Nash Equilibrium Estimation and Analysis in Joint Peer-to-Peer Electricity and Carbon Emission Auction Market With Microgrid Prosumers

The joint Peer-to-Peer (P2P) electricity market (EM) and carbon emission auction market (CEAM) among prosumer microgrids (MGs) in the distribution network is a promising paradigm to facilitate the participation of distributed energy resources (DERs) and incentivize the decarbonization. In this marke...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 38; no. 6; pp. 1 - 13
Main Authors Zhu, Ziqing, Chan, Ka Wing, Bu, Siqi, Zhou, Bin, Xia, Shiwei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The joint Peer-to-Peer (P2P) electricity market (EM) and carbon emission auction market (CEAM) among prosumer microgrids (MGs) in the distribution network is a promising paradigm to facilitate the participation of distributed energy resources (DERs) and incentivize the decarbonization. In this market, MGs will modify their bidding strategies to be adaptive to other rival MGs' for profit maximization. Such modification will converge to the Nash Equilibrium Point (NEP), where each MG cannot obtain more profits by modifying its strategy subject to the fixed strategy of other rival MGs. In this paper, the NEP under such a joint market paradigm is investigated, in which MGs will trade electricity in the EM and purchase carbon emission quotas (CEQs) in the CEAM. In addition, MGs must adjust their bidding strategies considering penalties due to deviations between day-ahead (DA) scheduling and real-time (RT) procurement caused by uncertainties of net load, as well as the price fluctuation in the CEAM. The NEP is estimated by a novel Multi-agent Deep Deterministic Policy Gradient (MADDPG) algorithm, and the risk mitigation is achieved by incorporating the conditional value-at-risk (CVaR) constraint. The computational performance and effectiveness of risk mitigation of this proposed algorithm, and the obtained NEP in the joint EM and CEAM, are analyzed in the case studies.
AbstractList The joint Peer-to-Peer (P2P) electricity market (EM) and carbon emission auction market (CEAM) among prosumer microgrids (MGs) in the distribution network is a promising paradigm to facilitate the participation of distributed energy resources (DERs) and incentivize the decarbonization. In this market, MGs will modify their bidding strategies to be adaptive to other rival MGs' for profit maximization. Such modification will converge to the Nash Equilibrium Point (NEP), where each MG cannot obtain more profits by modifying its strategy subject to the fixed strategy of other rival MGs. In this paper, the NEP under such a joint market paradigm is investigated, in which MGs will trade electricity in the EM and purchase carbon emission quotas (CEQs) in the CEAM. In addition, MGs must adjust their bidding strategies considering penalties due to deviations between day-ahead (DA) scheduling and real-time (RT) procurement caused by uncertainties of net load, as well as the price fluctuation in the CEAM. The NEP is estimated by a novel Multi-agent Deep Deterministic Policy Gradient (MADDPG) algorithm, and the risk mitigation is achieved by incorporating the conditional value-at-risk (CVaR) constraint. The computational performance and effectiveness of risk mitigation of this proposed algorithm, and the obtained NEP in the joint EM and CEAM, are analyzed in the case studies.
Author Zhou, Bin
Xia, Shiwei
Bu, Siqi
Zhu, Ziqing
Chan, Ka Wing
Author_xml – sequence: 1
  givenname: Ziqing
  orcidid: 0000-0003-2142-1149
  surname: Zhu
  fullname: Zhu, Ziqing
  organization: Department of Electrical Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 2
  givenname: Ka Wing
  orcidid: 0000-0001-7462-0753
  surname: Chan
  fullname: Chan, Ka Wing
  organization: Department of Electrical Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 3
  givenname: Siqi
  orcidid: 0000-0002-1047-2568
  surname: Bu
  fullname: Bu, Siqi
  organization: Department of Electrical Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 4
  givenname: Bin
  orcidid: 0000-0002-1376-4531
  surname: Zhou
  fullname: Zhou, Bin
  organization: College of Electrical and Information Engineering, Hunan University, Changsha, Hunan, China
– sequence: 5
  givenname: Shiwei
  orcidid: 0000-0003-1272-210X
  surname: Xia
  fullname: Xia, Shiwei
  organization: Electrical Engineering, North China Electric Power University, Beijing, China
BookMark eNp9kMtOwzAQRS0EEuXxA7CxxDrFdurYXlZVeIlCBUVdRo4zAUOagO0s-gN8N0lasWDBahZzz9XMOUL7dVMDQmeUjCkl6nK5WD09jxlhbBwzxrnge2hEOZcRSYTaRyMiJY-k4uQQHXn_TghJusUIfT9o_4bTr9ZWNne2XePUB7vWwTY11nWBp7WuNt56bGt819g64AWAi0IT9ROnFZjgrLFhM8Rn2uUdma6t933FtDVD1Vy7Dwh4ZcMbnlvjmldnC7xwjW_X4PwJOih15eF0N4_Ry1W6nN1E94_Xt7PpfWSY4iFKBAPgBig3JaO8jCUHxWVhBMiJpgzyUtOiEEbEXJZJnOSaCJVzKSiVmk7iY3Sx7f10zVcLPmTvTeu6F33GpFCxEIrEXUpuU92d3jsos-6_QUlw2lYZJVlvPRusZ731bGe9Q9kf9NN1Ot3mf-h8C1kA-AWUShI54fEPzjuSOQ
CODEN ITPSEG
CitedBy_id crossref_primary_10_1007_s00202_025_03015_9
crossref_primary_10_1016_j_rser_2025_115329
crossref_primary_10_1109_TIA_2024_3462900
crossref_primary_10_1016_j_segan_2024_101275
crossref_primary_10_3390_pr12102245
Cites_doi 10.1109/TSG.2020.3048397
10.1007/BF00933516
10.1109/TII.2017.2662069
10.1016/j.apenergy.2021.117129
10.1109/TSG.2017.2786668
10.2307/1911749
10.1049/enc2.12063
10.1109/JIOT.2020.3007196
10.1016/j.ijepes.2020.106307
10.1109/TSG.2022.3164080
10.1016/j.epsr.2020.106202
10.1109/TSTE.2019.2927119
10.1109/TSG.2019.2934830
10.1109/TII.2018.2867878
10.1109/TNN.1998.712192
10.1109/TPWRS.2022.3167780
10.17775/CSEEJPES.2020.06560
10.1109/TII.2021.3077008
10.1016/j.apenergy.2020.115973
10.1016/j.apenergy.2019.01.194
10.1016/j.apenergy.2021.116940
10.1137/0121010
10.1109/TIA.2022.3152140
10.1016/j.egyr.2022.03.010
10.1109/TSG.2021.3124465
10.1109/TII.2020.2999328
10.1016/j.energy.2020.117024
10.3390/en15072435
10.1073/pnas.36.1.48
10.1016/j.apenergy.2021.117107
10.1016/j.orl.2018.11.005
10.1016/j.jup.2015.01.004
10.1016/j.energy.2021.120975
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TPWRS.2022.3225575
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 13
ExternalDocumentID 10_1109_TPWRS_2022_3225575
9966845
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
5VS
AAYXX
ACKIV
AETIX
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
RIG
VH1
VJK
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c295t-672ee5ce15cf215f385e958dc7e84a12ebfa1dd7c7358f636ba079b587118a143
IEDL.DBID RIE
ISSN 0885-8950
IngestDate Fri Jul 25 10:41:19 EDT 2025
Tue Jul 01 01:35:57 EDT 2025
Thu Apr 24 23:00:37 EDT 2025
Wed Aug 27 02:18:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-672ee5ce15cf215f385e958dc7e84a12ebfa1dd7c7358f636ba079b587118a143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2142-1149
0000-0002-1047-2568
0000-0001-7462-0753
0000-0003-1272-210X
0000-0002-1376-4531
PQID 2879377903
PQPubID 85441
PageCount 13
ParticipantIDs crossref_primary_10_1109_TPWRS_2022_3225575
ieee_primary_9966845
crossref_citationtrail_10_1109_TPWRS_2022_3225575
proquest_journals_2879377903
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
moulin (ref33) 1980
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
fujimoto (ref29) 0; 80
ref24
ref23
ref20
lowe (ref25) 2020
ref22
ref21
silver (ref28) 2014
ref27
ref8
ref7
reddy (ref26) 2019
ref9
ref4
ref3
ref6
ref5
References_xml – start-page: 2171
  year: 2019
  ident: ref26
  article-title: Risk averse reinforcement learning for mixed multi-agent environments
  publication-title: Proc 18th Int Conf Auton Agents MultiAgent Syst
– start-page: 387
  year: 2014
  ident: ref28
  article-title: Deterministic policy gradient algorithms
  publication-title: Mach Learn Res
– ident: ref14
  doi: 10.1109/TSG.2020.3048397
– ident: ref32
  doi: 10.1007/BF00933516
– ident: ref20
  doi: 10.1109/TII.2017.2662069
– ident: ref15
  doi: 10.1016/j.apenergy.2021.117129
– ident: ref1
  doi: 10.1109/TSG.2017.2786668
– volume: 80
  start-page: 1587
  year: 0
  ident: ref29
  article-title: Addressing function approximation error in actor-critic methods
  publication-title: Mach Learn Res
– ident: ref31
  doi: 10.2307/1911749
– ident: ref23
  doi: 10.1049/enc2.12063
– ident: ref12
  doi: 10.1109/JIOT.2020.3007196
– ident: ref11
  doi: 10.1016/j.ijepes.2020.106307
– ident: ref19
  doi: 10.1109/TSG.2022.3164080
– ident: ref6
  doi: 10.1016/j.epsr.2020.106202
– ident: ref21
  doi: 10.1109/TSTE.2019.2927119
– ident: ref8
  doi: 10.1109/TSG.2019.2934830
– ident: ref3
  doi: 10.1109/TII.2018.2867878
– ident: ref24
  doi: 10.1109/TNN.1998.712192
– ident: ref4
  doi: 10.1109/TPWRS.2022.3167780
– ident: ref13
  doi: 10.17775/CSEEJPES.2020.06560
– ident: ref2
  doi: 10.1109/TII.2021.3077008
– ident: ref18
  doi: 10.1016/j.apenergy.2020.115973
– ident: ref36
  doi: 10.1016/j.apenergy.2019.01.194
– ident: ref16
  doi: 10.1016/j.apenergy.2021.116940
– ident: ref34
  doi: 10.1137/0121010
– ident: ref9
  doi: 10.1109/TIA.2022.3152140
– ident: ref7
  doi: 10.1016/j.egyr.2022.03.010
– ident: ref17
  doi: 10.1109/TSG.2021.3124465
– ident: ref10
  doi: 10.1109/TII.2020.2999328
– ident: ref37
  doi: 10.1016/j.energy.2020.117024
– ident: ref5
  doi: 10.3390/en15072435
– ident: ref30
  doi: 10.1073/pnas.36.1.48
– ident: ref35
  doi: 10.1016/j.apenergy.2021.117107
– year: 1980
  ident: ref33
  article-title: On the uniqueness and stability of nash equilibrium in non-cooperative games
  publication-title: Applied Stochastic Control in Econometrics and Management Science
– ident: ref27
  doi: 10.1016/j.orl.2018.11.005
– ident: ref38
  doi: 10.1016/j.jup.2015.01.004
– ident: ref22
  doi: 10.1016/j.energy.2021.120975
– year: 2020
  ident: ref25
  article-title: Multi-Agent actor-critic for mixed cooperative - competitive environments
  publication-title: Proc AAAI Conf Artif Intell
SSID ssj0006679
Score 2.4812384
Snippet The joint Peer-to-Peer (P2P) electricity market (EM) and carbon emission auction market (CEAM) among prosumer microgrids (MGs) in the distribution network is a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Bidding strategy
Carbon
Carbon dioxide
conditional value-at-risk
Distributed generation
Electricity
Electricity supply industry
Emission analysis
Emissions
Energy sources
Game theory
microgrid
Microgrids
multi-agent reinforcement learning
Multiagent systems
Nash equilibrium
P2P energy trading
Peer-to-peer computing
Quotas
Risk
Risk management
Strategy
Uncertainty
Title Nash Equilibrium Estimation and Analysis in Joint Peer-to-Peer Electricity and Carbon Emission Auction Market With Microgrid Prosumers
URI https://ieeexplore.ieee.org/document/9966845
https://www.proquest.com/docview/2879377903
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB21PcGBAgWxpSAfuIG3SRw7zrGqUlWVtlpBq_YWOfaERoUs7CYXPoDvZuwkqwoQ4pQcZiQrMx6_cWbeALzLahlhIhxXTmQ8FU5ygiGGkz8bJHzuJPoL_cWlOr9OL27l7Q582PbCIGIoPsO5fw3_8t3K9v6q7Nhjc53KXdilxG3o1dpGXaUGXj2tJde5jKYGmSg_vlrefPxEqWCSzL37Sl9T-OAQClNV_gjF4Xw524fFtLKhrOR-3nfV3P74jbTxf5f-FJ6MQJOdDJ7xDHawfQ6PH9APHsDPS7O5Y8X3vgmF__1XVtCGH3oZmWkdmxhLWNOyi1XTdmxJurxbcf9kRRih01gC8kH81Kwr0izIdfwdHDsZmGnZInRWs5umu2MLXwD4ed04tqRP45s_Ny_g-qy4Oj3n41wGbpNcdlxlCaK0GEtbE2KohZaYS-1shjo1cYJVbWLnMpsJqWslVGWiLK8k5WaxNgTQXsJeu2rxFTBCk6lxEclTXlbnwkR1qtBSGEVMUqFmEE-GKu1IWu5nZ3wpQ_IS5WUwbumNW47GncH7rc63gbLjn9IH3lpbydFQMzia_KEcd_WmpOwyDwSN4vDvWq_hkR9HP_QqHsFet-7xDYGWrnobvPUXB8HpqQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELZKewAOUCiILQV8gBPyNrHj_Bw4VCXV9mdXK9iqvQXHntAIyNLdRAgegKfgVXg3xk6yqgBxq8QpOcwkkvN55htnfgh5HhXSAy4MC42IWCCMZEhDFEM8K0B-biTYA_3xJBydBkfn8nyN_FjVwgCASz6Dob11__LNXDf2qGzXcvM46FMoj-HrFwzQlq8OX-PXfMH5QTrbH7FuhgDTPJE1CyMOIDX4Uhfo3QoRS0hkbHQEcaB8DnmhfGMiHQkZF6EIc-VFSS4xjvBjhWQCn3uDbCDPkLytDlvZ-TBsO_nFsWRxIr2-JMdLdmfTszdvMfjkfGg3jLRZjFfcnpvj8ofxdx7t4C752a9Fm8jyYdjU-VB_-61N5P-6WJvkTkel6V6L_XtkDar75PaVBotb5PtELS9oetmUrrSh-URTNGlttSZVlaF9TxZaVvRoXlY1naIuq-fMXmnqhgSVGkMVJ76vFjlqprg57Ckj3Wt779Kxqx2nZ2V9Qcc2xfH9ojR0ip_ClrcuH5DTa1mIh2S9mlfwiFDky4EyHspj5FkkQnlFEIJGRwHAAxEOiN8DI9NdW3Y7HeRj5sIzL8kcmDILpqwD04C8XOl8bpuS_FN6y6JjJdkBY0B2evxlnd1aZhg_J64Fpdj-u9YzcnM0G59kJ4eT48fkFr5HtJWZO2S9XjTwBClanT91O4WSd9eNtl-gvEcl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nash+Equilibrium+Estimation+and+Analysis+in+Joint+Peer-to-Peer+Electricity+and+Carbon+Emission+Auction+Market+With+Microgrid+Prosumers&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Zhu%2C+Ziqing&rft.au=Chan%2C+Ka+Wing&rft.au=Bu%2C+Siqi&rft.au=Zhou%2C+Bin&rft.date=2023-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=38&rft.issue=6&rft.spage=5768&rft_id=info:doi/10.1109%2FTPWRS.2022.3225575&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon