Applications of Game Theory in Vehicular Networks: A Survey

In the Internet of Things (IoT) era, vehicles and other intelligent components in an intelligent transportation system (ITS) are connected, forming vehicular networks (VNs) that provide efficient and safe traffic and ubiquitous access to various applications. However, as the number of nodes in an IT...

Full description

Saved in:
Bibliographic Details
Published inIEEE Communications surveys and tutorials Vol. 23; no. 4; pp. 2660 - 2710
Main Authors Sun, Zemin, Liu, Yanheng, Wang, Jian, Li, Guofa, Anil, Carie, Li, Keqiang, Guo, Xinyu, Sun, Geng, Tian, Daxin, Cao, Dongpu
Format Journal Article
LanguageEnglish
Published IEEE 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the Internet of Things (IoT) era, vehicles and other intelligent components in an intelligent transportation system (ITS) are connected, forming vehicular networks (VNs) that provide efficient and safe traffic and ubiquitous access to various applications. However, as the number of nodes in an ITS increases, it is challenging to satisfy a varied and large number of service requests with different quality of service (QoS) and security requirements in highly dynamic VNs. Intelligent nodes in VNs can compete or cooperate for limited network resources to achieve the objective for either an individual or a group. Game theory (GT), a theoretical framework designed for strategic interactions among rational decision makers sharing scarce resources, can be used to model and analyze individual or group behaviors of communicating entities in VNs. This paper primarily surveys the recent developments of GT in solving various challenges of VNs. This survey starts with an introduction to the background of VNs. A review of GT models studied in the VNs is then introduced, including the basic concepts, classifications, and applicable vehicular issues. After discussing the requirements of VNs and the motivation of using GT, a comprehensive literature review on GT applications in dealing with the challenges of current VNs is provided. Furthermore, recent contributions of GT to VNs that are integrated with diverse emerging 5G technologies are surveyed. Finally, the lessons learned are given, and several key research challenges and possible solutions of applying GT in VNs are outlined.
AbstractList In the Internet of Things (IoT) era, vehicles and other intelligent components in an intelligent transportation system (ITS) are connected, forming vehicular networks (VNs) that provide efficient and safe traffic and ubiquitous access to various applications. However, as the number of nodes in an ITS increases, it is challenging to satisfy a varied and large number of service requests with different quality of service (QoS) and security requirements in highly dynamic VNs. Intelligent nodes in VNs can compete or cooperate for limited network resources to achieve the objective for either an individual or a group. Game theory (GT), a theoretical framework designed for strategic interactions among rational decision makers sharing scarce resources, can be used to model and analyze individual or group behaviors of communicating entities in VNs. This paper primarily surveys the recent developments of GT in solving various challenges of VNs. This survey starts with an introduction to the background of VNs. A review of GT models studied in the VNs is then introduced, including the basic concepts, classifications, and applicable vehicular issues. After discussing the requirements of VNs and the motivation of using GT, a comprehensive literature review on GT applications in dealing with the challenges of current VNs is provided. Furthermore, recent contributions of GT to VNs that are integrated with diverse emerging 5G technologies are surveyed. Finally, the lessons learned are given, and several key research challenges and possible solutions of applying GT in VNs are outlined.
Author Wang, Jian
Cao, Dongpu
Li, Guofa
Liu, Yanheng
Li, Keqiang
Anil, Carie
Sun, Geng
Tian, Daxin
Guo, Xinyu
Sun, Zemin
Author_xml – sequence: 1
  givenname: Zemin
  orcidid: 0000-0001-5273-8232
  surname: Sun
  fullname: Sun, Zemin
  email: laurasun166@gmail.com
  organization: College of Computer Science and Technology and the Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, China
– sequence: 2
  givenname: Yanheng
  orcidid: 0000-0001-9826-5266
  surname: Liu
  fullname: Liu, Yanheng
  email: yhliu@jlu.edu.cn
  organization: College of Computer Science and Technology and the Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, China
– sequence: 3
  givenname: Jian
  orcidid: 0000-0002-7701-8511
  surname: Wang
  fullname: Wang, Jian
  email: wangjian591@jlu.edu.cn
  organization: College of Computer Science and Technology and the Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, China
– sequence: 4
  givenname: Guofa
  orcidid: 0000-0002-7889-4695
  surname: Li
  fullname: Li, Guofa
  email: hanshan198@gmail.com
  organization: Institute of Human Factors and Ergonomics, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China
– sequence: 5
  givenname: Carie
  orcidid: 0000-0002-7713-0650
  surname: Anil
  fullname: Anil, Carie
  email: carieanil@gmail.com
  organization: School of Computer Science and Engineering, VIT-AP, Amaravati, India
– sequence: 6
  givenname: Keqiang
  orcidid: 0000-0002-9333-7416
  surname: Li
  fullname: Li, Keqiang
  email: likq@tsinghua.edu.cn
  organization: Department of Automotive Engineering, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, China
– sequence: 7
  givenname: Xinyu
  surname: Guo
  fullname: Guo, Xinyu
  email: xinyug19@mails.jlu.edu.cn
  organization: College of Computer Science and Technology and the Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, China
– sequence: 8
  givenname: Geng
  orcidid: 0000-0001-7802-4908
  surname: Sun
  fullname: Sun, Geng
  email: sungeng@jlu.edu.cn
  organization: College of Computer Science and Technology and the Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, China
– sequence: 9
  givenname: Daxin
  orcidid: 0000-0001-7796-5650
  surname: Tian
  fullname: Tian, Daxin
  email: dtian@buaa.edu.cn
  organization: Beijing Advanced Innovation Center for Big Data and Brain Computing, Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control, School of Transportation Science and Engineering, Beihang University, Beijing, China
– sequence: 10
  givenname: Dongpu
  orcidid: 0000-0001-7929-4336
  surname: Cao
  fullname: Cao, Dongpu
  email: dongpu.cao@uwaterloo.ca
  organization: Waterloo Cognitive Autonomous Driving Lab, University of Waterloo, Waterloo, ON, Canada
BookMark eNotzE9LwzAYgPEgCm7TL6CXfIHOvPnTJnoqxU1husOKeBtp-oZFu7akndJvL6Kn5_LjmZPztmuRkBtgSwBm7orty65ccsZhKYBpmaZnZAZKiURn2fslmQ_DB2OSS8Nm5CHv-yY4O4auHWjn6doekZYH7OJEQ0vf8BDcqbGRvuL43cXP4Z7mdHeKXzhdkQtvmwGv_7sg5eqxLJ6SzXb9XOSbxHGjxiQDLZTD1KNzXteMGYagJFamtqqSxlceVFZjBUoDCufB_1IGGTcSvFiQ279tQMR9H8PRxmlvFJcalPgBMCJHQw
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3167847
crossref_primary_10_1109_TCCN_2023_3316644
crossref_primary_10_1093_jcde_qwac090
crossref_primary_10_1109_OJCOMS_2024_3400981
crossref_primary_10_1109_TVT_2023_3275120
crossref_primary_10_3390_vehicles4040065
crossref_primary_10_1016_j_comcom_2024_02_005
crossref_primary_10_1016_j_scs_2023_104791
crossref_primary_10_1016_j_jnca_2023_103726
crossref_primary_10_3390_electronics11101618
crossref_primary_10_1109_TTE_2023_3305773
crossref_primary_10_1109_TVT_2023_3306740
crossref_primary_10_1109_ACCESS_2023_3239834
crossref_primary_10_1109_COMST_2022_3178081
crossref_primary_10_1109_JIOT_2022_3224927
crossref_primary_10_1016_j_adhoc_2023_103224
crossref_primary_10_1007_s00521_023_08647_1
crossref_primary_10_1016_j_vehcom_2024_100804
crossref_primary_10_1016_j_eswa_2023_120386
crossref_primary_10_1109_TSMC_2023_3276218
crossref_primary_10_1142_S2301385024420020
crossref_primary_10_1109_TVT_2022_3179595
crossref_primary_10_3390_su16125020
ContentType Journal Article
DBID 97E
RIA
RIE
DOI 10.1109/COMST.2021.3108466
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1553-877X
EndPage 2710
ExternalDocumentID 9524815
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62172186; 62002133; 61872158; 61806083
  funderid: 10.13039/501100001809
– fundername: Central Government funds for Guiding Local Scientific and Technological Development
  grantid: 2021Szvup047
– fundername: Science and Technology Development Plan Project of Jilin Province
  grantid: 20190701019GH; 20190701002GH; 20190103051JH; 20200201166JC
– fundername: National Key Research and Development Program of China
  grantid: 2018YFC0831706
  funderid: 10.13039/501100012166
GroupedDBID 0R~
29I
2WC
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
O9-
OCL
P2P
RIA
RIE
RIG
RNS
ID FETCH-LOGICAL-c295t-71835ce6feccf8d0090e154eb9da5b49fbf157deb1581e3cf1ffecc0172941f3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-71835ce6feccf8d0090e154eb9da5b49fbf157deb1581e3cf1ffecc0172941f3
ORCID 0000-0001-7802-4908
0000-0001-7929-4336
0000-0001-9826-5266
0000-0002-7889-4695
0000-0001-7796-5650
0000-0002-7701-8511
0000-0002-9333-7416
0000-0002-7713-0650
0000-0001-5273-8232
PageCount 51
ParticipantIDs ieee_primary_9524815
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE Communications surveys and tutorials
PublicationTitleAbbrev COMST
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0042490
Score 2.5371444
Snippet In the Internet of Things (IoT) era, vehicles and other intelligent components in an intelligent transportation system (ITS) are connected, forming vehicular...
SourceID ieee
SourceType Publisher
StartPage 2660
SubjectTerms 5G mobile communication
game theory
Privacy
Quality of service
Resource management
Security
Sun
Vehicular networks
Wireless networks
Title Applications of Game Theory in Vehicular Networks: A Survey
URI https://ieeexplore.ieee.org/document/9524815
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRBveWAkbRzbSQxTVVEqpJahBXWrnPgsKkSKSoIEvx47aVFBDGyWF_v0Sffy950BLjRnTEklPItu5HGZUC-mvvG4jqi9eMi0cULhwTDsP_C7iZjU4PJbC4OIJfkMW25ZvuXreVq4VllbisDNFqlDPZKy0mqtvC63ZYS_EsX4st29H4zGtvwLqK1KfRtkwx_fp5TRo7cNg9W5FWnkuVXkSSv9_DWS8b8X24GtZRpJOhXuu1DDbA8214YLNuG6s_Y2TeaG3KoXJJUWn8wy8ohPs5KESoYVFfztinTIqFi848c-jHs3427fW36V4KWBFLlnIwwTKYbGImJibRMnH21yhInUSiRcmsRQEWnrmEVMkaWGOrZI6gpAyalhB9DI5hkeAhGKURarNGCK80BTqU0cmERZhxqjr9kRNJ3909dqGMZ0afrx39snsOEwqHoWp9DIFwWe2SieJ-clfF8Eb50b
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFL0qZQAGXgXxxgMjaePYTmOYqopSoClDA-pWObEtKkSKSoIEX4-dtKggBjbLi311pPvyOdcAZ5ISIrhgjkG36VAeYyfArnaobGJzcZ9IbYXCYd_vPtDbIRtW4PxbC6OUKshnqm6XxVu-nCS5bZU1OPPsbJElWDZ5deCXaq2536WmkHDnshiXN9r34SAyBaCHTV3qmjDr__hApYgfnQ0I5yeXtJHnep7F9eTz11DG_15tE9ZniSRqlchvQUWl27C2MF6wBpethddpNNHoWrwoVKrx0ThFj-ppXNBQUb8kg79doBYa5NN39bEDUecqaned2WcJTuJxljkmxhCWKF8bTHQgTerkKpMeqZhLwWLKdawxa0rjmlmAFUk0tnyRxJaAnGJNdqGaTlK1B4gJgkkgEo8ISj2JudSBp2NhXGqgXEn2oWbtH72W4zBGM9MP_t4-hZVuFPZGvZv-3SGsWjzKDsYRVLNpro5NTM_ikwLKL21noGY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+Game+Theory+in+Vehicular+Networks%3A+A+Survey&rft.jtitle=IEEE+Communications+surveys+and+tutorials&rft.au=Sun%2C+Zemin&rft.au=Liu%2C+Yanheng&rft.au=Wang%2C+Jian&rft.au=Li%2C+Guofa&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=1553-877X&rft.volume=23&rft.issue=4&rft.spage=2660&rft.epage=2710&rft_id=info:doi/10.1109%2FCOMST.2021.3108466&rft.externalDocID=9524815