Divide-and-Conquer Predictor for Unbiased Scene Graph Generation
Scene Graph Generation (SGG) aims to detect the objects and their pairwise predicates in an image. Existing SGG methods mainly fulfil the challenging predicate prediction task that involves severe long-tailed data distribution with a single classifier. However, we argue that this may be enough to di...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 12; pp. 8611 - 8622 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1051-8215 1558-2205 |
DOI | 10.1109/TCSVT.2022.3193857 |
Cover
Abstract | Scene Graph Generation (SGG) aims to detect the objects and their pairwise predicates in an image. Existing SGG methods mainly fulfil the challenging predicate prediction task that involves severe long-tailed data distribution with a single classifier. However, we argue that this may be enough to differentiate predicates that present obvious differences (e.g., <inline-formula> <tex-math notation="LaTeX">on </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">near </tex-math></inline-formula>), but not sufficient to distinguish similar predicates that only have subtle differences (e.g., <inline-formula> <tex-math notation="LaTeX">on </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">standing~on </tex-math></inline-formula>). Towards this end, we divide the predicate prediction into a few sub-tasks with a Divide-and-Conquer Predictor (DC-Predictor). Specifically, we first develop an offline pattern-predicate correlation mining algorithm to discover the similar predicates that share the same object interaction pattern. Based on that, we devise a general pattern classifier and a set of specific predicate classifiers for DC-Predictor. The former works on recognizing the pattern of a given object pair and routing it to the corresponding specific predicate classifier, while the latter aims to differentiate similar predicates in each specific pattern. In addition, we introduce the Bayesian Personalized Ranking loss in each specific predicate classifier to enhance the pairwise differentiation between head predicates and their similar ones. Experiments on VG150 and GQA datasets show the superiority of our model over state-of-the-art methods. |
---|---|
AbstractList | Scene Graph Generation (SGG) aims to detect the objects and their pairwise predicates in an image. Existing SGG methods mainly fulfil the challenging predicate prediction task that involves severe long-tailed data distribution with a single classifier. However, we argue that this may be enough to differentiate predicates that present obvious differences (e.g., <inline-formula> <tex-math notation="LaTeX">on </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">near </tex-math></inline-formula>), but not sufficient to distinguish similar predicates that only have subtle differences (e.g., <inline-formula> <tex-math notation="LaTeX">on </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">standing~on </tex-math></inline-formula>). Towards this end, we divide the predicate prediction into a few sub-tasks with a Divide-and-Conquer Predictor (DC-Predictor). Specifically, we first develop an offline pattern-predicate correlation mining algorithm to discover the similar predicates that share the same object interaction pattern. Based on that, we devise a general pattern classifier and a set of specific predicate classifiers for DC-Predictor. The former works on recognizing the pattern of a given object pair and routing it to the corresponding specific predicate classifier, while the latter aims to differentiate similar predicates in each specific pattern. In addition, we introduce the Bayesian Personalized Ranking loss in each specific predicate classifier to enhance the pairwise differentiation between head predicates and their similar ones. Experiments on VG150 and GQA datasets show the superiority of our model over state-of-the-art methods. Scene Graph Generation (SGG) aims to detect the objects and their pairwise predicates in an image. Existing SGG methods mainly fulfil the challenging predicate prediction task that involves severe long-tailed data distribution with a single classifier. However, we argue that this may be enough to differentiate predicates that present obvious differences (e.g., [Formula Omitted] and [Formula Omitted]), but not sufficient to distinguish similar predicates that only have subtle differences (e.g., [Formula Omitted] and [Formula Omitted]). Towards this end, we divide the predicate prediction into a few sub-tasks with a Divide-and-Conquer Predictor (DC-Predictor). Specifically, we first develop an offline pattern-predicate correlation mining algorithm to discover the similar predicates that share the same object interaction pattern. Based on that, we devise a general pattern classifier and a set of specific predicate classifiers for DC-Predictor. The former works on recognizing the pattern of a given object pair and routing it to the corresponding specific predicate classifier, while the latter aims to differentiate similar predicates in each specific pattern. In addition, we introduce the Bayesian Personalized Ranking loss in each specific predicate classifier to enhance the pairwise differentiation between head predicates and their similar ones. Experiments on VG150 and GQA datasets show the superiority of our model over state-of-the-art methods. |
Author | Gan, Tian Zhan, Yibing Nie, Liqiang Han, Xianjing Song, Xuemeng Yan, Yan Dong, Xingning |
Author_xml | – sequence: 1 givenname: Xianjing orcidid: 0000-0001-7867-3190 surname: Han fullname: Han, Xianjing email: hanxianjing2018@gmail.com organization: School of Computer Science and Technology, Shandong University, Qingdao, China – sequence: 2 givenname: Xingning surname: Dong fullname: Dong, Xingning email: pass1463365882@gmail.com organization: School of Computer Science and Technology, Shandong University, Qingdao, China – sequence: 3 givenname: Xuemeng orcidid: 0000-0002-5274-4197 surname: Song fullname: Song, Xuemeng email: sxmustc@gmail.com organization: School of Computer Science and Technology, Shandong University, Qingdao, China – sequence: 4 givenname: Tian orcidid: 0000-0003-3197-5698 surname: Gan fullname: Gan, Tian email: gantian@sdu.edu.cn organization: School of Computer Science and Technology, Shandong University, Qingdao, China – sequence: 5 givenname: Yibing surname: Zhan fullname: Zhan, Yibing email: zhanyibing@jd.com organization: Institution of JD Explore Academy, Beijing, China – sequence: 6 givenname: Yan surname: Yan fullname: Yan, Yan email: yyan34@iit.edu organization: Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA – sequence: 7 givenname: Liqiang orcidid: 0000-0003-1476-0273 surname: Nie fullname: Nie, Liqiang email: nieliqiang@gmail.com organization: School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China |
BookMark | eNp9kE1LAzEQhoNUsK3-Ab0seN6ayccmuSmrVqGg0NZryGazmFKzNbsV_PemH3jw4GGYgXmfmZd3hAahDQ6hS8ATAKxuFuX8bTEhmJAJBUUlFydoCJzLnBDMB2nGHHJJgJ-hUdetMAYmmRii23v_5WuXm1DnZRs-ty5mr9HV3vZtzJpUy1B507k6m1sXXDaNZvOeTdMYTe_bcI5OG7Pu3MWxj9Hy8WFRPuWzl-lzeTfLLVG8zwUVTlbSKKyIpUI2VAEUtgFcyaIwDYZKuKKyShoJaU8ZberGiZrVzFIu6BhdH-5uYptcdr1etdsY0ktNBBMFgKBFUsmDysa266JrtPX93mcfjV9rwHqXl97npXd56WNeCSV_0E30HyZ-_w9dHSDvnPsFlGTABKM_EHZ3dQ |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TCSVT_2024_3402242 crossref_primary_10_1016_j_patcog_2023_110221 crossref_primary_10_1109_TCSVT_2023_3289885 crossref_primary_10_1109_TCSVT_2024_3406546 crossref_primary_10_1109_TMM_2023_3284594 crossref_primary_10_1109_TCSVT_2024_3408879 crossref_primary_10_1109_TPAMI_2024_3389030 crossref_primary_10_1016_j_patcog_2023_109634 crossref_primary_10_1109_TCSVT_2023_3297842 crossref_primary_10_1109_TCSVT_2023_3319633 crossref_primary_10_1007_s10489_023_04722_1 crossref_primary_10_1016_j_visinf_2024_09_007 crossref_primary_10_1109_TCSVT_2023_3282349 crossref_primary_10_1109_TCSVT_2022_3231437 crossref_primary_10_1016_j_imavis_2024_105283 crossref_primary_10_1109_TCSVT_2023_3344569 |
Cites_doi | 10.1109/TPAMI.2016.2577031 10.1109/CVPR42600.2020.00379 10.1109/CVPRW.2019.00058 10.1109/TCSVT.2019.2953692 10.1109/CVPR.2019.00686 10.1145/3240508.3240611 10.1109/CVPR42600.2020.00377 10.1109/CVPR46437.2021.00819 10.1109/CVPR.2017.330 10.1145/3240508.3240668 10.1145/2911451.2911489 10.1007/978-3-030-58592-1_36 10.1109/CVPR.2019.00838 10.1109/CVPR.2017.331 10.1109/CVPR46437.2021.01372 10.1109/TCSVT.2020.2990989 10.1007/978-3-319-46448-0_51 10.1109/TCSVT.2021.3067449 10.1109/ICCVW.2019.00217 10.1162/neco.1997.9.8.1735 10.1109/ICCV.2017.121 10.1109/TNNLS.2019.2927224 10.1145/3343031.3351024 10.1109/CVPR.2019.00134 10.1109/TCSVT.2021.3130197 10.1145/3209978.3209996 10.1109/ICCV.2019.00267 10.1109/CVPR.2018.00611 10.1109/TCYB.2019.2905157 10.1109/CVPR.2019.00408 10.1109/TCSVT.2021.3051277 10.1109/CVPR.2019.00678 10.1145/3394171.3413722 10.1007/978-3-030-01246-5_41 10.1109/CVPR42600.2020.00307 10.1109/CVPR42600.2020.00380 10.3115/v1/D14-1162 10.1007/978-3-030-58592-1_38 10.1609/aaai.v30i1.9973 10.1109/CVPR42600.2020.00998 10.1109/CVPR.2019.00632 10.1609/aaai.v33i01.33018110 10.1109/CVPR46437.2021.01096 10.1145/3123266.3123394 10.1109/ICCV.2019.00976 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2022.3193857 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 8622 |
ExternalDocumentID | 10_1109_TCSVT_2022_3193857 9841474 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Project of New Generation Artificial Intelligence grantid: 2018AAA0102502 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2019JQ23 funderid: 10.13039/501100007129 – fundername: Major Science and Technology Innovation 2030 “New Generation Artificial Intelligence” Key Project grantid: 2021ZD0111700 – fundername: Innovation Teams in Colleges and Universities in Jinan grantid: 2018GXRC014 – fundername: National Natural Science Foundation of China grantid: 62002090; 61772310; 61702300; U1936203 funderid: 10.13039/501100001809 – fundername: Shandong Provincial Key Research and Development Program grantid: 2019JZZY010118 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-737e8b8a9092c378f39116cf10b866af01b7e6bc98a81378343fdfe7d4d4c3573 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Sun Jun 29 12:22:47 EDT 2025 Tue Jul 01 00:41:18 EDT 2025 Thu Apr 24 22:59:51 EDT 2025 Wed Aug 27 02:29:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-737e8b8a9092c378f39116cf10b866af01b7e6bc98a81378343fdfe7d4d4c3573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5274-4197 0000-0001-7867-3190 0000-0003-3197-5698 0000-0003-1476-0273 |
PQID | 2747611736 |
PQPubID | 85433 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2747611736 crossref_citationtrail_10_1109_TCSVT_2022_3193857 ieee_primary_9841474 crossref_primary_10_1109_TCSVT_2022_3193857 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref53 ref52 portaz (ref40) 2019 ref11 ref10 ref17 ref16 ref18 ref50 yu (ref14) 2020 ref46 ref48 ref42 ref41 krishna (ref47) 2016 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 rendle (ref15) 2012 ref2 ref1 ref39 vaswani (ref44) 2017 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 zhou (ref45) 2020 ref29 woo (ref19) 2018 sharifzadeh (ref51) 2020 |
References_xml | – ident: ref43 doi: 10.1109/TPAMI.2016.2577031 – ident: ref29 doi: 10.1109/CVPR42600.2020.00379 – year: 2019 ident: ref40 article-title: Image search using multilingual texts: A cross-modal learning approach between image and text publication-title: arXiv 1903 11299 – year: 2012 ident: ref15 article-title: BPR: Bayesian personalized ranking from implicit feedback publication-title: arXiv 1205 2618 – ident: ref21 doi: 10.1109/CVPRW.2019.00058 – ident: ref2 doi: 10.1109/TCSVT.2019.2953692 – ident: ref17 doi: 10.1109/CVPR.2019.00686 – year: 2020 ident: ref45 article-title: Exploring the hierarchy in relation labels for scene graph generation publication-title: arXiv 2009 05834 – ident: ref7 doi: 10.1145/3240508.3240611 – ident: ref11 doi: 10.1109/CVPR42600.2020.00377 – ident: ref34 doi: 10.1109/CVPR46437.2021.00819 – ident: ref16 doi: 10.1109/CVPR.2017.330 – ident: ref20 doi: 10.1145/3240508.3240668 – ident: ref37 doi: 10.1145/2911451.2911489 – ident: ref26 doi: 10.1007/978-3-030-58592-1_36 – ident: ref48 doi: 10.1109/CVPR.2019.00838 – ident: ref52 doi: 10.1109/CVPR.2017.331 – ident: ref49 doi: 10.1109/CVPR46437.2021.01372 – ident: ref30 doi: 10.1109/TCSVT.2020.2990989 – ident: ref18 doi: 10.1007/978-3-319-46448-0_51 – ident: ref4 doi: 10.1109/TCSVT.2021.3067449 – ident: ref8 doi: 10.1109/ICCVW.2019.00217 – ident: ref46 doi: 10.1162/neco.1997.9.8.1735 – year: 2017 ident: ref44 article-title: Attention is all you need publication-title: arXiv 1706 03762 – ident: ref53 doi: 10.1109/ICCV.2017.121 – year: 2018 ident: ref19 article-title: LinkNet: Relational embedding for scene graph publication-title: arXiv 1811 06410 – ident: ref35 doi: 10.1109/TNNLS.2019.2927224 – ident: ref27 doi: 10.1145/3343031.3351024 – ident: ref1 doi: 10.1109/CVPR.2019.00134 – ident: ref33 doi: 10.1109/TCSVT.2021.3130197 – ident: ref42 doi: 10.1145/3209978.3209996 – ident: ref32 doi: 10.1109/ICCV.2019.00267 – ident: ref10 doi: 10.1109/CVPR.2018.00611 – ident: ref36 doi: 10.1109/TCYB.2019.2905157 – ident: ref25 doi: 10.1109/CVPR.2019.00408 – ident: ref6 doi: 10.1109/TCSVT.2021.3051277 – ident: ref23 doi: 10.1109/CVPR.2019.00678 – ident: ref13 doi: 10.1145/3394171.3413722 – year: 2020 ident: ref14 article-title: CogTree: Cognition tree loss for unbiased scene graph generation publication-title: arXiv 2009 07526 – ident: ref24 doi: 10.1007/978-3-030-01246-5_41 – ident: ref39 doi: 10.1109/CVPR42600.2020.00307 – ident: ref9 doi: 10.1109/CVPR42600.2020.00380 – ident: ref50 doi: 10.3115/v1/D14-1162 – ident: ref28 doi: 10.1007/978-3-030-58592-1_38 – year: 2016 ident: ref47 article-title: Visual genome: Connecting language and vision using crowdsourced dense image annotations publication-title: arXiv 1602 07332 – ident: ref38 doi: 10.1609/aaai.v30i1.9973 – ident: ref3 doi: 10.1109/CVPR42600.2020.00998 – ident: ref31 doi: 10.1109/CVPR.2019.00632 – ident: ref22 doi: 10.1609/aaai.v33i01.33018110 – year: 2020 ident: ref51 article-title: Classification by attention: Scene graph classification with prior knowledge publication-title: arXiv 2011 10084 – ident: ref12 doi: 10.1109/CVPR46437.2021.01096 – ident: ref41 doi: 10.1145/3123266.3123394 – ident: ref5 doi: 10.1109/ICCV.2019.00976 |
SSID | ssj0014847 |
Score | 2.4894521 |
Snippet | Scene Graph Generation (SGG) aims to detect the objects and their pairwise predicates in an image. Existing SGG methods mainly fulfil the challenging predicate... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8611 |
SubjectTerms | Algorithms Bayes methods Bayesian personalized ranking Business process re-engineering Classifiers Correlation Data mining divide-and-conquer Image analysis Object recognition Pattern recognition Predictive models Scene graph generation Task analysis vision and language |
Title | Divide-and-Conquer Predictor for Unbiased Scene Graph Generation |
URI | https://ieeexplore.ieee.org/document/9841474 https://www.proquest.com/docview/2747611736 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60Jz34FqtV9uBNU7ObbB43pVqLoAhtpbclmweIspXaXvz1JvsooiLe9pAsw8xkHsnMNwCnhknhhNJIJUYjSjBGMncYiYAVrr0CUBXuIe8f2GBM7ybpZAXOl70w1tqy-Mx2w2f5lm-mehGuyi6koDHldBVWvZpVvVrLFwMqymFiPlyIkfB-rGmQwfJi1Bs-jXwqmCQ-Q5VEBFf0xQmVU1V-mOLSv_Q34b6hrCoreeku5nlXf3wDbfwv6VuwUQea0VWlGduwYosdWP8CP7gLl9ehF8siVRjUmxaerFn0OAsvNz4Rj3w0G42L_Nm7ORMNtbeJ0W1At44qpOog0D0Y929GvQGqJyognch0jjjhVuRCSSwTTbhwxNs6pl2Mc8GYcjjOuWW5lkKJmIQZHMQZZ7mhhmqScrIPrWJa2AOIvF10RjgludSUYiuZjx0Np1illlqr2hA3LM50DTcepl68ZmXagWVWiiULYslqsbThbLnnrQLb-HP1buDzcmXN4jZ0Gklm9Xl8z0LuzeKYE3b4-64jWAv_rgpVOtCazxb22Icb8_yk1LNPMh3Pwg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsOXADFyd2vNxAZSlLERIt4hY5XiQESlFpL3w9dpJWCBDiloOtjGbGs9gzbwAODJPCCaWRSoxGlGCMZO4wEgErXHsFoCrcQ3buWLtHr5_Spyk4mvTCWGvL4jPbDJ_lW77p61G4KjuWgsaU02mY9X6fplW31uTNgIpynJgPGGIkvCcbt8hgedxtPTx2fTKYJD5HlUQEZ_TFDZVzVX4Y49LDXCxBZ0xbVVjy0hwN86b--Abb-F_il2GxDjWj00o3VmDKFquw8AWAcA1OzkI3lkWqMKjVLzxZg-h-EN5ufCoe-Xg26hX5s3d0JnrQ3ipGlwHfOqqwqoNI16F3cd5ttVE9UwHpRKZDxAm3IhdKYplowoUj3tox7WKcC8aUw3HOLcu1FErEJEzhIM44yw01VJOUkw2YKfqF3YTIW0ZnhFOSS00ptpL56NFwilVqqbWqAfGYxZmuAcfD3IvXrEw8sMxKsWRBLFktlgYcTva8VXAbf65eC3yerKxZ3ICdsSSz-kS-ZyH7ZnHMCdv6fdc-zLW7ndvs9uruZhvmw3-qspUdmBkORnbXBx_DfK_UuU8_ndMP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Divide-and-Conquer+Predictor+for+Unbiased+Scene+Graph+Generation&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Han%2C+Xianjing&rft.au=Dong%2C+Xingning&rft.au=Song%2C+Xuemeng&rft.au=Gan%2C+Tian&rft.date=2022-12-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=12&rft.spage=8611&rft.epage=8622&rft_id=info:doi/10.1109%2FTCSVT.2022.3193857&rft.externalDocID=9841474 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |