Learning Dual Semantic Relations With Graph Attention for Image-Text Matching

Image-Text Matching is one major task in cross-modal information processing. The main challenge is to learn the unified visual and textual representations. Previous methods that perform well on this task primarily focus on not only the alignment between region features in images and the correspondin...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 31; no. 7; pp. 2866 - 2879
Main Authors Wen, Keyu, Gu, Xiaodong, Cheng, Qingrong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Image-Text Matching is one major task in cross-modal information processing. The main challenge is to learn the unified visual and textual representations. Previous methods that perform well on this task primarily focus on not only the alignment between region features in images and the corresponding words in sentences, but also the alignment between relations of regions and relational words. However, the lack of joint learning of regional features and global features will cause the regional features to lose contact with the global context, leading to the mismatch with those non-object words which have global meanings in some sentences. In this work, in order to alleviate this issue, it is necessary to enhance the relations between regions and the relations between regional and global concepts to obtain a more accurate visual representation so as to be better correlated to the corresponding text. Thus, a novel multi-level semantic relations enhancement approach named Dual Semantic Relations Attention Network(DSRAN) is proposed which mainly consists of two modules, separate semantic relations module and the joint semantic relations module. DSRAN performs graph attention in both modules respectively for region-level relations enhancement and regional-global relations enhancement at the same time. With these two modules, different hierarchies of semantic relations are learned simultaneously, thus promoting the image-text matching process by providing more information for the final visual representation. Quantitative experimental results have been performed on MS-COCO and Flickr30K and our method outperforms previous approaches by a large margin due to the effectiveness of the dual semantic relations learning scheme.
AbstractList Image-Text Matching is one major task in cross-modal information processing. The main challenge is to learn the unified visual and textual representations. Previous methods that perform well on this task primarily focus on not only the alignment between region features in images and the corresponding words in sentences, but also the alignment between relations of regions and relational words. However, the lack of joint learning of regional features and global features will cause the regional features to lose contact with the global context, leading to the mismatch with those non-object words which have global meanings in some sentences. In this work, in order to alleviate this issue, it is necessary to enhance the relations between regions and the relations between regional and global concepts to obtain a more accurate visual representation so as to be better correlated to the corresponding text. Thus, a novel multi-level semantic relations enhancement approach named Dual Semantic Relations Attention Network(DSRAN) is proposed which mainly consists of two modules, separate semantic relations module and the joint semantic relations module. DSRAN performs graph attention in both modules respectively for region-level relations enhancement and regional-global relations enhancement at the same time. With these two modules, different hierarchies of semantic relations are learned simultaneously, thus promoting the image-text matching process by providing more information for the final visual representation. Quantitative experimental results have been performed on MS-COCO and Flickr30K and our method outperforms previous approaches by a large margin due to the effectiveness of the dual semantic relations learning scheme.
Author Cheng, Qingrong
Gu, Xiaodong
Wen, Keyu
Author_xml – sequence: 1
  givenname: Keyu
  orcidid: 0000-0002-5048-9014
  surname: Wen
  fullname: Wen, Keyu
  organization: Department of Electronic Engineering, Fudan University, Shanghai, China
– sequence: 2
  givenname: Xiaodong
  orcidid: 0000-0002-7096-1830
  surname: Gu
  fullname: Gu, Xiaodong
  email: xdgu@fudan.edu.cn
  organization: Department of Electronic Engineering, Fudan University, Shanghai, China
– sequence: 3
  givenname: Qingrong
  orcidid: 0000-0001-6631-1504
  surname: Cheng
  fullname: Cheng, Qingrong
  organization: Department of Electronic Engineering, Fudan University, Shanghai, China
BookMark eNp9kU1LAzEQhoNUsK3-Ab0EPG_NxyabHEvVWqgIdtVjyKaz7ZY2W7Mp6L93-4EHD55mGN7nHeadHur42gNC15QMKCX6Lh_N3vMBI4wMOOFECnmGulQIlTBGRKftiaCJYlRcoF7TrAihqUqzLnqegg2-8gt8v7NrPION9bFy-BXWNla1b_BHFZd4HOx2iYcxgt9PcVkHPNnYBSQ5fEX8bKNbtiaX6Ly06wauTrWP3h4f8tFTMn0ZT0bDaeKYFjGRaWYLJTUvqOVzxrgq51wLCYJpkE6UUqdClLaQTgJVhdbOZXNOrMukKJzifXR79N2G-nMHTTSrehd8u9IwkWYyZZSkrUodVS7UTROgNK6Kh6tisNXaUGL24ZlDeGYfnjmF16LsD7oN1caG7_-hmyNUAcAvoFn7gkzzH3RmfEY
CODEN ITCTEM
CitedBy_id crossref_primary_10_1145_3689637
crossref_primary_10_1016_j_ipm_2023_103575
crossref_primary_10_1109_TMM_2023_3243665
crossref_primary_10_1016_j_knosys_2024_112912
crossref_primary_10_1016_j_knosys_2024_111503
crossref_primary_10_1109_TPAMI_2022_3178485
crossref_primary_10_1109_TCSVT_2023_3263468
crossref_primary_10_1109_TCSVT_2024_3358411
crossref_primary_10_7717_peerj_cs_2725
crossref_primary_10_1017_S0890060424000143
crossref_primary_10_1007_s11042_024_18431_5
crossref_primary_10_1007_s11042_023_17903_4
crossref_primary_10_1109_TCSVT_2024_3480949
crossref_primary_10_1109_TMM_2023_3248160
crossref_primary_10_1145_3714431
crossref_primary_10_1007_s00530_024_01383_z
crossref_primary_10_1109_TCSVT_2023_3253548
crossref_primary_10_1145_3499027
crossref_primary_10_1016_j_ipm_2023_103288
crossref_primary_10_1109_TMM_2023_3261443
crossref_primary_10_1109_TCSVT_2023_3271318
crossref_primary_10_1109_TCSVT_2022_3162650
crossref_primary_10_1109_TCSVT_2022_3231463
crossref_primary_10_1016_j_neucom_2021_07_017
crossref_primary_10_1109_ACCESS_2025_3529942
crossref_primary_10_1007_s11042_023_17956_5
crossref_primary_10_1109_TCSVT_2022_3164230
crossref_primary_10_1109_TCSVT_2024_3392619
crossref_primary_10_1016_j_image_2023_117021
crossref_primary_10_1109_TCSVT_2022_3226488
crossref_primary_10_1109_TCSVT_2024_3360530
crossref_primary_10_1016_j_eswa_2025_126943
crossref_primary_10_1109_TCSVT_2023_3306738
crossref_primary_10_1016_j_neucom_2024_128082
crossref_primary_10_3390_app121910111
crossref_primary_10_1109_TMM_2023_3316077
crossref_primary_10_1016_j_ipm_2024_103990
crossref_primary_10_1016_j_neucom_2023_02_043
crossref_primary_10_1016_j_ipm_2022_103154
crossref_primary_10_1109_TIP_2023_3348297
crossref_primary_10_1109_TMM_2024_3521736
crossref_primary_10_1016_j_knosys_2025_113355
crossref_primary_10_1109_MMUL_2022_3144972
crossref_primary_10_1109_TCSVT_2021_3073718
crossref_primary_10_1109_TMM_2023_3297391
crossref_primary_10_1109_LSP_2022_3217682
crossref_primary_10_1007_s13735_022_00237_6
crossref_primary_10_1109_TCSVT_2024_3369656
crossref_primary_10_1109_ACCESS_2025_3549781
crossref_primary_10_1109_TNNLS_2022_3188569
crossref_primary_10_1007_s00530_024_01471_0
crossref_primary_10_1109_TCSVT_2022_3182426
crossref_primary_10_1109_TMM_2022_3217384
crossref_primary_10_1016_j_knosys_2022_109356
crossref_primary_10_1016_j_eswa_2022_118474
crossref_primary_10_1109_TCSVT_2022_3182549
crossref_primary_10_1109_TCSVT_2022_3176866
crossref_primary_10_1109_TCSVT_2023_3339489
crossref_primary_10_1109_TIP_2023_3286710
crossref_primary_10_1016_j_neucom_2025_129642
crossref_primary_10_1016_j_neunet_2024_106200
crossref_primary_10_1109_TCSVT_2023_3307554
Cites_doi 10.1609/aaai.v34i07.7005
10.1109/TIP.2018.2882225
10.24963/ijcai.2018/124
10.1109/TCYB.2019.2956975
10.1016/j.neucom.2018.11.089
10.1109/CVPR.2019.00532
10.1145/3123266.3123326
10.1109/ICCV.2015.303
10.1109/ICCV.2015.279
10.1109/CVPR.2016.90
10.1109/TNNLS.2020.2967597
10.1109/ICCV.2019.00585
10.1109/CVPR.2018.00750
10.1109/TCSVT.2017.2705068
10.1109/CVPR.2015.7298935
10.1109/TNN.2008.2005605
10.1109/TCSVT.2019.2916167
10.1109/WACV45572.2020.9093614
10.1109/CVPR.2018.00611
10.1007/s11263-016-0981-7
10.1109/CVPR.2018.00608
10.1109/TCSVT.2020.3017344
10.1109/CVPR.2009.5206848
10.1145/3343031.3350875
10.1109/CVPR.2018.00636
10.24963/ijcai.2019/526
10.1109/CVPR.2017.232
10.24963/ijcai.2019/111
10.1109/ICCV.2019.00475
10.1109/TCSVT.2019.2953692
10.18653/v1/W15-2812
10.1109/CVPR.2016.541
10.3115/v1/D14-1179
10.1109/ACCESS.2020.2969808
10.1162/0899766042321814
10.1145/3284750
10.1109/ICCV.2019.01041
10.1007/978-3-030-01225-0_13
10.1162/neco.1997.9.8.1735
10.1109/TCSVT.2019.2892802
10.1109/CVPR.2015.7298932
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2020.3030656
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 2879
ExternalDocumentID 10_1109_TCSVT_2020_3030656
9222079
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61771145; 61371148
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-647ab8693b1a3d2238fd3956e529e6c5f69455fab6c6e18b99cc7d30ac765bc83
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 05:36:00 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Tue Jul 01 00:41:14 EDT 2025
Wed Aug 27 02:26:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-647ab8693b1a3d2238fd3956e529e6c5f69455fab6c6e18b99cc7d30ac765bc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6631-1504
0000-0002-7096-1830
0000-0002-5048-9014
PQID 2547642104
PQPubID 85433
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2020_3030656
crossref_primary_10_1109_TCSVT_2020_3030656
proquest_journals_2547642104
ieee_primary_9222079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References lin (ref32) 2014
radford (ref36) 2018
ref52
ren (ref20) 2015
ref55
ref11
ref54
ref10
ref17
ref16
ref18
ref51
ref50
simonyan (ref14) 2014
ref46
ref45
ref47
ref42
ref41
ref44
vaswani (ref53) 2017
ref43
matsubara (ref37) 2019
ref49
ref8
ref7
kiros (ref13) 2014
veli?kovi? (ref31) 2017
ref9
ref4
ref6
ref5
ref40
kingma (ref56) 2014
ref35
ref34
ref30
ref33
andrew (ref12) 2013
ref2
ref1
faghri (ref3) 2017
ref39
goodfellow (ref38) 0; 2014
ref24
ref23
ioffe (ref57) 2015
ref26
ref25
ref22
kipf (ref48) 2016
ref21
ref28
ref27
ref29
devlin (ref19) 2018
krizhevsky (ref15) 2012
References_xml – ident: ref55
  doi: 10.1609/aaai.v34i07.7005
– ident: ref29
  doi: 10.1109/TIP.2018.2882225
– ident: ref26
  doi: 10.24963/ijcai.2018/124
– ident: ref9
  doi: 10.1109/TCYB.2019.2956975
– ident: ref28
  doi: 10.1016/j.neucom.2018.11.089
– ident: ref54
  doi: 10.1109/CVPR.2019.00532
– ident: ref2
  doi: 10.1145/3123266.3123326
– ident: ref33
  doi: 10.1109/ICCV.2015.303
– ident: ref5
  doi: 10.1109/ICCV.2015.279
– ident: ref16
  doi: 10.1109/CVPR.2016.90
– ident: ref30
  doi: 10.1109/TNNLS.2020.2967597
– ident: ref45
  doi: 10.1109/ICCV.2019.00585
– year: 2017
  ident: ref31
  article-title: Graph attention networks
  publication-title: arXiv 1710 10903
– ident: ref40
  doi: 10.1109/CVPR.2018.00750
– year: 2015
  ident: ref57
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv 1502 03167
– ident: ref4
  doi: 10.1109/TCSVT.2017.2705068
– ident: ref8
  doi: 10.1109/CVPR.2015.7298935
– ident: ref51
  doi: 10.1109/TNN.2008.2005605
– ident: ref44
  doi: 10.1109/TCSVT.2019.2916167
– ident: ref23
  doi: 10.1109/WACV45572.2020.9093614
– ident: ref24
  doi: 10.1109/CVPR.2018.00611
– start-page: 1247
  year: 2013
  ident: ref12
  article-title: Deep canonical correlation analysis
  publication-title: Proc Int Conf Mach Learn
– ident: ref47
  doi: 10.1007/s11263-016-0981-7
– year: 2014
  ident: ref14
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– year: 2016
  ident: ref48
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: arXiv 1609 02907
– ident: ref7
  doi: 10.1109/CVPR.2018.00608
– ident: ref41
  doi: 10.1109/TCSVT.2020.3017344
– ident: ref35
  doi: 10.1109/CVPR.2009.5206848
– ident: ref43
  doi: 10.1145/3343031.3350875
– start-page: 1097
  year: 2012
  ident: ref15
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 91
  year: 2015
  ident: ref20
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref6
  doi: 10.1109/CVPR.2018.00636
– ident: ref46
  doi: 10.24963/ijcai.2019/526
– start-page: 5998
  year: 2017
  ident: ref53
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref42
  doi: 10.1109/CVPR.2017.232
– year: 2018
  ident: ref19
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: arXiv 1810 04805
– ident: ref49
  doi: 10.24963/ijcai.2019/111
– year: 2017
  ident: ref3
  article-title: VSE++: Improving visual-semantic embeddings with hard negatives
  publication-title: arXiv 1707 05612
– year: 2019
  ident: ref37
  article-title: Target-oriented deformation of visual-semantic embedding space
  publication-title: arXiv 1910 06514
– year: 2018
  ident: ref36
  publication-title: Improving language understanding by generative pre-training
– year: 2014
  ident: ref56
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref22
  doi: 10.1109/ICCV.2019.00475
– ident: ref50
  doi: 10.1109/TCSVT.2019.2953692
– ident: ref25
  doi: 10.18653/v1/W15-2812
– ident: ref34
  doi: 10.1109/CVPR.2016.541
– ident: ref18
  doi: 10.3115/v1/D14-1179
– ident: ref27
  doi: 10.1109/ACCESS.2020.2969808
– ident: ref1
  doi: 10.1162/0899766042321814
– ident: ref39
  doi: 10.1145/3284750
– ident: ref52
  doi: 10.1109/ICCV.2019.01041
– volume: 2014
  start-page: 2672
  year: 0
  ident: ref38
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref21
  doi: 10.1007/978-3-030-01225-0_13
– ident: ref17
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref10
  doi: 10.1109/TCSVT.2019.2892802
– ident: ref11
  doi: 10.1109/CVPR.2015.7298932
– start-page: 740
  year: 2014
  ident: ref32
  article-title: Microsoft coco: Common objects in context
  publication-title: Proc Eur Conf Comput Vis
– year: 2014
  ident: ref13
  article-title: Unifying visual-semantic embeddings with multimodal neural language models
  publication-title: arXiv 1411 2539
SSID ssj0014847
Score 2.6022525
Snippet Image-Text Matching is one major task in cross-modal information processing. The main challenge is to learn the unified visual and textual representations....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2866
SubjectTerms Alignment
Automobiles
Birds
Cross-modal retrieval
Data processing
Feature extraction
graph attention
Hierarchies
Image retrieval
image text matching
Learning
Modules
Representations
semantic relation
Semantic relations
Semantics
Sentences
Task analysis
Visualization
Words (language)
Title Learning Dual Semantic Relations With Graph Attention for Image-Text Matching
URI https://ieeexplore.ieee.org/document/9222079
https://www.proquest.com/docview/2547642104
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MwDLXGTnDgayAGA-XADbq1a5M2x2kwBtK4bIPdqjRNYIJtCLoLvx4n7aoJEOLWgyNFTmo_O882wLnB7BqBukNTbVM33MFYRTsIBlxtMmeMmuLkwT3rj4O7CZ1U4LKshVFKWfKZappP-5afLuTSpMpaHJ2ZG_IN2MDALa_VKl8MgsgOE0O44DkR-rFVgYzLW6Pu8GGEoWAbI1QDkc2w6jUnZKeq_DDF1r_0dmCw2llOK3lpLrOkKT-_NW3879Z3YbsAmqST34w9qKj5PmyttR-swaBorvpErpYoOlQzVPNUkpIgRx6n2TO5MT2tSSfLcmYkQZhLbmdoh5wRWnYyQGNu0lgHMO5dj7p9pxiv4Mg2p5nDglAkEeN-4gk_RZgQ6dTHcEnRNldMUs14QKkWCZNMeVHCuZRh6rtChowmMvIPoTpfzNUREFS4EB5H2UgEOpSIubTvJYZh6otUeHXwVvqOZdF73IzAeI1tDOLy2J5RbM4oLs6oDhflmre888af0jWj9FKy0HcdGqtjjYuf8yPGmDg09b1ucPz7qhPYbBvqimXlNqCavS_VKWKPLDmzl-4L93DT7Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgHIADr4EYzxy4Qbd2bdPmOA3GeJQLHXCr0jSBCbYh6C78epy0qxAgxK0HR4qc1P7sfLYBjjRmVwjULT9TJnXDLIxVlIVgwFY6c0Z9XZwc3dD-wLt88B_m4KSqhZFSGvKZbOpP85afTcRUp8paDJ2ZHbB5WEC_7ztFtVb1ZuCFZpwYAgbHCtGTzUpkbNaKu7d3MQaDbYxRNUjW46q_uCEzV-WHMTYeprcK0WxvBbHkuTnN06b4-Na28b-bX4OVEmqSTnE31mFOjjdg-UsDwjpEZXvVR3I6RdFbOUJFDwWpKHLkfpg_kXPd1Zp08rzgRhIEuuRihJbIitG2kwjNuU5kbcKgdxZ3-1Y5YMESbebnFvUCnoaUuanD3QyBQqgyFwMm6beZpMJXlKGeFU-poNIJU8aECDLX5iKgfipCdwtq48lYbgNBhXPuMJQNuacCgahLuU6qOaYuz7jTAGem70SU3cf1EIyXxEQhNkvMGSX6jJLyjBpwXK15LXpv_Cld10qvJEt9N2BvdqxJ-Xu-JxgVB7rC1_Z2fl91CIv9OLpOri9urnZhqa2JLIajuwe1_G0q9xGJ5OmBuYCfL_HXNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Dual+Semantic+Relations+With+Graph+Attention+for+Image-Text+Matching&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Wen%2C+Keyu&rft.au=Gu%2C+Xiaodong&rft.au=Cheng%2C+Qingrong&rft.date=2021-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=31&rft.issue=7&rft.spage=2866&rft_id=info:doi/10.1109%2FTCSVT.2020.3030656&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon