_bcI5OG7Pu3MWxj9Hy8WFRPuWzl-lzeTfLLVG8zwUVTlbSKKyIpUI2VAEUtgFcyaIwDYZKuKKyShoJaU8ZberGiZrVzFIu6BhdH-5uYptcdr1etdsY0ktNBBMFgKBFUsmDysa266JrtPX93mcfjV9rwHqXl97npXd56WNeCSV_0E30HyZ-_w9dHSDvnPsFlGTABKM_EHZ3dQ
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3402242
crossref_primary_10_1016_j_patcog_2023_110221
crossref_primary_10_1109_TCSVT_2023_3289885
crossref_primary_10_1109_TCSVT_2024_3406546
crossref_primary_10_1109_TMM_2023_3284594
crossref_primary_10_1109_TCSVT_2024_3408879
crossref_primary_10_1109_TPAMI_2024_3389030
crossref_primary_10_1016_j_patcog_2023_109634
crossref_primary_10_1109_TCSVT_2023_3297842
crossref_primary_10_1109_TCSVT_2023_3319633
crossref_primary_10_1007_s10489_023_04722_1
crossref_primary_10_1016_j_visinf_2024_09_007
crossref_primary_10_1109_TCSVT_2023_3282349
crossref_primary_10_1109_TCSVT_2022_3231437
crossref_primary_10_1016_j_imavis_2024_105283
crossref_primary_10_1109_TCSVT_2023_3344569
Cites_doi 10.1109/TPAMI.2016.2577031
10.1109/CVPR42600.2020.00379
10.1109/CVPRW.2019.00058
10.1109/TCSVT.2019.2953692
10.1109/CVPR.2019.00686
10.1145/3240508.3240611
10.1109/CVPR42600.2020.00377
10.1109/CVPR46437.2021.00819
10.1109/CVPR.2017.330
10.1145/3240508.3240668
10.1145/2911451.2911489
10.1007/978-3-030-58592-1_36
10.1109/CVPR.2019.00838
10.1109/CVPR.2017.331
10.1109/CVPR46437.2021.01372
10.1109/TCSVT.2020.2990989
10.1007/978-3-319-46448-0_51
10.1109/TCSVT.2021.3067449
10.1109/ICCVW.2019.00217
10.1162/neco.1997.9.8.1735
10.1109/ICCV.2017.121
10.1109/TNNLS.2019.2927224
10.1145/3343031.3351024
10.1109/CVPR.2019.00134
10.1109/TCSVT.2021.3130197
10.1145/3209978.3209996
10.1109/ICCV.2019.00267
10.1109/CVPR.2018.00611
10.1109/TCYB.2019.2905157
10.1109/CVPR.2019.00408
10.1109/TCSVT.2021.3051277
10.1109/CVPR.2019.00678
10.1145/3394171.3413722
10.1007/978-3-030-01246-5_41
10.1109/CVPR42600.2020.00307
10.1109/CVPR42600.2020.00380
10.3115/v1/D14-1162
10.1007/978-3-030-58592-1_38
10.1609/aaai.v30i1.9973
10.1109/CVPR42600.2020.00998
10.1109/CVPR.2019.00632
10.1609/aaai.v33i01.33018110
10.1109/CVPR46437.2021.01096
10.1145/3123266.3123394
10.1109/ICCV.2019.00976
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3193857
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 8622
ExternalDocumentID 10_1109_TCSVT_2022_3193857
9841474
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Project of New Generation Artificial Intelligence
  grantid: 2018AAA0102502
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2019JQ23
  funderid: 10.13039/501100007129
– fundername: Major Science and Technology Innovation 2030 “New Generation Artificial Intelligence” Key Project
  grantid: 2021ZD0111700
– fundername: Innovation Teams in Colleges and Universities in Jinan
  grantid: 2018GXRC014
– fundername: National Natural Science Foundation of China
  grantid: 62002090; 61772310; 61702300; U1936203
  funderid: 10.13039/501100001809
– fundername: Shandong Provincial Key Research and Development Program
  grantid: 2019JZZY010118
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-737e8b8a9092c378f39116cf10b866af01b7e6bc98a81378343fdfe7d4d4c3573
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Sun Jun 29 12:22:47 EDT 2025
Tue Jul 01 00:41:18 EDT 2025
Thu Apr 24 22:59:51 EDT 2025
Wed Aug 27 02:29:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-737e8b8a9092c378f39116cf10b866af01b7e6bc98a81378343fdfe7d4d4c3573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5274-4197
0000-0001-7867-3190
0000-0003-3197-5698
0000-0003-1476-0273
PQID 2747611736
PQPubID 85433
PageCount 12
ParticipantIDs proquest_journals_2747611736
crossref_citationtrail_10_1109_TCSVT_2022_3193857
ieee_primary_9841474
crossref_primary_10_1109_TCSVT_2022_3193857
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref53
ref52
portaz (ref40) 2019
ref11
ref10
ref17
ref16
ref18
ref50
yu (ref14) 2020
ref46
ref48
ref42
ref41
krishna (ref47) 2016
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
rendle (ref15) 2012
ref2
ref1
ref39
vaswani (ref44) 2017
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
zhou (ref45) 2020
ref29
woo (ref19) 2018
sharifzadeh (ref51) 2020
References_xml – ident: ref43
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref29
  doi: 10.1109/CVPR42600.2020.00379
– year: 2019
  ident: ref40
  article-title: Image search using multilingual texts: A cross-modal learning approach between image and text
  publication-title: arXiv 1903 11299
– year: 2012
  ident: ref15
  article-title: BPR: Bayesian personalized ranking from implicit feedback
  publication-title: arXiv 1205 2618
– ident: ref21
  doi: 10.1109/CVPRW.2019.00058
– ident: ref2
  doi: 10.1109/TCSVT.2019.2953692
– ident: ref17
  doi: 10.1109/CVPR.2019.00686
– year: 2020
  ident: ref45
  article-title: Exploring the hierarchy in relation labels for scene graph generation
  publication-title: arXiv 2009 05834
– ident: ref7
  doi: 10.1145/3240508.3240611
– ident: ref11
  doi: 10.1109/CVPR42600.2020.00377
– ident: ref34
  doi: 10.1109/CVPR46437.2021.00819
– ident: ref16
  doi: 10.1109/CVPR.2017.330
– ident: ref20
  doi: 10.1145/3240508.3240668
– ident: ref37
  doi: 10.1145/2911451.2911489
– ident: ref26
  doi: 10.1007/978-3-030-58592-1_36
– ident: ref48
  doi: 10.1109/CVPR.2019.00838
– ident: ref52
  doi: 10.1109/CVPR.2017.331
– ident: ref49
  doi: 10.1109/CVPR46437.2021.01372
– ident: ref30
  doi: 10.1109/TCSVT.2020.2990989
– ident: ref18
  doi: 10.1007/978-3-319-46448-0_51
– ident: ref4
  doi: 10.1109/TCSVT.2021.3067449
– ident: ref8
  doi: 10.1109/ICCVW.2019.00217
– ident: ref46
  doi: 10.1162/neco.1997.9.8.1735
– year: 2017
  ident: ref44
  article-title: Attention is all you need
  publication-title: arXiv 1706 03762
– ident: ref53
  doi: 10.1109/ICCV.2017.121
– year: 2018
  ident: ref19
  article-title: LinkNet: Relational embedding for scene graph
  publication-title: arXiv 1811 06410
– ident: ref35
  doi: 10.1109/TNNLS.2019.2927224
– ident: ref27
  doi: 10.1145/3343031.3351024
– ident: ref1
  doi: 10.1109/CVPR.2019.00134
– ident: ref33
  doi: 10.1109/TCSVT.2021.3130197
– ident: ref42
  doi: 10.1145/3209978.3209996
– ident: ref32
  doi: 10.1109/ICCV.2019.00267
– ident: ref10
  doi: 10.1109/CVPR.2018.00611
– ident: ref36
  doi: 10.1109/TCYB.2019.2905157
– ident: ref25
  doi: 10.1109/CVPR.2019.00408
– ident: ref6
  doi: 10.1109/TCSVT.2021.3051277
– ident: ref23
  doi: 10.1109/CVPR.2019.00678
– ident: ref13
  doi: 10.1145/3394171.3413722
– year: 2020
  ident: ref14
  article-title: CogTree: Cognition tree loss for unbiased scene graph generation
  publication-title: arXiv 2009 07526
– ident: ref24
  doi: 10.1007/978-3-030-01246-5_41
– ident: ref39
  doi: 10.1109/CVPR42600.2020.00307
– ident: ref9
  doi: 10.1109/CVPR42600.2020.00380
– ident: ref50
  doi: 10.3115/v1/D14-1162
– ident: ref28
  doi: 10.1007/978-3-030-58592-1_38
– year: 2016
  ident: ref47
  article-title: Visual genome: Connecting language and vision using crowdsourced dense image annotations
  publication-title: arXiv 1602 07332
– ident: ref38
  doi: 10.1609/aaai.v30i1.9973
– ident: ref3
  doi: 10.1109/CVPR42600.2020.00998
– ident: ref31
  doi: 10.1109/CVPR.2019.00632
– ident: ref22
  doi: 10.1609/aaai.v33i01.33018110
– year: 2020
  ident: ref51
  article-title: Classification by attention: Scene graph classification with prior knowledge
  publication-title: arXiv 2011 10084
– ident: ref12
  doi: 10.1109/CVPR46437.2021.01096
– ident: ref41
  doi: 10.1145/3123266.3123394
– ident: ref5
  doi: 10.1109/ICCV.2019.00976
SSID ssj0014847
Score 2.4894521
Snippet Scene Graph Generation (SGG) aims to detect the objects and their pairwise predicates in an image. Existing SGG methods mainly fulfil the challenging predicate...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8611
SubjectTerms Algorithms
Bayes methods
Bayesian personalized ranking
Business process re-engineering
Classifiers
Correlation
Data mining
divide-and-conquer
Image analysis
Object recognition
Pattern recognition
Predictive models
Scene graph generation
Task analysis
vision and language
Title Divide-and-Conquer Predictor for Unbiased Scene Graph Generation
URI https://ieeexplore.ieee.org/document/9841474
https://www.proquest.com/docview/2747611736
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60Jz34FqtV9uBNU7ObbB43pVqLoAhtpbclmweIspXaXvz1JvsooiLe9pAsw8xkHsnMNwCnhknhhNJIJUYjSjBGMncYiYAVrr0CUBXuIe8f2GBM7ybpZAXOl70w1tqy-Mx2w2f5lm-mehGuyi6koDHldBVWvZpVvVrLFwMqymFiPlyIkfB-rGmQwfJi1Bs-jXwqmCQ-Q5VEBFf0xQmVU1V-mOLSv_Q34b6hrCoreeku5nlXf3wDbfwv6VuwUQea0VWlGduwYosdWP8CP7gLl9ehF8siVRjUmxaerFn0OAsvNz4Rj3w0G42L_Nm7ORMNtbeJ0W1At44qpOog0D0Y929GvQGqJyognch0jjjhVuRCSSwTTbhwxNs6pl2Mc8GYcjjOuWW5lkKJmIQZHMQZZ7mhhmqScrIPrWJa2AOIvF10RjgludSUYiuZjx0Np1illlqr2hA3LM50DTcepl68ZmXagWVWiiULYslqsbThbLnnrQLb-HP1buDzcmXN4jZ0Gklm9Xl8z0LuzeKYE3b4-64jWAv_rgpVOtCazxb22Icb8_yk1LNPMh3Pwg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsOXADFyd2vNxAZSlLERIt4hY5XiQESlFpL3w9dpJWCBDiloOtjGbGs9gzbwAODJPCCaWRSoxGlGCMZO4wEgErXHsFoCrcQ3buWLtHr5_Spyk4mvTCWGvL4jPbDJ_lW77p61G4KjuWgsaU02mY9X6fplW31uTNgIpynJgPGGIkvCcbt8hgedxtPTx2fTKYJD5HlUQEZ_TFDZVzVX4Y49LDXCxBZ0xbVVjy0hwN86b--Abb-F_il2GxDjWj00o3VmDKFquw8AWAcA1OzkI3lkWqMKjVLzxZg-h-EN5ufCoe-Xg26hX5s3d0JnrQ3ipGlwHfOqqwqoNI16F3cd5ttVE9UwHpRKZDxAm3IhdKYplowoUj3tox7WKcC8aUw3HOLcu1FErEJEzhIM44yw01VJOUkw2YKfqF3YTIW0ZnhFOSS00ptpL56NFwilVqqbWqAfGYxZmuAcfD3IvXrEw8sMxKsWRBLFktlgYcTva8VXAbf65eC3yerKxZ3ICdsSSz-kS-ZyH7ZnHMCdv6fdc-zLW7ndvs9uruZhvmw3-qspUdmBkORnbXBx_DfK_UuU8_ndMP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Divide-and-Conquer+Predictor+for+Unbiased+Scene+Graph+Generation&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Han%2C+Xianjing&rft.au=Dong%2C+Xingning&rft.au=Song%2C+Xuemeng&rft.au=Gan%2C+Tian&rft.date=2022-12-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=12&rft.spage=8611&rft.epage=8622&rft_id=info:doi/10.1109%2FTCSVT.2022.3193857&rft.externalDocID=9841474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon