RGBT Tracking by Trident Fusion Network
In recent years, RGBT tracking has become a hot topic in the field of visual tracking, and made great progress. In this paper, we propose a novel Trident Fusion Network (TFNet) to achieve effective fusion of different modalities for robust RGBT tracking. In specific, to deploy the complementarity of...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 2; pp. 579 - 592 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, RGBT tracking has become a hot topic in the field of visual tracking, and made great progress. In this paper, we propose a novel Trident Fusion Network (TFNet) to achieve effective fusion of different modalities for robust RGBT tracking. In specific, to deploy the complementarity of features of all convolutional layers, we propose a recursive strategy to densely aggregate these features that yield robust representations of target objects in two modalities. Moreover, we design a trident architecture to integrate the fused features and both modality-specific features for robust target representations. There are three main advantages. First, retaining the classification layer of each modality is beneficial to enhance feature learning of single modality, and compared with aggregate branches, single-modality branches pay more attention to the mining of modal specific information. Second, when some modality is noisy or invalid, the modality-specific branches would capture more discriminative features for RGBT tracking. Finally, the integration of aggregation branches and single-modality branches is beneficial to the complementary learning of different modalities. In addition, we also introduce a feature pruning module in each branch to prune the redundant features and avoid network overfitting. Experimental results on four RGBT tracking benchmark datasets suggest that our tracker achieves superior performance against the state-of-the-art RGBT tracking methods. |
---|---|
AbstractList | In recent years, RGBT tracking has become a hot topic in the field of visual tracking, and made great progress. In this paper, we propose a novel Trident Fusion Network (TFNet) to achieve effective fusion of different modalities for robust RGBT tracking. In specific, to deploy the complementarity of features of all convolutional layers, we propose a recursive strategy to densely aggregate these features that yield robust representations of target objects in two modalities. Moreover, we design a trident architecture to integrate the fused features and both modality-specific features for robust target representations. There are three main advantages. First, retaining the classification layer of each modality is beneficial to enhance feature learning of single modality, and compared with aggregate branches, single-modality branches pay more attention to the mining of modal specific information. Second, when some modality is noisy or invalid, the modality-specific branches would capture more discriminative features for RGBT tracking. Finally, the integration of aggregation branches and single-modality branches is beneficial to the complementary learning of different modalities. In addition, we also introduce a feature pruning module in each branch to prune the redundant features and avoid network overfitting. Experimental results on four RGBT tracking benchmark datasets suggest that our tracker achieves superior performance against the state-of-the-art RGBT tracking methods. |
Author | Luo, Bin Wang, Liang Zhu, Yabin Tang, Jin Li, Chenglong |
Author_xml | – sequence: 1 givenname: Yabin orcidid: 0000-0002-1000-2750 surname: Zhu fullname: Zhu, Yabin email: zhuyabin0726@foxmail.com organization: Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, China – sequence: 2 givenname: Chenglong orcidid: 0000-0002-7233-2739 surname: Li fullname: Li, Chenglong email: lcl1314@foxmail.com organization: Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, China – sequence: 3 givenname: Jin orcidid: 0000-0001-8375-3590 surname: Tang fullname: Tang, Jin email: tangjin@ahu.edu.cn organization: Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, China – sequence: 4 givenname: Bin orcidid: 0000-0001-5948-5055 surname: Luo fullname: Luo, Bin email: ahu_lb@163.com organization: Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, China – sequence: 5 givenname: Liang surname: Wang fullname: Wang, Liang email: wangliang@nlpr.ia.ac.cn organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China |
BookMark | eNp9kD1PwzAQhi1UJNrCH4AlEgNTis-Ov0aoaEGqQILAauXjjNyWpDiJUP89Ka0YGJjuHd7n7vSMyKCqKyTkHOgEgJrrdPrylk4YZTDhVCpj1BEZghA6ZoyKQZ-pgFgzECdk1DRLSiHRiRqSq-f5bRqlIStWvnqP8m2ffYlVG826xtdV9IjtVx1Wp-TYZesGzw5zTF5nd-n0Pl48zR-mN4u4YEa0sUSUQjuVK5UnkvMikQqZgpyhNhKgcMIpQ00GJeQOpCtVwjDjrkwozxH5mFzu925C_dlh09pl3YWqP2mZZIJLo4ToW3rfKkLdNAGdLXybtf2_bcj82gK1Oy32R4vdabEHLT3K_qCb4D-ysP0futhDHhF_AcM17z3yb5aYbnY |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TPAMI_2024_3475472 crossref_primary_10_1109_TIM_2024_3351246 crossref_primary_10_1109_TCSVT_2024_3436878 crossref_primary_10_1109_TCSVT_2021_3099120 crossref_primary_10_1007_s11042_023_16418_2 crossref_primary_10_1109_TCSVT_2024_3391802 crossref_primary_10_1109_TIM_2024_3436098 crossref_primary_10_1109_TPAMI_2024_3521416 crossref_primary_10_1016_j_infrared_2024_105310 crossref_primary_10_1007_s40747_023_01223_z crossref_primary_10_1109_TCSVT_2024_3494725 crossref_primary_10_1007_s44295_024_00050_3 crossref_primary_10_1016_j_engappai_2023_105919 crossref_primary_10_1109_JSEN_2024_3426274 crossref_primary_10_1109_JSEN_2024_3372991 crossref_primary_10_1109_TIP_2021_3130533 crossref_primary_10_1109_TCSVT_2024_3425455 crossref_primary_10_1109_TIM_2022_3193971 crossref_primary_10_1109_TCSVT_2023_3316990 crossref_primary_10_1016_j_inffus_2025_102940 crossref_primary_10_1109_TITS_2024_3512551 crossref_primary_10_1016_j_patcog_2024_110707 crossref_primary_10_1109_TCSVT_2023_3281419 crossref_primary_10_1016_j_engappai_2023_107273 crossref_primary_10_1109_TCSVT_2022_3208833 crossref_primary_10_1109_TIM_2023_3338701 crossref_primary_10_1109_JSEN_2024_3370144 crossref_primary_10_1109_TIM_2024_3365162 crossref_primary_10_3390_s24248217 crossref_primary_10_1109_TCSVT_2023_3288853 crossref_primary_10_1007_s11760_024_03148_7 crossref_primary_10_1109_JSEN_2023_3295473 crossref_primary_10_1109_JSEN_2024_3506929 crossref_primary_10_23919_JSEE_2023_000168 crossref_primary_10_1109_TCSVT_2024_3435722 crossref_primary_10_1016_j_eswa_2024_123716 crossref_primary_10_1016_j_inffus_2023_101881 crossref_primary_10_1016_j_engappai_2024_108329 crossref_primary_10_1109_TCSVT_2024_3352573 crossref_primary_10_1016_j_inffus_2024_102492 crossref_primary_10_1109_TIP_2024_3428316 crossref_primary_10_1109_TCSVT_2024_3377471 crossref_primary_10_1109_JSEN_2023_3244834 crossref_primary_10_1007_s10489_023_04755_6 crossref_primary_10_1007_s11227_023_05329_6 crossref_primary_10_1109_TMM_2023_3310295 crossref_primary_10_1016_j_neunet_2024_106110 crossref_primary_10_1016_j_knosys_2023_110683 crossref_primary_10_1109_TCSVT_2024_3498349 crossref_primary_10_1007_s11760_024_03658_4 crossref_primary_10_1016_j_knosys_2024_112860 crossref_primary_10_1109_TCSVT_2024_3398624 crossref_primary_10_1016_j_knosys_2022_108945 crossref_primary_10_1109_TCSVT_2024_3396289 crossref_primary_10_1145_3678176 crossref_primary_10_1007_s11063_023_11365_3 crossref_primary_10_1016_j_neucom_2023_126329 crossref_primary_10_3390_s23146609 crossref_primary_10_1016_j_neucom_2024_127959 crossref_primary_10_1109_JSEN_2024_3386772 crossref_primary_10_1109_TCSVT_2021_3094645 crossref_primary_10_1109_TIM_2023_3282668 crossref_primary_10_1109_TAI_2022_3151307 crossref_primary_10_1109_TCSVT_2023_3239627 |
Cites_doi | 10.1007/978-3-030-01234-2_20 10.1109/CVPR.2014.81 10.1109/TIV.2020.2980735 10.1109/CVPR.2016.98 10.1109/CVPR.2019.00441 10.1109/TMM.2012.2234731 10.1016/j.ipl.2005.11.003 10.1109/CVPR.2019.00472 10.1016/j.neucom.2017.11.068 10.1016/j.neucom.2019.01.022 10.1109/TMM.2019.2924578 10.1109/TCSVT.2018.2874312 10.1109/ICCVW.2019.00017 10.1109/TPAMI.2014.2345390 10.1109/CVPR.2017.513 10.1016/j.neucom.2020.06.019 10.1007/978-3-030-01261-8_49 10.5244/C.28.65 10.1109/TCSVT.2018.2889488 10.1007/978-3-030-01264-9_48 10.1109/CVPR.2016.466 10.1109/CVPR.2017.733 10.1109/CVPR42600.2020.00709 10.1109/TCSVT.2019.2909654 10.1007/978-3-319-10599-4_13 10.1145/3343031.3350928 10.1109/CVPR.2016.465 10.1109/ICCVW.2019.00276 10.1609/aaai.v32i1.12307 10.1109/TIP.2016.2614135 10.3390/s20020393 10.1109/TMM.2017.2760633 10.1007/s11432-011-4536-9 10.1109/ICCVW.2019.00279 10.1145/3123266.3123288 10.1109/TMM.2018.2869277 10.1109/CVPR.2016.319 10.1109/TMM.2018.2872897 10.1109/ICIP.2019.8803528 10.1016/j.patcog.2018.08.005 10.1109/ICCVW.2019.00278 10.1109/TSMC.2016.2627052 10.1109/TNNLS.2020.3018790 10.1109/TPAMI.2018.2847335 10.1007/978-3-030-58542-6_14 10.1109/ICCV.2015.345 10.1016/j.patcog.2019.106977 10.1109/CVPR42600.2020.00741 10.1109/TITS.2017.2686871 10.1007/978-3-030-01225-0_6 10.1145/3123266.3123289 10.1109/CVPR.2019.00479 10.1109/ICCV.2019.00628 10.1109/CVPR.2018.00255 10.1109/ACCESS.2019.2936914 10.1007/978-3-319-46454-1_29 10.1109/TCSVT.2018.2889457 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2021.3067997 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 592 |
ExternalDocumentID | 10_1109_TCSVT_2021_3067997 9383014 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation for the Higher Education Institutions of Anhui Province grantid: KJ2020A0061 – fundername: Major Project for New Generation of AI grantid: 2018AAA0100400 – fundername: Open Project Program of the National Laboratory of Pattern Recognition (NLPR) funderid: 10.13039/501100011222 – fundername: National Natural Science Foundation of China grantid: 61976003; 62076003; 61860206004 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-6ee658f7b77b4633c467e271b2e89611cf5f7909a1d1bf16fd742ea3fd403bee3 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Sun Jun 29 12:35:04 EDT 2025 Thu Apr 24 23:04:16 EDT 2025 Tue Jul 01 00:41:15 EDT 2025 Wed Aug 27 03:00:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-6ee658f7b77b4633c467e271b2e89611cf5f7909a1d1bf16fd742ea3fd403bee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1000-2750 0000-0002-7233-2739 0000-0001-8375-3590 0000-0001-5948-5055 |
PQID | 2625369755 |
PQPubID | 85433 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2625369755 ieee_primary_9383014 crossref_primary_10_1109_TCSVT_2021_3067997 crossref_citationtrail_10_1109_TCSVT_2021_3067997 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 D’Innocente (ref34) 2018 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 Wu (ref32) ref46 ref45 ref47 ref42 Simonyan (ref41) ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 Pu (ref48) ref37 ref36 ref31 ref30 ref33 Min (ref44) ref2 ref1 ref39 ref38 Lu (ref59) 2020 Saihui (ref43) ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref49 doi: 10.1007/978-3-030-01234-2_20 – ident: ref47 doi: 10.1109/CVPR.2014.81 – ident: ref31 doi: 10.1109/TIV.2020.2980735 – ident: ref20 doi: 10.1109/CVPR.2016.98 – ident: ref21 doi: 10.1109/CVPR.2019.00441 – volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref48 article-title: Deep attentive tracking via reciprocative learning – year: 2018 ident: ref34 article-title: Domain generalization with domain-specific aggregation modules publication-title: arXiv:1809.10966 – ident: ref35 doi: 10.1109/TMM.2012.2234731 – ident: ref46 doi: 10.1016/j.ipl.2005.11.003 – ident: ref50 doi: 10.1109/CVPR.2019.00472 – ident: ref16 doi: 10.1016/j.neucom.2017.11.068 – ident: ref63 doi: 10.1016/j.neucom.2019.01.022 – ident: ref29 doi: 10.1109/TMM.2019.2924578 – ident: ref10 doi: 10.1109/TCSVT.2018.2874312 – ident: ref39 doi: 10.1109/ICCVW.2019.00017 – ident: ref58 doi: 10.1109/TPAMI.2014.2345390 – ident: ref55 doi: 10.1109/CVPR.2017.513 – ident: ref4 doi: 10.1016/j.neucom.2020.06.019 – ident: ref9 doi: 10.1007/978-3-030-01261-8_49 – ident: ref57 doi: 10.5244/C.28.65 – ident: ref8 doi: 10.1109/TCSVT.2018.2889488 – ident: ref61 doi: 10.1007/978-3-030-01264-9_48 – ident: ref36 doi: 10.1109/CVPR.2016.466 – ident: ref37 doi: 10.1109/CVPR.2017.733 – ident: ref62 doi: 10.1109/CVPR42600.2020.00709 – ident: ref6 doi: 10.1109/TCSVT.2019.2909654 – ident: ref56 doi: 10.1007/978-3-319-10599-4_13 – ident: ref24 doi: 10.1145/3343031.3350928 – ident: ref19 doi: 10.1109/CVPR.2016.465 – ident: ref22 doi: 10.1109/ICCVW.2019.00276 – ident: ref13 doi: 10.1609/aaai.v32i1.12307 – ident: ref15 doi: 10.1109/TIP.2016.2614135 – ident: ref64 doi: 10.3390/s20020393 – ident: ref26 doi: 10.1109/TMM.2017.2760633 – ident: ref51 doi: 10.1007/s11432-011-4536-9 – ident: ref17 doi: 10.1109/ICCVW.2019.00279 – year: 2020 ident: ref59 article-title: RGBT tracking via multi-adapter network with hierarchical divergence loss publication-title: arXiv:2011.07189 – ident: ref11 doi: 10.1145/3123266.3123288 – volume-title: Proc. Int. Conf. Learn. Represent. ident: ref44 article-title: Network in network – ident: ref2 doi: 10.1109/TMM.2018.2869277 – ident: ref45 doi: 10.1109/CVPR.2016.319 – ident: ref1 doi: 10.1109/TMM.2018.2872897 – ident: ref25 doi: 10.1109/ICIP.2019.8803528 – ident: ref30 doi: 10.1016/j.patcog.2018.08.005 – ident: ref53 doi: 10.1109/ICCVW.2019.00278 – start-page: 8425 volume-title: Proc. AAAI Conf. Artif. Intell. ident: ref43 article-title: Weighted channel dropout for regularization of deep convolutional neural network – ident: ref14 doi: 10.1109/TSMC.2016.2627052 – volume-title: Proc. Int. Conf. Learn. Represent. ident: ref41 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref28 doi: 10.1109/TNNLS.2020.3018790 – ident: ref27 doi: 10.1109/TPAMI.2018.2847335 – ident: ref52 doi: 10.1007/978-3-030-58542-6_14 – ident: ref54 doi: 10.1109/ICCV.2015.345 – ident: ref23 doi: 10.1016/j.patcog.2019.106977 – ident: ref3 doi: 10.1109/CVPR42600.2020.00741 – ident: ref5 doi: 10.1109/TITS.2017.2686871 – ident: ref42 doi: 10.1007/978-3-030-01225-0_6 – ident: ref12 doi: 10.1145/3123266.3123289 – ident: ref40 doi: 10.1109/CVPR.2019.00479 – ident: ref60 doi: 10.1109/ICCV.2019.00628 – ident: ref33 doi: 10.1109/CVPR.2018.00255 – ident: ref18 doi: 10.1109/ACCESS.2019.2936914 – ident: ref38 doi: 10.1007/978-3-319-46454-1_29 – start-page: 1 volume-title: Proc. 14th Int. Conf. Inf. Fusion ident: ref32 article-title: Multiple source data fusion via sparse representation for robust visual tracking – ident: ref7 doi: 10.1109/TCSVT.2018.2889457 |
SSID | ssj0014847 |
Score | 2.6049209 |
Snippet | In recent years, RGBT tracking has become a hot topic in the field of visual tracking, and made great progress. In this paper, we propose a novel Trident... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 579 |
SubjectTerms | Aggregates Benchmark testing Convolution feature aggregation Feature extraction feature pruning Machine learning Optical tracking Representations RGBT tracking Robustness Target tracking Training trident architecture Visual fields Visualization |
Title | RGBT Tracking by Trident Fusion Network |
URI | https://ieeexplore.ieee.org/document/9383014 https://www.proquest.com/docview/2625369755 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShoAxIDJA0dhInHqGiVEjtACnqFtmOvYBaBMkAv56z81AFCLF5sCXrs33f3fkeCJ1TDRysI5B-lCoXGE-4gnPiBkpLTnWsZWAShaczOpmH94to0UFXbS6MUsoGnynPDO1ffr6SpXGVDRmYU77pWr0BhluVq9X-GISJbSYG6gJ2E-CxJkHGZ8N09PiUgilIsGcUZGYKPK2RkO2q8kMUW34Z76Bps7MqrOTZKwvhyc9vRRv_u_VdtF0rms51dTP2UEct99HWWvnBHrp4uLtJHWArafzljviAsekxWjjj0jjRnFkVI36A5uPbdDRx68YJriQsKlyqFCgWOhZxLEIaBBKkoSIxFkQljGIsdaRj5jOOcyw0pjoHA1nxQOehHwilgkPUXa6W6gg5CWWMaDi9kOswklzEIACA1GXEc4K530e4QTKTdVVx09ziJbPWhc8yi35m0M9q9Pvosl3zWtXU-HN2z8DZzqyR7KNBc2BZ_ezeMwLWXEBZHEXHv686QZvE5C_YsOsB6hZvpToFraIQZ_Y6fQHgDMbM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5Remg5UChFLFCaA6iHKkvsxM76wKGl3S5_e2hDxS3YzvgCWhBkheBZeBXejbGTXaG26g2pNx_sKPKM5vvG8wewKR1hsBNk_aTEmBDPxEZrHqforJYudzb1hcJHQzk4zvZPxMkM3E9rYRAxJJ9h1y9DLL-6sGP_VLatyJ0iSt-mUB7g7Q05aNc7e19Jmluc978Vu4O4nSEQW65EHUtEwliXmzw3mUxTS4YBec4Mx56SjFknXK4SpVnFjGPSVeQrok5dlSWpQUzpuy_gJfEMwZvqsGmMIuuF8WVEUFjcI-SclOQkarvY_fmrIOeTs66n5Mq3lHoCe2GOyx_GPyBa_w08TO6iSWQ5645r07V3v7WJ_F8vawHmWyodfW50fxFmcPQW5p40WFyCjz--fykiwmPrIwKRuaW1n6JaR_2xfyaMhk0W_Ds4fpY_XYbZ0cUIVyDqSaW4I_3MtMuE1SYnE0e0xQpdcaaTDrCJ5Erb9k334zvOy-A_JaoM0i69tMtW2h34ND1z2XQN-efuJS--6c5Wch1YnyhI2RqW65KTv5pKlQux-vdTH-DVoDg6LA_3hgdr8Jr7ao2QZL4Os_XVGN8Th6rNRlDlCE6fWx0eAbzlJNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RGBT+Tracking+by+Trident+Fusion+Network&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhu%2C+Yabin&rft.au=Li%2C+Chenglong&rft.au=Tang%2C+Jin&rft.au=Luo%2C+Bin&rft.date=2022-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=2&rft.spage=579&rft_id=info:doi/10.1109%2FTCSVT.2021.3067997&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |