A Comparative Study on Cure Kinetics of Layered Double Hydroxide (LDH)/Epoxy Nanocomposites
Layered double hydroxide (LDH) minerals are promising candidates for developing polymer nanocomposites and the exchange of intercalating anions and metal ions in the LDH structure considerably affects their ultimate properties. Despite the fact that the synthesis of various kinds of LDHs has been th...
Saved in:
Published in | Journal of composites science Vol. 4; no. 3; p. 111 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Layered double hydroxide (LDH) minerals are promising candidates for developing polymer nanocomposites and the exchange of intercalating anions and metal ions in the LDH structure considerably affects their ultimate properties. Despite the fact that the synthesis of various kinds of LDHs has been the subject of numerous studies, the cure kinetics of LDH-based thermoset polymer composites has rarely been investigated. Herein, binary and ternary structures, including [Mg0.75 Al0.25 (OH)2]0.25+ [(CO32−)0.25/2∙m H2O]0.25−, [Mg0.75 Al0.25 (OH)2]0.25+ [(NO3−)0.25∙m H2O]0.25− and [Mg0.64 Zn0.11 Al0.25 (OH)2]0.25+ [(CO32−)0.25/2∙m H2O]0.25−, have been incorporated into epoxy to study the cure kinetics of the resulting nanocomposites by differential scanning calorimetry (DSC). Both integral and differential isoconversional methods serve to study the non-isothermal curing reactions of epoxy nanocomposites. The effects of carbonate and nitrate ions as intercalating agents on the cure kinetics are also discussed. The activation energy of cure (Eα) was calculated based on the Friedman and Kissinger–Akahira–Sunose (KAS) methods for epoxy/LDH nanocomposites. The order of autocatalytic reaction (m) for the epoxy/Mg-Al-NO3 (0.30 and 0.254 calculated by the Friedman and KAS methods, respectively) was smaller than that of the neat epoxy, which suggested a shift of the curing mechanism from an autocatalytic to noncatalytic reaction. Moreover, a higher frequency factor for the aforementioned nanocomposite suggests that the incorporation of Mg-Al-NO3 in the epoxy composite improved the curability of the epoxy. The results elucidate that the intercalating anions and the metal constituent of LDH significantly govern the cure kinetics of epoxy by the participation of nitrate anions in the epoxide ring-opening reaction. |
---|---|
AbstractList | Layered double hydroxide (LDH) minerals are promising candidates for developing polymer nanocomposites and the exchange of intercalating anions and metal ions in the LDH structure considerably affects their ultimate properties. Despite the fact that the synthesis of various kinds of LDHs has been the subject of numerous studies, the cure kinetics of LDH-based thermoset polymer composites has rarely been investigated. Herein, binary and ternary structures, including [Mg0.75 Al0.25 (OH)2]0.25+ [(CO32−)0.25/2∙m H2O]0.25−, [Mg0.75 Al0.25 (OH)2]0.25+ [(NO3−)0.25∙m H2O]0.25− and [Mg0.64 Zn0.11 Al0.25 (OH)2]0.25+ [(CO32−)0.25/2∙m H2O]0.25−, have been incorporated into epoxy to study the cure kinetics of the resulting nanocomposites by differential scanning calorimetry (DSC). Both integral and differential isoconversional methods serve to study the non-isothermal curing reactions of epoxy nanocomposites. The effects of carbonate and nitrate ions as intercalating agents on the cure kinetics are also discussed. The activation energy of cure (Eα) was calculated based on the Friedman and Kissinger–Akahira–Sunose (KAS) methods for epoxy/LDH nanocomposites. The order of autocatalytic reaction (m) for the epoxy/Mg-Al-NO3 (0.30 and 0.254 calculated by the Friedman and KAS methods, respectively) was smaller than that of the neat epoxy, which suggested a shift of the curing mechanism from an autocatalytic to noncatalytic reaction. Moreover, a higher frequency factor for the aforementioned nanocomposite suggests that the incorporation of Mg-Al-NO3 in the epoxy composite improved the curability of the epoxy. The results elucidate that the intercalating anions and the metal constituent of LDH significantly govern the cure kinetics of epoxy by the participation of nitrate anions in the epoxide ring-opening reaction. |
Author | Ganjali, Mohammad Reza Vijayan P., Poornima Karami, Zohre Saeb, Mohammad Reza Jouyandeh, Maryam Esmaeili, Amin Habibzadeh, Sajjad Paran, Seyed Mohammad Reza J. Stadler, Florian |
Author_xml | – sequence: 1 givenname: Zohre surname: Karami fullname: Karami, Zohre – sequence: 2 givenname: Seyed Mohammad Reza surname: Paran fullname: Paran, Seyed Mohammad Reza – sequence: 3 givenname: Poornima orcidid: 0000-0002-2899-038X surname: Vijayan P. fullname: Vijayan P., Poornima – sequence: 4 givenname: Mohammad Reza surname: Ganjali fullname: Ganjali, Mohammad Reza – sequence: 5 givenname: Maryam orcidid: 0000-0003-0435-6226 surname: Jouyandeh fullname: Jouyandeh, Maryam – sequence: 6 givenname: Amin orcidid: 0000-0002-8414-230X surname: Esmaeili fullname: Esmaeili, Amin – sequence: 7 givenname: Sajjad surname: Habibzadeh fullname: Habibzadeh, Sajjad – sequence: 8 givenname: Florian orcidid: 0000-0002-5849-1485 surname: J. Stadler fullname: J. Stadler, Florian – sequence: 9 givenname: Mohammad Reza orcidid: 0000-0001-9907-9414 surname: Saeb fullname: Saeb, Mohammad Reza |
BookMark | eNptkFFLwzAUhYNMcM69-AsCvqhQlzRJ2zyObjqx6IMKgg8lTRPI2JqapGP991YmKOLTvRe-c-695xSMGtsoAM4xuiGEo9laeooIwhgfgXHMEI1omr6NfvUnYOr9GiEUp5wiTsbgfQ5zu22FE8HsFHwOXd1D28C8cwo-mEYFIz20GhaiV07VcGG7aqPgqq-d3ZtawctisbqaLVu77-GjaKwc7Kw3QfkzcKzFxqvpd52A19vlS76Kiqe7-3xeRDLmLERJjHSVkARnTDI1XIap1ImOs5hTwquMa5KyRHPNWFXpJJOsHgaqKy24YDUhE3Bx8G2d_eiUD-Xadq4ZVpYxJRQTlqbJQKEDJZ313ildShOGr20TnDCbEqPyK8XyJ8VBcv1H0jqzFa7_D_4EC4Bz8g |
CitedBy_id | crossref_primary_10_1134_S0965545X21350145 crossref_primary_10_3390_nano11113078 crossref_primary_10_1016_j_aiepr_2023_01_007 crossref_primary_10_1016_j_porgcoat_2022_107121 crossref_primary_10_1021_acssuschemeng_0c08636 crossref_primary_10_1002_mame_202100734 crossref_primary_10_3390_molecules27092870 crossref_primary_10_1002_fam_3181 crossref_primary_10_1016_j_tca_2021_179133 crossref_primary_10_1016_j_colsurfa_2020_125826 crossref_primary_10_1007_s11998_022_00624_y crossref_primary_10_3390_polym13193452 |
Cites_doi | 10.1016/j.porgcoat.2019.105505 10.1016/j.porgcoat.2019.105227 10.1016/j.porgcoat.2019.105217 10.1002/macp.200350051 10.1016/j.porgcoat.2018.09.019 10.1016/j.porgcoat.2017.07.015 10.1016/j.porgcoat.2019.105290 10.1016/j.porgcoat.2019.105255 10.1016/j.porgcoat.2019.06.044 10.1007/s10973-005-7044-6 10.1016/j.porgcoat.2017.05.007 10.1016/j.tca.2015.06.006 10.1002/pen.20046 10.1016/0040-6031(93)80273-D 10.3390/polym12030644 10.1016/j.porgcoat.2019.105355 10.1016/j.clay.2015.10.018 10.1016/j.clay.2019.105431 10.1021/ef00050a014 10.1016/j.porgcoat.2019.105245 10.1016/j.tca.2019.178317 10.1016/j.tca.2018.12.016 10.1016/j.tca.2011.03.034 10.1016/j.compositesa.2010.11.005 10.1016/j.porgcoat.2019.105264 10.1016/j.clay.2011.11.014 10.1016/j.porgcoat.2019.06.047 10.1016/j.cej.2012.01.134 10.1016/j.porgcoat.2019.105278 10.1016/j.porgcoat.2019.105250 10.1021/cm0110268 10.1016/j.porgcoat.2018.10.007 10.3390/jcs3010011 10.1016/j.porgcoat.2019.105283 10.1039/C7CY02314F 10.1021/ac60131a045 10.1016/j.jallcom.2020.154547 10.1007/s10698-015-9235-y 10.1016/j.tca.2017.09.020 10.1016/j.polymer.2005.03.114 10.3390/jcs4020055 10.1016/0040-6031(89)87270-3 10.1016/j.clay.2019.04.022 10.3390/polym12051157 10.1016/j.clay.2014.04.034 10.1016/j.porgcoat.2019.105252 10.1016/j.tca.2011.11.018 10.1002/polb.20220 10.1002/macp.200700100 10.1016/j.cej.2020.125196 10.1590/01000683rbcs2015081 10.1016/j.porgcoat.2019.105228 10.1016/j.porgcoat.2019.105246 10.1016/j.clay.2017.12.047 10.1007/BF01911411 10.1016/j.porgcoat.2019.06.045 10.2478/s11696-011-0100-8 10.1016/j.apsusc.2019.01.283 10.1016/j.porgcoat.2019.04.034 10.3390/polym12040930 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.3390/jcs4030111 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (New) Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2504-477X |
ExternalDocumentID | 10_3390_jcs4030111 |
GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I HCIFZ KB. MODMG M~E OK1 P62 PDBOC PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c295t-620fb636185c5e27914cf6f2829439b89f3756f9f55bbf68c5df9f4fbfa9a5d33 |
IEDL.DBID | BENPR |
ISSN | 2504-477X |
IngestDate | Fri Jul 25 11:44:42 EDT 2025 Tue Jul 01 02:49:21 EDT 2025 Thu Apr 24 23:08:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-620fb636185c5e27914cf6f2829439b89f3756f9f55bbf68c5df9f4fbfa9a5d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2899-038X 0000-0003-0435-6226 0000-0002-5849-1485 0000-0002-8414-230X 0000-0001-9907-9414 |
OpenAccessLink | https://www.proquest.com/docview/2434135776?pq-origsite=%requestingapplication% |
PQID | 2434135776 |
PQPubID | 2059560 |
ParticipantIDs | proquest_journals_2434135776 crossref_citationtrail_10_3390_jcs4030111 crossref_primary_10_3390_jcs4030111 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Journal of composites science |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Jouyandeh (ref_47) 2019; 136 Jouyandeh (ref_24) 2019; 136 Ozawa (ref_59) 1970; 2 Jouyandeh (ref_46) 2020; 140 ref_53 Sbirrazzuoli (ref_58) 2007; 208 Qu (ref_5) 2016; 119 Leroux (ref_7) 2001; 13 Kissinger (ref_56) 1957; 29 Saeb (ref_41) 2017; 110 Jouyandeh (ref_44) 2019; 136 Jouyandeh (ref_54) 2019; 136 Karami (ref_17) 2019; 136 Wu (ref_4) 2018; 8 Montserrat (ref_49) 1993; 228 Peng (ref_50) 2018; 659 Tao (ref_60) 2014; 95 Costa (ref_45) 2012; 56 Jouyandeh (ref_19) 2019; 133 Xie (ref_20) 2004; 42 Jouyandeh (ref_12) 2019; 136 Jouyandeh (ref_16) 2019; 479 Jouyandeh (ref_22) 2019; 136 ref_25 Wang (ref_55) 2019; 672 Wan (ref_37) 2012; 188 Grivel (ref_38) 2012; 529 Jouyandeh (ref_43) 2020; 829 Karami (ref_34) 2020; 138 Jouyandeh (ref_23) 2019; 137 Ay (ref_3) 2012; 66 Jouyandeh (ref_51) 2019; 136 ref_27 Karami (ref_30) 2019; 136 Li (ref_62) 2015; 614 ref_26 Karami (ref_31) 2019; 136 Jouyandeh (ref_29) 2019; 126 Seidi (ref_42) 2020; 6 Silva (ref_6) 2015; 39 Dimier (ref_36) 2004; 44 Jouyandeh (ref_10) 2019; 136 Bello (ref_52) 2019; 679 Saeb (ref_28) 2017; 112 Karami (ref_32) 2020; 139 Akahira (ref_57) 1971; 16 Bajat (ref_13) 2018; 154 Jouyandeh (ref_11) 2020; 396 Jouyandeh (ref_18) 2019; 137 Miura (ref_40) 1995; 9 Vyazovkin (ref_39) 2006; 83 Schaming (ref_1) 2015; 17 Zhou (ref_61) 2005; 46 Karami (ref_35) 2018; 125 Vyazovkin (ref_33) 2011; 520 Chatterjee (ref_2) 2019; 177 (ref_48) 1989; 138 Zuo (ref_14) 2020; 186 Bayat (ref_15) 2019; 136 Becker (ref_9) 2011; 42 ref_8 Sbirrazzuoli (ref_21) 2003; 204 |
References_xml | – volume: 140 start-page: 105505 year: 2020 ident: ref_46 article-title: Nonisothermal cure kinetics of epoxy/MnxFe3-xO4 nanocomposites publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105505 – volume: 136 start-page: 105227 year: 2019 ident: ref_54 article-title: Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized ZnxFe3-xO4 magnetic nanoparticles publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105227 – volume: 136 start-page: 105217 year: 2019 ident: ref_47 article-title: Cure kinetics of epoxy/graphene oxide (GO) nanocomposites: Effect of starch functionalization of GO nanosheets publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105217 – volume: 204 start-page: 1815 year: 2003 ident: ref_21 article-title: A study of epoxy-amine cure kinetics by combining isoconversional analysis with temperature modulated DSC and dynamic rheometry publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.200350051 – volume: 16 start-page: 22 year: 1971 ident: ref_57 article-title: Res. Report Chiba Inst publication-title: Technol. Sci. Technol – volume: 125 start-page: 222 year: 2018 ident: ref_35 article-title: State of cure in silicone/clay nanocomposite coatings: The puzzle and the solution publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2018.09.019 – volume: 112 start-page: 176 year: 2017 ident: ref_28 article-title: Calorimetric analysis and molecular dynamics simulation of cure kinetics of epoxy/chitosan-modified Fe3O4 nanocomposites publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2017.07.015 – volume: 136 start-page: 105290 year: 2019 ident: ref_51 article-title: Nonisothermal cure kinetics of epoxy/ZnxFe3-xO4 nanocomposites publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105290 – volume: 139 start-page: 105255 year: 2020 ident: ref_32 article-title: Exploring curing potential of epoxy nanocomposites containing nitrate anion intercalated Mg–Al–LDH with Cure Index publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105255 – volume: 136 start-page: 105198 year: 2019 ident: ref_10 article-title: Curing epoxy with electrochemically synthesized NixFe3-xO4 magnetic nanoparticles publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.06.044 – volume: 83 start-page: 45 year: 2006 ident: ref_39 article-title: Model-free kinetics publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-005-7044-6 – volume: 110 start-page: 172 year: 2017 ident: ref_41 article-title: Cure kinetics of epoxy/β-cyclodextrin-functionalized Fe3O4 nanocomposites: Experimental analysis, mathematical modeling, and molecular dynamics simulation publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2017.05.007 – volume: 614 start-page: 76 year: 2015 ident: ref_62 article-title: Curing characteristics of an epoxy resin in the presence of functional graphite oxide with amine-rich surface publication-title: Thermochim. Acta doi: 10.1016/j.tca.2015.06.006 – volume: 44 start-page: 518 year: 2004 ident: ref_36 article-title: Curing kinetics and chemorheological analysis of polyurethane formation publication-title: Polym. Eng. Sci. doi: 10.1002/pen.20046 – volume: 228 start-page: 47 year: 1993 ident: ref_49 article-title: A kinetic analysis of the curing reaction of an epoxy resin publication-title: Thermochim. Acta doi: 10.1016/0040-6031(93)80273-D – ident: ref_26 doi: 10.3390/polym12030644 – volume: 138 start-page: 105355 year: 2020 ident: ref_34 article-title: Epoxy/Zn-Al-CO3 LDH nanocomposites: Curability assessment publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105355 – volume: 119 start-page: 185 year: 2016 ident: ref_5 article-title: Mechanochemical approaches to synthesize layered double hydroxides: A review publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2015.10.018 – volume: 186 start-page: 105431 year: 2020 ident: ref_14 article-title: Effects of metakaolin on the mechanical and anticorrosion properties of epoxy emulsion cement mortar publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2019.105431 – volume: 9 start-page: 302 year: 1995 ident: ref_40 article-title: A new and simple method to estimate f (E) and k0 (E) in the distributed activation energy model from three sets of experimental data publication-title: Energy Fuels doi: 10.1021/ef00050a014 – volume: 136 start-page: 105245 year: 2019 ident: ref_44 article-title: Curing epoxy with electrochemically synthesized GdxFe3-xO4 magnetic nanoparticles publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105245 – volume: 679 start-page: 178317 year: 2019 ident: ref_52 article-title: Curing kinetics of chemically recyclable thermoset and their nanocomposites publication-title: Thermochim. Acta doi: 10.1016/j.tca.2019.178317 – volume: 672 start-page: 60 year: 2019 ident: ref_55 article-title: Optimizing curing process of graphene oxide/waterborne epoxy blends by curing kinetics simulation considering the coupling of heat conduction and curing reaction publication-title: Thermochim. Acta doi: 10.1016/j.tca.2018.12.016 – volume: 520 start-page: 1 year: 2011 ident: ref_33 article-title: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data publication-title: Thermochim. Acta doi: 10.1016/j.tca.2011.03.034 – volume: 42 start-page: 196 year: 2011 ident: ref_9 article-title: Mechanical and flame-retardant properties of epoxy/Mg–Al LDH composites publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2010.11.005 – volume: 136 start-page: 105264 year: 2019 ident: ref_31 article-title: Development of Mg-Zn-Al-CO3 ternary LDH and its curability in epoxy/amine system publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105264 – volume: 56 start-page: 16 year: 2012 ident: ref_45 article-title: Comparative Structural, thermodynamic and electronic analyses of ZnAlAn− hydrotalcite-like compounds (An− Cl−, F−, Br−, OH−, CO32− or NO3−): An ab initio study publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2011.11.014 – volume: 136 start-page: 105201 year: 2019 ident: ref_15 article-title: Thin films of epoxy adhesives containing recycled polymers and graphene oxide nanoflakes for metal/polymer composite interface publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.06.047 – volume: 188 start-page: 160 year: 2012 ident: ref_37 article-title: A comparative study of epoxy resin cured with a linear diamine and a branched polyamine publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.01.134 – volume: 136 start-page: 105278 year: 2019 ident: ref_30 article-title: Curing epoxy with Mg-Al LDH nanoplatelets intercalated with carbonate ion publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105278 – volume: 136 start-page: 105250 year: 2019 ident: ref_24 article-title: Curing epoxy with polyethylene glycol (PEG) surface-functionalized NixFe3-xO4magnetic nanoparticles publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105250 – volume: 13 start-page: 3507 year: 2001 ident: ref_7 article-title: Polymer interleaved layered double hydroxide: A new emerging class of nanocomposites publication-title: Chem. Mater. doi: 10.1021/cm0110268 – volume: 126 start-page: 129 year: 2019 ident: ref_29 article-title: Curing epoxy resin with anhydride in the presence of halloysite nanotubes: The contradictory effects of filler concentration publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2018.10.007 – ident: ref_8 doi: 10.3390/jcs3010011 – volume: 137 start-page: 105283 year: 2019 ident: ref_18 article-title: Curing epoxy with polyethylene glycol (PEG) surface-functionalized GdxFe3-xO4 magnetic nanoparticles publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105283 – volume: 8 start-page: 1207 year: 2018 ident: ref_4 article-title: A review on fabricating heterostructures from layered double hydroxides for enhanced photocatalytic activities publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY02314F – volume: 29 start-page: 1702 year: 1957 ident: ref_56 article-title: Reaction kinetics in differential thermal analysis publication-title: Anal. Chem. doi: 10.1021/ac60131a045 – volume: 829 start-page: 154547 year: 2020 ident: ref_43 article-title: Synthesis, characterization, and high potential of 3D metal–organic framework (MOF) nanoparticles for curing with epoxy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154547 – volume: 17 start-page: 187 year: 2015 ident: ref_1 article-title: Nanotechnology: From the ancient time to nowadays publication-title: Found. Chem. doi: 10.1007/s10698-015-9235-y – volume: 659 start-page: 27 year: 2018 ident: ref_50 article-title: Curing kinetics study on highly efficient thermal synergistic polymerization effect between alicyclic imide moiety and phthalonitrile publication-title: Thermochim. Acta doi: 10.1016/j.tca.2017.09.020 – volume: 46 start-page: 6174 year: 2005 ident: ref_61 article-title: Studying on the curing kinetics of a DGEBA/EMI-2, 4/nano-sized carborundum system with two curing kinetic methods publication-title: Polymer doi: 10.1016/j.polymer.2005.03.114 – ident: ref_27 doi: 10.3390/jcs4020055 – volume: 138 start-page: 337 year: 1989 ident: ref_48 article-title: A computer program for kinetic analysis of non-isothermal thermoanalytical data publication-title: Thermochim. Acta doi: 10.1016/0040-6031(89)87270-3 – volume: 177 start-page: 19 year: 2019 ident: ref_2 article-title: Layered double hydroxide based bionanocomposites publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2019.04.022 – ident: ref_53 doi: 10.3390/polym12051157 – volume: 95 start-page: 317 year: 2014 ident: ref_60 article-title: Effect of functionalized kaolinite on the curing kinetics of cycloaliphatic epoxy/anhydride system publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2014.04.034 – volume: 6 start-page: e03798 year: 2020 ident: ref_42 article-title: Super-crosslinked ionic liquid-intercalated montmorillonite/epoxy nanocomposites: Cure kinetics, viscoelastic behavior and thermal degradation mechanism publication-title: Polym. Eng. Sci. – volume: 137 start-page: 105252 year: 2019 ident: ref_23 article-title: Curing epoxy with electrochemically synthesized CoxFe3-xO4 magnetic nanoparticles publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105252 – volume: 529 start-page: 29 year: 2012 ident: ref_38 article-title: Study on the non-isothermal curing kinetics of a polyfurfuryl alcohol bioresin by DSC using different amounts of catalyst publication-title: Thermochim. Acta doi: 10.1016/j.tca.2011.11.018 – volume: 42 start-page: 3701 year: 2004 ident: ref_20 article-title: Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry publication-title: J. Polym. Sci. Part B Polym. Phys. doi: 10.1002/polb.20220 – volume: 208 start-page: 1592 year: 2007 ident: ref_58 article-title: Is the Friedman method applicable to transformations with temperature dependent reaction heat? publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.200700100 – volume: 396 start-page: 125196 year: 2020 ident: ref_11 article-title: Highly curable self-healing vitrimer-like cellulose-modified halloysite nanotube/epoxy nanocomposite coatings publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125196 – volume: 39 start-page: 1 year: 2015 ident: ref_6 article-title: Layered double hydroxides: Nanomaterials for applications in agriculture publication-title: Rev. Bras. Ciênc. Solo doi: 10.1590/01000683rbcs2015081 – volume: 136 start-page: 105228 year: 2019 ident: ref_17 article-title: Cure Index for labeling curing potential of epoxy/LDH nanocomposites: A case study on nitrate anion intercalated Ni-Al-LDH publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105228 – volume: 136 start-page: 105246 year: 2019 ident: ref_12 article-title: Curing epoxy with electrochemically synthesized ZnxFe3-xO4 magnetic nanoparticles publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105246 – volume: 154 start-page: 52 year: 2018 ident: ref_13 article-title: Dispersion efficiency of montmorillonites in epoxy nanocomposites using solution intercalation and direct mixing methods publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2017.12.047 – volume: 2 start-page: 301 year: 1970 ident: ref_59 article-title: Kinetic analysis of derivative curves in thermal analysis publication-title: J. Therm. Anal. Calorim. doi: 10.1007/BF01911411 – volume: 136 start-page: 105199 year: 2019 ident: ref_22 article-title: Curing epoxy with electrochemically synthesized MnxFe3-xO4 magnetic nanoparticles publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.06.045 – volume: 66 start-page: 1 year: 2012 ident: ref_3 article-title: Layered double hydroxides—Multifunctional nanomaterials publication-title: Chem. Pap. doi: 10.2478/s11696-011-0100-8 – volume: 479 start-page: 1148 year: 2019 ident: ref_16 article-title: Bushy-surface hybrid nanoparticles for developing epoxy superadhesives publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.01.283 – volume: 133 start-page: 220 year: 2019 ident: ref_19 article-title: Properties of nano-Fe3O4 incorporated epoxy coatings from Cure Index perspective publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.04.034 – ident: ref_25 doi: 10.3390/polym12040930 |
SSID | ssj0002794093 |
Score | 2.186321 |
Snippet | Layered double hydroxide (LDH) minerals are promising candidates for developing polymer nanocomposites and the exchange of intercalating anions and metal ions... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 111 |
SubjectTerms | Aluminum Anion exchanging Comparative studies Curing Epoxy resins Heat Hydroxides Kinetics Magnesium Mathematical analysis Metallurgical constituents Methods Nanocomposites Nanoparticles Nitrates Polymer matrix composites Reaction kinetics Ring opening Thermosetting resins |
Title | A Comparative Study on Cure Kinetics of Layered Double Hydroxide (LDH)/Epoxy Nanocomposites |
URI | https://www.proquest.com/docview/2434135776 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSwJBEF5SX3qJoiLLZKEe8uHwvNvdu3sKM03KJCJB6OHYn1CIZ56C_vfN6qoI0eNx-3Izt99838wwg9CtMH4kOXgA4FF4JJKAg1EkvFiFKuEqbHBjK7qvfdYdkOchHbqEW-7aKjeYuAJqlUmbI68HxOItjSJ2P_nx7NYoW111KzQKqAQQHIP4Kj20-2_v2yxLAL8baPb1XNIQ9H39W-ZkJQMa-5FoH4hX0aVzjI4cLcTNtR9P0IEen6LPJm7thnNj2_K3xNkYt-ZTjV-AHtoRyzgzuMeXduUmBjYsRhp3l2qaLb6Uxne9x26t3p5kiyUGHM1sA7nt0tL5GRp02h-trueWIXgySOjMY4FvBAsZxFdJNXxXg0jDjC2EAqcQcWLCiDKTGEqFMCyWVMEDMcLwhFMVhueoOM7G-gLhmFMpBFA_P06IpowTETHjx0RRykjCy6i2MUwq3aRwu7BilIJisEZMd0Yso5vt2cl6Psafpyob-6bujuTpzqOX_7--QoeBVbmrxEcFFWfTub4GKjATVVSIO09V5_VfAsm1Ww |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyNBEG7EPexell1cWXfVbVBBD0MmM_2YPsgSonE00ZOC4GHsJ7hIJptEzPwpf6NVk4xBEG8em276UFX91bOrCNk1IZZWAwcAHk3EpAUclNJEmUud0i5t64AZ3fMLkV-xs2t-vUKemr8wWFbZYGIN1K60GCNvJQzxlksp_o7-Rzg1CrOrzQiNuVj0ffUILtvk8PQI-LuXJL3jy24eLaYKRDZRfBqJJA5GpAIUleU-karNbBABM4qgnE2mQiq5CCpwbkwQmeUOFiyYoJXmDgOgAPmfWJoqfFFZ7-QlpgOXgbuUzrugwn7c-mcnrHY62q_13mvYr3VZ7xv5ujBCaWcuNd_Jih-ukZsO7S5bgVMsMKxoOaTdh7GnfTBGsaEzLQMd6AoHfFKwvc29p3nlxuXsznm6PzjKD1rHo3JWUUDtEsvVsSbMT36Qqw8h0jpZHZZD_5PQTHNrDBiacaaY50IzI0WIM-Y4F0zpDXLQEKawi77kOB7jvgD_BIlYLIm4QXZezo7m3TjePLXZ0LdYvMhJsZSfX-9v_yGf88vzQTE4vej_Jl8S9K_rkMsmWZ2OH_wWGCFTs11znpLbjxa1Zzdx8C0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6CDSWXkJKGJnHThTSQHIRlaR_aQyipHzi1Y0yJIZCDsk9oMZbjB7X-Wn5dZm0pJlB6y1Fo0WFm9M18M7MzCH1TLuRaggYAHlVAuAYc5FwFiYmNkCZuSOcrurcD1h2Rn_f0fgc9l3dhfFtliYlroDaZ9jnyekQ83lLOWd0VbRHDVuf79CnwG6R8pbVcp7ExkZ7N_wJ9m1_dtEDX51HUad81u0GxYSDQkaCLgEWhUyxm4LQ0tREXDaIdc766CI5aJcLFnDInHKVKOZZoauCBOOWkkNT4ZCjAf5UDKworqPqjPRj-es3wwOeAPMWbmahxLML6Hz0nawrSeOsF3zqBtWfr7KO9IiTF1xsb-oh27OQAPVzj5nYwOPbthjnOJri5nFncg9DUj3fGmcN9mft1nxgicTW2uJubWbb6bSy-6Le6l_X2NFvlGDA8883rvkPMzj-h0buI6RBVJtnEfkY4kVQrBWFnmAhiKZNEcebChBhKGRHyCF2Wgkl1MaXcL8sYp8BWvBDTrRCP0Nnr2elmNsc_T9VK-abF_zlPt9Z0_P_XX9EHMLO0fzPonaDdyJPtdf6lhiqL2dJ-gYhkoU4L1WP0-N7W9gIkA_W_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+on+Cure+Kinetics+of+Layered+Double+Hydroxide+%28LDH%29%2FEpoxy+Nanocomposites&rft.jtitle=Journal+of+composites+science&rft.au=Karami%2C+Zohre&rft.au=Paran%2C+Seyed+Mohammad+Reza&rft.au=Vijayan+P.%2C+Poornima&rft.au=Ganjali%2C+Mohammad+Reza&rft.date=2020&rft.issn=2504-477X&rft.eissn=2504-477X&rft.volume=4&rft.issue=3&rft.spage=111&rft_id=info:doi/10.3390%2Fjcs4030111&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jcs4030111 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-477X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-477X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-477X&client=summon |