Highway Traffic Flow Estimation for Surveillance Scenes Damaged by Rain
In this paper, we propose a traffic flow estimation system for intelligent highway surveillance applications under rainy conditions. Major contributions of the proposed system include flexible feature extraction, robust estimation with adaptive clustering, and effective graph-based traffic flow mapp...
Saved in:
Published in | IEEE intelligent systems Vol. 33; no. 1; pp. 64 - 77 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Los Alamitos
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a traffic flow estimation system for intelligent highway surveillance applications under rainy conditions. Major contributions of the proposed system include flexible feature extraction, robust estimation with adaptive clustering, and effective graph-based traffic flow mapping model. To detect rain-drop tampered scenes, features are extracted via salient region detection and block segmentation. For traffic flow estimation, lane directions are automatically detected for daytime scenes. Foreground moving edges accumulated along the traffic flow direction are used as features. We utilize an adaptive clustering algorithm to estimate vehicle count for each frame. For nighttime scenes, statistical features are extracted from the segmented blocks, and regression models are applied to generate per-frame vehicle count. Finally, an effective graph-based mapping method is incorporated to map the vehicle count sequences to per-minute traffic flow. The accuracy of the traffic flow analysis is satisfying even when the cameras are seriously affected by rain. The experiments demonstrate that the proposed system can effectively analyze traffic flow under rainy conditions for highway surveillance cameras. |
---|---|
AbstractList | In this paper, we propose a traffic flow estimation system for intelligent highway surveillance applications under rainy conditions. Major contributions of the proposed system include flexible feature extraction, robust estimation with adaptive clustering, and effective graph-based traffic flow mapping model. To detect rain-drop tampered scenes, features are extracted via salient region detection and block segmentation. For traffic flow estimation, lane directions are automatically detected for daytime scenes. Foreground moving edges accumulated along the traffic flow direction are used as features. We utilize an adaptive clustering algorithm to estimate vehicle count for each frame. For nighttime scenes, statistical features are extracted from the segmented blocks, and regression models are applied to generate per-frame vehicle count. Finally, an effective graph-based mapping method is incorporated to map the vehicle count sequences to per-minute traffic flow. The accuracy of the traffic flow analysis is satisfying even when the cameras are seriously affected by rain. The experiments demonstrate that the proposed system can effectively analyze traffic flow under rainy conditions for highway surveillance cameras. |
Author | Cheng, Hsu-Yung |
Author_xml | – sequence: 1 givenname: Hsu-Yung surname: Cheng fullname: Cheng, Hsu-Yung organization: National Central University |
BookMark | eNp9kE1PAjEURRuDiYD-Ad00cT3Yr5m2S4N8JRgTwXVTaoslwwy2g2T-vUUMCxeu-prc827e6YFOVVcWgFuMBhgj-fA8WwwIwiL9MGaMUnwBulgynGEiWSfN-XEuOLkCvRg3CBGa4l0wmfr1x0G3cBm0c97AcVkf4Cg2fqsbX1fQ1QEu9uHL-rLUlbFwYWxlI3zSW72273DVwlftq2tw6XQZ7c3v2wdv49FyOM3mL5PZ8HGeGSLzJiu4kbLQQlPrSCpklK-EcTRnghVUICSx0cxqTTSXwhm-MohwVJA8ARJh2gf3p727UH_ubWzUpt6HKlUqgiinuSgISylySplQxxisU7uQDgqtwkgdhakkTB2FqbOwBIk_kPHNj4QmaF_-j96dUG-tPXcJkuecI_oNPF55BA |
CODEN | IISYF7 |
CitedBy_id | crossref_primary_10_1109_TITS_2023_3258683 crossref_primary_10_3390_app10175838 crossref_primary_10_1007_s00530_020_00721_1 |
Cites_doi | 10.1109/TITS.2010.2045500 10.1109/TITS.2014.2365033 10.1109/ISM.2015.14 10.2991/jcis.2008.65 10.1109/ICASSP.2007.366355 10.1109/TITS.2015.2409889 10.1109/76.988659 10.1109/ICIAP.1999.797741 10.1109/TITS.2015.2496545 10.1049/ip-vis:20040314 10.1109/ICCVW.2009.5457650 10.1109/TITS.2011.2160171 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1109/MIS.2018.111144331 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1941-1294 |
EndPage | 77 |
ExternalDocumentID | 10_1109_MIS_2018_111144331 8255770 |
Genre | orig-research |
GroupedDBID | -DZ .DC 0R~ 29I 4.4 5GY 5VS 6IK 77K 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGOD ACIWK AENEX AETIX AFOGA AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IEDLZ IFIPE IPLJI JAVBF KZ1 LAI M43 OCL PQQKQ PZZ RIA RIE RNI RNS RZB WH7 AAYOK AAYXX CITATION 7SC 7SP 8FD E3H F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-67c996a8a3ef2aff437b8cf354846380091ca4eaa2a798fc7bc02706253ef9013 |
IEDL.DBID | RIE |
ISSN | 1541-1672 |
IngestDate | Mon Jun 30 06:28:23 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 Tue Jul 01 02:58:22 EDT 2025 Wed Aug 27 02:40:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-67c996a8a3ef2aff437b8cf354846380091ca4eaa2a798fc7bc02706253ef9013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2037358624 |
PQPubID | 10583 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2037358624 crossref_primary_10_1109_MIS_2018_111144331 crossref_citationtrail_10_1109_MIS_2018_111144331 ieee_primary_8255770 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Jan./Feb. 2018-1-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-Jan./Feb. |
PublicationDecade | 2010 |
PublicationPlace | Los Alamitos |
PublicationPlace_xml | – name: Los Alamitos |
PublicationTitle | IEEE intelligent systems |
PublicationTitleAbbrev | MIS |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref11 ref10 shen (ref8) 0 ref2 ref1 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref1 doi: 10.1109/TITS.2010.2045500 – ident: ref9 doi: 10.1109/TITS.2014.2365033 – ident: ref13 doi: 10.1109/ISM.2015.14 – ident: ref6 doi: 10.2991/jcis.2008.65 – ident: ref5 doi: 10.1109/ICASSP.2007.366355 – start-page: 1 year: 0 ident: ref8 article-title: A fast algorithm for rain detection and removal from videos publication-title: IEEE International Conference on Multimedia and Expo – ident: ref3 doi: 10.1109/TITS.2015.2409889 – ident: ref10 doi: 10.1109/76.988659 – ident: ref11 doi: 10.1109/ICIAP.1999.797741 – ident: ref4 doi: 10.1109/TITS.2015.2496545 – ident: ref12 doi: 10.1049/ip-vis:20040314 – ident: ref7 doi: 10.1109/ICCVW.2009.5457650 – ident: ref2 doi: 10.1109/TITS.2011.2160171 |
SSID | ssj0023018 |
Score | 2.2439492 |
Snippet | In this paper, we propose a traffic flow estimation system for intelligent highway surveillance applications under rainy conditions. Major contributions of the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 64 |
SubjectTerms | Adaptive algorithms adaptive clustering Adaptive systems Algorithms Cameras Clustering Estimation Feature extraction Flow mapping Image edge detection Laplace equations Mapping Rain regression Regression analysis Regression models Roads & highways Statistical analysis Surveillance Traffic control Traffic flow traffic flow estimation Traffic models Traffic surveillance Videos |
Title | Highway Traffic Flow Estimation for Surveillance Scenes Damaged by Rain |
URI | https://ieeexplore.ieee.org/document/8255770 https://www.proquest.com/docview/2037358624 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGTlx4DcRgoBy4Qbc-0qU9ItgYSOMyJu1WJWl2YWxodEzj12OnDyRAiFsPcRvFseOvsf0BXGAQIjFmQ3TieanDU1c4SlCOO1ddHkrEJJbubfjYHYz5wySc1OCqqoUxxtjkM9OmR3uXny70in6VdVAyFAIB-hYCt7xWqwJXuFFt2VvIifhY-GWBjBt3hvcjyuGKrHvgBaHc1yFkWVV-uGJ7vvR3YVjOLE8reW6vMtXWH9-aNv536nuwUwSa7DrfGftQM_MD2C1JHFhh0w24o0yPtdwwPLWonQTrzxZr1kPLz4saGUa1bLRavhviJ0IRFCX_yG7lC_qilKkNo0uiQxj3e083A6dgV3C0H4eZ0xUasY6MZGCmPn6AB0JFehoghOFolBh7eVpyI6UvRRxNtVAaIayLeAkFMIoIjqA-X8zNMTAttY7oBhE9Ao-lVHQXyQXnOg0CdGNN8MrlTnTRepwYMGaJhSBunKCKElJRUqmoCZeVzGveeOPP0Q1a82pksdxNaJVaTQrbfEPJQAQhFcac_C51Ctv09vxHSwvq2XJlzjD0yNS53XOfaojQ6A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4YPOhFVDSiqHvwpgXabtn2aBQEBS5Awq3ZbpeLCAZBgr_eme3DRI3x1sNOdrOz8_g6L4ArdEIk-myITmw7tnhcF1YkKMedRw3uScQkZtxbr99oj_jj2BtvwU1eC6O1NslnukqfJpYfz9WKfpXVkNITAgH6Ntp9z06qtXJ4hU_VFL55nEYfCycrkakHtV5nQFlcvlEQPB0p92WGzFyVH8rYWJhWEXrZ2ZLEkufqahlV1ce3to3_Pfw-7KWuJrtN3sYBbOnZIRSzMQ4sleoSPFCux1puGNotaijBWtP5mjVR9pOyRoZ-LRusFu-aJhQhCZKShmT38gW1UcyiDaMw0RGMWs3hXdtK5ytYygm8pdUQCtGO9KWrJw5uwF0R-WriIojhKJbofdlKci2lI0XgT5SIFILYOiImJEA_wj2Gwmw-0yfAlFTKpxgi6gQeSBlRNJILzlXsuqjIymBn1x2qtPk4zcCYhgaE1IMQWRQSi8KcRWW4zmlek9Ybf64u0Z3nK9PrLkMl42qYSucbUrrC9ag05vR3qkvYaQ973bDb6T-dwS7tlPx2qUBhuVjpc3REltGFeX-ffj_UMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highway+Traffic+Flow+Estimation+for+Surveillance+Scenes+Damaged+by+Rain&rft.jtitle=IEEE+intelligent+systems&rft.au=Cheng%2C+Hsu-Yung&rft.date=2018-01-01&rft.pub=IEEE&rft.issn=1541-1672&rft.volume=33&rft.issue=1&rft.spage=64&rft.epage=77&rft_id=info:doi/10.1109%2FMIS.2018.111144331&rft.externalDocID=8255770 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-1672&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-1672&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-1672&client=summon |