RGBT Tracking by Trident Fusion Network

In recent years, RGBT tracking has become a hot topic in the field of visual tracking, and made great progress. In this paper, we propose a novel Trident Fusion Network (TFNet) to achieve effective fusion of different modalities for robust RGBT tracking. In specific, to deploy the complementarity of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 2; pp. 579 - 592
Main Authors Zhu, Yabin, Li, Chenglong, Tang, Jin, Luo, Bin, Wang, Liang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, RGBT tracking has become a hot topic in the field of visual tracking, and made great progress. In this paper, we propose a novel Trident Fusion Network (TFNet) to achieve effective fusion of different modalities for robust RGBT tracking. In specific, to deploy the complementarity of features of all convolutional layers, we propose a recursive strategy to densely aggregate these features that yield robust representations of target objects in two modalities. Moreover, we design a trident architecture to integrate the fused features and both modality-specific features for robust target representations. There are three main advantages. First, retaining the classification layer of each modality is beneficial to enhance feature learning of single modality, and compared with aggregate branches, single-modality branches pay more attention to the mining of modal specific information. Second, when some modality is noisy or invalid, the modality-specific branches would capture more discriminative features for RGBT tracking. Finally, the integration of aggregation branches and single-modality branches is beneficial to the complementary learning of different modalities. In addition, we also introduce a feature pruning module in each branch to prune the redundant features and avoid network overfitting. Experimental results on four RGBT tracking benchmark datasets suggest that our tracker achieves superior performance against the state-of-the-art RGBT tracking methods.
AbstractList In recent years, RGBT tracking has become a hot topic in the field of visual tracking, and made great progress. In this paper, we propose a novel Trident Fusion Network (TFNet) to achieve effective fusion of different modalities for robust RGBT tracking. In specific, to deploy the complementarity of features of all convolutional layers, we propose a recursive strategy to densely aggregate these features that yield robust representations of target objects in two modalities. Moreover, we design a trident architecture to integrate the fused features and both modality-specific features for robust target representations. There are three main advantages. First, retaining the classification layer of each modality is beneficial to enhance feature learning of single modality, and compared with aggregate branches, single-modality branches pay more attention to the mining of modal specific information. Second, when some modality is noisy or invalid, the modality-specific branches would capture more discriminative features for RGBT tracking. Finally, the integration of aggregation branches and single-modality branches is beneficial to the complementary learning of different modalities. In addition, we also introduce a feature pruning module in each branch to prune the redundant features and avoid network overfitting. Experimental results on four RGBT tracking benchmark datasets suggest that our tracker achieves superior performance against the state-of-the-art RGBT tracking methods.
Author Luo, Bin
Wang, Liang
Zhu, Yabin
Tang, Jin
Li, Chenglong
Author_xml – sequence: 1
  givenname: Yabin
  orcidid: 0000-0002-1000-2750
  surname: Zhu
  fullname: Zhu, Yabin
  email: zhuyabin0726@foxmail.com
  organization: Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, China
– sequence: 2
  givenname: Chenglong
  orcidid: 0000-0002-7233-2739
  surname: Li
  fullname: Li, Chenglong
  email: lcl1314@foxmail.com
  organization: Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, China
– sequence: 3
  givenname: Jin
  orcidid: 0000-0001-8375-3590
  surname: Tang
  fullname: Tang, Jin
  email: tangjin@ahu.edu.cn
  organization: Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, China
– sequence: 4
  givenname: Bin
  orcidid: 0000-0001-5948-5055
  surname: Luo
  fullname: Luo, Bin
  email: ahu_lb@163.com
  organization: Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, China
– sequence: 5
  givenname: Liang
  surname: Wang
  fullname: Wang, Liang
  email: wangliang@nlpr.ia.ac.cn
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
BookMark eNp9kD1PwzAQhi1UJNrCH4AlEgNTis-Ov0aoaEGqQILAauXjjNyWpDiJUP89Ka0YGJjuHd7n7vSMyKCqKyTkHOgEgJrrdPrylk4YZTDhVCpj1BEZghA6ZoyKQZ-pgFgzECdk1DRLSiHRiRqSq-f5bRqlIStWvnqP8m2ffYlVG826xtdV9IjtVx1Wp-TYZesGzw5zTF5nd-n0Pl48zR-mN4u4YEa0sUSUQjuVK5UnkvMikQqZgpyhNhKgcMIpQ00GJeQOpCtVwjDjrkwozxH5mFzu925C_dlh09pl3YWqP2mZZIJLo4ToW3rfKkLdNAGdLXybtf2_bcj82gK1Oy32R4vdabEHLT3K_qCb4D-ysP0futhDHhF_AcM17z3yb5aYbnY
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TPAMI_2024_3475472
crossref_primary_10_1109_TIM_2024_3351246
crossref_primary_10_1109_TCSVT_2024_3436878
crossref_primary_10_1109_TCSVT_2021_3099120
crossref_primary_10_1007_s11042_023_16418_2
crossref_primary_10_1109_TCSVT_2024_3391802
crossref_primary_10_1109_TIM_2024_3436098
crossref_primary_10_1109_TPAMI_2024_3521416
crossref_primary_10_1016_j_infrared_2024_105310
crossref_primary_10_1007_s40747_023_01223_z
crossref_primary_10_1109_TCSVT_2024_3494725
crossref_primary_10_1007_s44295_024_00050_3
crossref_primary_10_1016_j_engappai_2023_105919
crossref_primary_10_1109_JSEN_2024_3426274
crossref_primary_10_1109_JSEN_2024_3372991
crossref_primary_10_1109_TIP_2021_3130533
crossref_primary_10_1109_TCSVT_2024_3425455
crossref_primary_10_1109_TIM_2022_3193971
crossref_primary_10_1109_TCSVT_2023_3316990
crossref_primary_10_1016_j_inffus_2025_102940
crossref_primary_10_1109_TITS_2024_3512551
crossref_primary_10_1016_j_patcog_2024_110707
crossref_primary_10_1109_TCSVT_2023_3281419
crossref_primary_10_1016_j_engappai_2023_107273
crossref_primary_10_1109_TCSVT_2022_3208833
crossref_primary_10_1109_TIM_2023_3338701
crossref_primary_10_1109_JSEN_2024_3370144
crossref_primary_10_1109_TIM_2024_3365162
crossref_primary_10_3390_s24248217
crossref_primary_10_1109_TCSVT_2023_3288853
crossref_primary_10_1007_s11760_024_03148_7
crossref_primary_10_1109_JSEN_2023_3295473
crossref_primary_10_1109_JSEN_2024_3506929
crossref_primary_10_23919_JSEE_2023_000168
crossref_primary_10_1109_TCSVT_2024_3435722
crossref_primary_10_1016_j_eswa_2024_123716
crossref_primary_10_1016_j_inffus_2023_101881
crossref_primary_10_1016_j_engappai_2024_108329
crossref_primary_10_1109_TCSVT_2024_3352573
crossref_primary_10_1016_j_inffus_2024_102492
crossref_primary_10_1109_TIP_2024_3428316
crossref_primary_10_1109_TCSVT_2024_3377471
crossref_primary_10_1109_JSEN_2023_3244834
crossref_primary_10_1007_s10489_023_04755_6
crossref_primary_10_1007_s11227_023_05329_6
crossref_primary_10_1109_TMM_2023_3310295
crossref_primary_10_1016_j_neunet_2024_106110
crossref_primary_10_1016_j_knosys_2023_110683
crossref_primary_10_1109_TCSVT_2024_3498349
crossref_primary_10_1007_s11760_024_03658_4
crossref_primary_10_1016_j_knosys_2024_112860
crossref_primary_10_1109_TCSVT_2024_3398624
crossref_primary_10_1016_j_knosys_2022_108945
crossref_primary_10_1109_TCSVT_2024_3396289
crossref_primary_10_1145_3678176
crossref_primary_10_1007_s11063_023_11365_3
crossref_primary_10_1016_j_neucom_2023_126329
crossref_primary_10_3390_s23146609
crossref_primary_10_1016_j_neucom_2024_127959
crossref_primary_10_1109_JSEN_2024_3386772
crossref_primary_10_1109_TCSVT_2021_3094645
crossref_primary_10_1109_TIM_2023_3282668
crossref_primary_10_1109_TAI_2022_3151307
crossref_primary_10_1109_TCSVT_2023_3239627
Cites_doi 10.1007/978-3-030-01234-2_20
10.1109/CVPR.2014.81
10.1109/TIV.2020.2980735
10.1109/CVPR.2016.98
10.1109/CVPR.2019.00441
10.1109/TMM.2012.2234731
10.1016/j.ipl.2005.11.003
10.1109/CVPR.2019.00472
10.1016/j.neucom.2017.11.068
10.1016/j.neucom.2019.01.022
10.1109/TMM.2019.2924578
10.1109/TCSVT.2018.2874312
10.1109/ICCVW.2019.00017
10.1109/TPAMI.2014.2345390
10.1109/CVPR.2017.513
10.1016/j.neucom.2020.06.019
10.1007/978-3-030-01261-8_49
10.5244/C.28.65
10.1109/TCSVT.2018.2889488
10.1007/978-3-030-01264-9_48
10.1109/CVPR.2016.466
10.1109/CVPR.2017.733
10.1109/CVPR42600.2020.00709
10.1109/TCSVT.2019.2909654
10.1007/978-3-319-10599-4_13
10.1145/3343031.3350928
10.1109/CVPR.2016.465
10.1109/ICCVW.2019.00276
10.1609/aaai.v32i1.12307
10.1109/TIP.2016.2614135
10.3390/s20020393
10.1109/TMM.2017.2760633
10.1007/s11432-011-4536-9
10.1109/ICCVW.2019.00279
10.1145/3123266.3123288
10.1109/TMM.2018.2869277
10.1109/CVPR.2016.319
10.1109/TMM.2018.2872897
10.1109/ICIP.2019.8803528
10.1016/j.patcog.2018.08.005
10.1109/ICCVW.2019.00278
10.1109/TSMC.2016.2627052
10.1109/TNNLS.2020.3018790
10.1109/TPAMI.2018.2847335
10.1007/978-3-030-58542-6_14
10.1109/ICCV.2015.345
10.1016/j.patcog.2019.106977
10.1109/CVPR42600.2020.00741
10.1109/TITS.2017.2686871
10.1007/978-3-030-01225-0_6
10.1145/3123266.3123289
10.1109/CVPR.2019.00479
10.1109/ICCV.2019.00628
10.1109/CVPR.2018.00255
10.1109/ACCESS.2019.2936914
10.1007/978-3-319-46454-1_29
10.1109/TCSVT.2018.2889457
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2021.3067997
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 592
ExternalDocumentID 10_1109_TCSVT_2021_3067997
9383014
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation for the Higher Education Institutions of Anhui Province
  grantid: KJ2020A0061
– fundername: Major Project for New Generation of AI
  grantid: 2018AAA0100400
– fundername: Open Project Program of the National Laboratory of Pattern Recognition (NLPR)
  funderid: 10.13039/501100011222
– fundername: National Natural Science Foundation of China
  grantid: 61976003; 62076003; 61860206004
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-6ee658f7b77b4633c467e271b2e89611cf5f7909a1d1bf16fd742ea3fd403bee3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Sun Jun 29 12:35:04 EDT 2025
Thu Apr 24 23:04:16 EDT 2025
Tue Jul 01 00:41:15 EDT 2025
Wed Aug 27 03:00:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-6ee658f7b77b4633c467e271b2e89611cf5f7909a1d1bf16fd742ea3fd403bee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1000-2750
0000-0002-7233-2739
0000-0001-8375-3590
0000-0001-5948-5055
PQID 2625369755
PQPubID 85433
PageCount 14
ParticipantIDs proquest_journals_2625369755
ieee_primary_9383014
crossref_primary_10_1109_TCSVT_2021_3067997
crossref_citationtrail_10_1109_TCSVT_2021_3067997
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
D’Innocente (ref34) 2018
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
Wu (ref32)
ref46
ref45
ref47
ref42
Simonyan (ref41)
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
Pu (ref48)
ref37
ref36
ref31
ref30
ref33
Min (ref44)
ref2
ref1
ref39
ref38
Lu (ref59) 2020
Saihui (ref43)
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref49
  doi: 10.1007/978-3-030-01234-2_20
– ident: ref47
  doi: 10.1109/CVPR.2014.81
– ident: ref31
  doi: 10.1109/TIV.2020.2980735
– ident: ref20
  doi: 10.1109/CVPR.2016.98
– ident: ref21
  doi: 10.1109/CVPR.2019.00441
– volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref48
  article-title: Deep attentive tracking via reciprocative learning
– year: 2018
  ident: ref34
  article-title: Domain generalization with domain-specific aggregation modules
  publication-title: arXiv:1809.10966
– ident: ref35
  doi: 10.1109/TMM.2012.2234731
– ident: ref46
  doi: 10.1016/j.ipl.2005.11.003
– ident: ref50
  doi: 10.1109/CVPR.2019.00472
– ident: ref16
  doi: 10.1016/j.neucom.2017.11.068
– ident: ref63
  doi: 10.1016/j.neucom.2019.01.022
– ident: ref29
  doi: 10.1109/TMM.2019.2924578
– ident: ref10
  doi: 10.1109/TCSVT.2018.2874312
– ident: ref39
  doi: 10.1109/ICCVW.2019.00017
– ident: ref58
  doi: 10.1109/TPAMI.2014.2345390
– ident: ref55
  doi: 10.1109/CVPR.2017.513
– ident: ref4
  doi: 10.1016/j.neucom.2020.06.019
– ident: ref9
  doi: 10.1007/978-3-030-01261-8_49
– ident: ref57
  doi: 10.5244/C.28.65
– ident: ref8
  doi: 10.1109/TCSVT.2018.2889488
– ident: ref61
  doi: 10.1007/978-3-030-01264-9_48
– ident: ref36
  doi: 10.1109/CVPR.2016.466
– ident: ref37
  doi: 10.1109/CVPR.2017.733
– ident: ref62
  doi: 10.1109/CVPR42600.2020.00709
– ident: ref6
  doi: 10.1109/TCSVT.2019.2909654
– ident: ref56
  doi: 10.1007/978-3-319-10599-4_13
– ident: ref24
  doi: 10.1145/3343031.3350928
– ident: ref19
  doi: 10.1109/CVPR.2016.465
– ident: ref22
  doi: 10.1109/ICCVW.2019.00276
– ident: ref13
  doi: 10.1609/aaai.v32i1.12307
– ident: ref15
  doi: 10.1109/TIP.2016.2614135
– ident: ref64
  doi: 10.3390/s20020393
– ident: ref26
  doi: 10.1109/TMM.2017.2760633
– ident: ref51
  doi: 10.1007/s11432-011-4536-9
– ident: ref17
  doi: 10.1109/ICCVW.2019.00279
– year: 2020
  ident: ref59
  article-title: RGBT tracking via multi-adapter network with hierarchical divergence loss
  publication-title: arXiv:2011.07189
– ident: ref11
  doi: 10.1145/3123266.3123288
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref44
  article-title: Network in network
– ident: ref2
  doi: 10.1109/TMM.2018.2869277
– ident: ref45
  doi: 10.1109/CVPR.2016.319
– ident: ref1
  doi: 10.1109/TMM.2018.2872897
– ident: ref25
  doi: 10.1109/ICIP.2019.8803528
– ident: ref30
  doi: 10.1016/j.patcog.2018.08.005
– ident: ref53
  doi: 10.1109/ICCVW.2019.00278
– start-page: 8425
  volume-title: Proc. AAAI Conf. Artif. Intell.
  ident: ref43
  article-title: Weighted channel dropout for regularization of deep convolutional neural network
– ident: ref14
  doi: 10.1109/TSMC.2016.2627052
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref41
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref28
  doi: 10.1109/TNNLS.2020.3018790
– ident: ref27
  doi: 10.1109/TPAMI.2018.2847335
– ident: ref52
  doi: 10.1007/978-3-030-58542-6_14
– ident: ref54
  doi: 10.1109/ICCV.2015.345
– ident: ref23
  doi: 10.1016/j.patcog.2019.106977
– ident: ref3
  doi: 10.1109/CVPR42600.2020.00741
– ident: ref5
  doi: 10.1109/TITS.2017.2686871
– ident: ref42
  doi: 10.1007/978-3-030-01225-0_6
– ident: ref12
  doi: 10.1145/3123266.3123289
– ident: ref40
  doi: 10.1109/CVPR.2019.00479
– ident: ref60
  doi: 10.1109/ICCV.2019.00628
– ident: ref33
  doi: 10.1109/CVPR.2018.00255
– ident: ref18
  doi: 10.1109/ACCESS.2019.2936914
– ident: ref38
  doi: 10.1007/978-3-319-46454-1_29
– start-page: 1
  volume-title: Proc. 14th Int. Conf. Inf. Fusion
  ident: ref32
  article-title: Multiple source data fusion via sparse representation for robust visual tracking
– ident: ref7
  doi: 10.1109/TCSVT.2018.2889457
SSID ssj0014847
Score 2.6049209
Snippet In recent years, RGBT tracking has become a hot topic in the field of visual tracking, and made great progress. In this paper, we propose a novel Trident...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 579
SubjectTerms Aggregates
Benchmark testing
Convolution
feature aggregation
Feature extraction
feature pruning
Machine learning
Optical tracking
Representations
RGBT tracking
Robustness
Target tracking
Training
trident architecture
Visual fields
Visualization
Title RGBT Tracking by Trident Fusion Network
URI https://ieeexplore.ieee.org/document/9383014
https://www.proquest.com/docview/2625369755
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShoAxIDJA0dhInHqGiVEjtACnqFtmOvYBaBMkAv56z81AFCLF5sCXrs33f3fkeCJ1TDRysI5B-lCoXGE-4gnPiBkpLTnWsZWAShaczOpmH94to0UFXbS6MUsoGnynPDO1ffr6SpXGVDRmYU77pWr0BhluVq9X-GISJbSYG6gJ2E-CxJkHGZ8N09PiUgilIsGcUZGYKPK2RkO2q8kMUW34Z76Bps7MqrOTZKwvhyc9vRRv_u_VdtF0rms51dTP2UEct99HWWvnBHrp4uLtJHWArafzljviAsekxWjjj0jjRnFkVI36A5uPbdDRx68YJriQsKlyqFCgWOhZxLEIaBBKkoSIxFkQljGIsdaRj5jOOcyw0pjoHA1nxQOehHwilgkPUXa6W6gg5CWWMaDi9kOswklzEIACA1GXEc4K530e4QTKTdVVx09ziJbPWhc8yi35m0M9q9Pvosl3zWtXU-HN2z8DZzqyR7KNBc2BZ_ezeMwLWXEBZHEXHv686QZvE5C_YsOsB6hZvpToFraIQZ_Y6fQHgDMbM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5Remg5UChFLFCaA6iHKkvsxM76wKGl3S5_e2hDxS3YzvgCWhBkheBZeBXejbGTXaG26g2pNx_sKPKM5vvG8wewKR1hsBNk_aTEmBDPxEZrHqforJYudzb1hcJHQzk4zvZPxMkM3E9rYRAxJJ9h1y9DLL-6sGP_VLatyJ0iSt-mUB7g7Q05aNc7e19Jmluc978Vu4O4nSEQW65EHUtEwliXmzw3mUxTS4YBec4Mx56SjFknXK4SpVnFjGPSVeQrok5dlSWpQUzpuy_gJfEMwZvqsGmMIuuF8WVEUFjcI-SclOQkarvY_fmrIOeTs66n5Mq3lHoCe2GOyx_GPyBa_w08TO6iSWQ5645r07V3v7WJ_F8vawHmWyodfW50fxFmcPQW5p40WFyCjz--fykiwmPrIwKRuaW1n6JaR_2xfyaMhk0W_Ds4fpY_XYbZ0cUIVyDqSaW4I_3MtMuE1SYnE0e0xQpdcaaTDrCJ5Erb9k334zvOy-A_JaoM0i69tMtW2h34ND1z2XQN-efuJS--6c5Wch1YnyhI2RqW65KTv5pKlQux-vdTH-DVoDg6LA_3hgdr8Jr7ao2QZL4Os_XVGN8Th6rNRlDlCE6fWx0eAbzlJNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RGBT+Tracking+by+Trident+Fusion+Network&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhu%2C+Yabin&rft.au=Li%2C+Chenglong&rft.au=Tang%2C+Jin&rft.au=Luo%2C+Bin&rft.date=2022-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=2&rft.spage=579&rft_id=info:doi/10.1109%2FTCSVT.2021.3067997&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon