Highway Traffic Flow Estimation for Surveillance Scenes Damaged by Rain

In this paper, we propose a traffic flow estimation system for intelligent highway surveillance applications under rainy conditions. Major contributions of the proposed system include flexible feature extraction, robust estimation with adaptive clustering, and effective graph-based traffic flow mapp...

Full description

Saved in:
Bibliographic Details
Published inIEEE intelligent systems Vol. 33; no. 1; pp. 64 - 77
Main Author Cheng, Hsu-Yung
Format Journal Article
LanguageEnglish
Published Los Alamitos IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a traffic flow estimation system for intelligent highway surveillance applications under rainy conditions. Major contributions of the proposed system include flexible feature extraction, robust estimation with adaptive clustering, and effective graph-based traffic flow mapping model. To detect rain-drop tampered scenes, features are extracted via salient region detection and block segmentation. For traffic flow estimation, lane directions are automatically detected for daytime scenes. Foreground moving edges accumulated along the traffic flow direction are used as features. We utilize an adaptive clustering algorithm to estimate vehicle count for each frame. For nighttime scenes, statistical features are extracted from the segmented blocks, and regression models are applied to generate per-frame vehicle count. Finally, an effective graph-based mapping method is incorporated to map the vehicle count sequences to per-minute traffic flow. The accuracy of the traffic flow analysis is satisfying even when the cameras are seriously affected by rain. The experiments demonstrate that the proposed system can effectively analyze traffic flow under rainy conditions for highway surveillance cameras.
AbstractList In this paper, we propose a traffic flow estimation system for intelligent highway surveillance applications under rainy conditions. Major contributions of the proposed system include flexible feature extraction, robust estimation with adaptive clustering, and effective graph-based traffic flow mapping model. To detect rain-drop tampered scenes, features are extracted via salient region detection and block segmentation. For traffic flow estimation, lane directions are automatically detected for daytime scenes. Foreground moving edges accumulated along the traffic flow direction are used as features. We utilize an adaptive clustering algorithm to estimate vehicle count for each frame. For nighttime scenes, statistical features are extracted from the segmented blocks, and regression models are applied to generate per-frame vehicle count. Finally, an effective graph-based mapping method is incorporated to map the vehicle count sequences to per-minute traffic flow. The accuracy of the traffic flow analysis is satisfying even when the cameras are seriously affected by rain. The experiments demonstrate that the proposed system can effectively analyze traffic flow under rainy conditions for highway surveillance cameras.
Author Cheng, Hsu-Yung
Author_xml – sequence: 1
  givenname: Hsu-Yung
  surname: Cheng
  fullname: Cheng, Hsu-Yung
  organization: National Central University
BookMark eNp9kE1PAjEURRuDiYD-Ad00cT3Yr5m2S4N8JRgTwXVTaoslwwy2g2T-vUUMCxeu-prc827e6YFOVVcWgFuMBhgj-fA8WwwIwiL9MGaMUnwBulgynGEiWSfN-XEuOLkCvRg3CBGa4l0wmfr1x0G3cBm0c97AcVkf4Cg2fqsbX1fQ1QEu9uHL-rLUlbFwYWxlI3zSW72273DVwlftq2tw6XQZ7c3v2wdv49FyOM3mL5PZ8HGeGSLzJiu4kbLQQlPrSCpklK-EcTRnghVUICSx0cxqTTSXwhm-MohwVJA8ARJh2gf3p727UH_ubWzUpt6HKlUqgiinuSgISylySplQxxisU7uQDgqtwkgdhakkTB2FqbOwBIk_kPHNj4QmaF_-j96dUG-tPXcJkuecI_oNPF55BA
CODEN IISYF7
CitedBy_id crossref_primary_10_1109_TITS_2023_3258683
crossref_primary_10_3390_app10175838
crossref_primary_10_1007_s00530_020_00721_1
Cites_doi 10.1109/TITS.2010.2045500
10.1109/TITS.2014.2365033
10.1109/ISM.2015.14
10.2991/jcis.2008.65
10.1109/ICASSP.2007.366355
10.1109/TITS.2015.2409889
10.1109/76.988659
10.1109/ICIAP.1999.797741
10.1109/TITS.2015.2496545
10.1049/ip-vis:20040314
10.1109/ICCVW.2009.5457650
10.1109/TITS.2011.2160171
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1109/MIS.2018.111144331
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1941-1294
EndPage 77
ExternalDocumentID 10_1109_MIS_2018_111144331
8255770
Genre orig-research
GroupedDBID -DZ
.DC
0R~
29I
4.4
5GY
5VS
6IK
77K
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGOD
ACIWK
AENEX
AETIX
AFOGA
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IEDLZ
IFIPE
IPLJI
JAVBF
KZ1
LAI
M43
OCL
PQQKQ
PZZ
RIA
RIE
RNI
RNS
RZB
WH7
AAYOK
AAYXX
CITATION
7SC
7SP
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-67c996a8a3ef2aff437b8cf354846380091ca4eaa2a798fc7bc02706253ef9013
IEDL.DBID RIE
ISSN 1541-1672
IngestDate Mon Jun 30 06:28:23 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
Tue Jul 01 02:58:22 EDT 2025
Wed Aug 27 02:40:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-67c996a8a3ef2aff437b8cf354846380091ca4eaa2a798fc7bc02706253ef9013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2037358624
PQPubID 10583
PageCount 14
ParticipantIDs proquest_journals_2037358624
crossref_primary_10_1109_MIS_2018_111144331
crossref_citationtrail_10_1109_MIS_2018_111144331
ieee_primary_8255770
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Jan./Feb.
2018-1-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-Jan./Feb.
PublicationDecade 2010
PublicationPlace Los Alamitos
PublicationPlace_xml – name: Los Alamitos
PublicationTitle IEEE intelligent systems
PublicationTitleAbbrev MIS
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref11
ref10
shen (ref8) 0
ref2
ref1
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
  doi: 10.1109/TITS.2010.2045500
– ident: ref9
  doi: 10.1109/TITS.2014.2365033
– ident: ref13
  doi: 10.1109/ISM.2015.14
– ident: ref6
  doi: 10.2991/jcis.2008.65
– ident: ref5
  doi: 10.1109/ICASSP.2007.366355
– start-page: 1
  year: 0
  ident: ref8
  article-title: A fast algorithm for rain detection and removal from videos
  publication-title: IEEE International Conference on Multimedia and Expo
– ident: ref3
  doi: 10.1109/TITS.2015.2409889
– ident: ref10
  doi: 10.1109/76.988659
– ident: ref11
  doi: 10.1109/ICIAP.1999.797741
– ident: ref4
  doi: 10.1109/TITS.2015.2496545
– ident: ref12
  doi: 10.1049/ip-vis:20040314
– ident: ref7
  doi: 10.1109/ICCVW.2009.5457650
– ident: ref2
  doi: 10.1109/TITS.2011.2160171
SSID ssj0023018
Score 2.2439492
Snippet In this paper, we propose a traffic flow estimation system for intelligent highway surveillance applications under rainy conditions. Major contributions of the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 64
SubjectTerms Adaptive algorithms
adaptive clustering
Adaptive systems
Algorithms
Cameras
Clustering
Estimation
Feature extraction
Flow mapping
Image edge detection
Laplace equations
Mapping
Rain
regression
Regression analysis
Regression models
Roads & highways
Statistical analysis
Surveillance
Traffic control
Traffic flow
traffic flow estimation
Traffic models
Traffic surveillance
Videos
Title Highway Traffic Flow Estimation for Surveillance Scenes Damaged by Rain
URI https://ieeexplore.ieee.org/document/8255770
https://www.proquest.com/docview/2037358624
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGTlx4DcRgoBy4Qbc-0qU9ItgYSOMyJu1WJWl2YWxodEzj12OnDyRAiFsPcRvFseOvsf0BXGAQIjFmQ3TieanDU1c4SlCOO1ddHkrEJJbubfjYHYz5wySc1OCqqoUxxtjkM9OmR3uXny70in6VdVAyFAIB-hYCt7xWqwJXuFFt2VvIifhY-GWBjBt3hvcjyuGKrHvgBaHc1yFkWVV-uGJ7vvR3YVjOLE8reW6vMtXWH9-aNv536nuwUwSa7DrfGftQM_MD2C1JHFhh0w24o0yPtdwwPLWonQTrzxZr1kPLz4saGUa1bLRavhviJ0IRFCX_yG7lC_qilKkNo0uiQxj3e083A6dgV3C0H4eZ0xUasY6MZGCmPn6AB0JFehoghOFolBh7eVpyI6UvRRxNtVAaIayLeAkFMIoIjqA-X8zNMTAttY7oBhE9Ao-lVHQXyQXnOg0CdGNN8MrlTnTRepwYMGaJhSBunKCKElJRUqmoCZeVzGveeOPP0Q1a82pksdxNaJVaTQrbfEPJQAQhFcac_C51Ctv09vxHSwvq2XJlzjD0yNS53XOfaojQ6A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4YPOhFVDSiqHvwpgXabtn2aBQEBS5Awq3ZbpeLCAZBgr_eme3DRI3x1sNOdrOz8_g6L4ArdEIk-myITmw7tnhcF1YkKMedRw3uScQkZtxbr99oj_jj2BtvwU1eC6O1NslnukqfJpYfz9WKfpXVkNITAgH6Ntp9z06qtXJ4hU_VFL55nEYfCycrkakHtV5nQFlcvlEQPB0p92WGzFyVH8rYWJhWEXrZ2ZLEkufqahlV1ce3to3_Pfw-7KWuJrtN3sYBbOnZIRSzMQ4sleoSPFCux1puGNotaijBWtP5mjVR9pOyRoZ-LRusFu-aJhQhCZKShmT38gW1UcyiDaMw0RGMWs3hXdtK5ytYygm8pdUQCtGO9KWrJw5uwF0R-WriIojhKJbofdlKci2lI0XgT5SIFILYOiImJEA_wj2Gwmw-0yfAlFTKpxgi6gQeSBlRNJILzlXsuqjIymBn1x2qtPk4zcCYhgaE1IMQWRQSi8KcRWW4zmlek9Ybf64u0Z3nK9PrLkMl42qYSucbUrrC9ag05vR3qkvYaQ973bDb6T-dwS7tlPx2qUBhuVjpc3REltGFeX-ffj_UMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highway+Traffic+Flow+Estimation+for+Surveillance+Scenes+Damaged+by+Rain&rft.jtitle=IEEE+intelligent+systems&rft.au=Cheng%2C+Hsu-Yung&rft.date=2018-01-01&rft.pub=IEEE&rft.issn=1541-1672&rft.volume=33&rft.issue=1&rft.spage=64&rft.epage=77&rft_id=info:doi/10.1109%2FMIS.2018.111144331&rft.externalDocID=8255770
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-1672&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-1672&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-1672&client=summon