A Comparative Study on Cure Kinetics of Layered Double Hydroxide (LDH)/Epoxy Nanocomposites

Layered double hydroxide (LDH) minerals are promising candidates for developing polymer nanocomposites and the exchange of intercalating anions and metal ions in the LDH structure considerably affects their ultimate properties. Despite the fact that the synthesis of various kinds of LDHs has been th...

Full description

Saved in:
Bibliographic Details
Published inJournal of composites science Vol. 4; no. 3; p. 111
Main Authors Karami, Zohre, Paran, Seyed Mohammad Reza, Vijayan P., Poornima, Ganjali, Mohammad Reza, Jouyandeh, Maryam, Esmaeili, Amin, Habibzadeh, Sajjad, J. Stadler, Florian, Saeb, Mohammad Reza
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Layered double hydroxide (LDH) minerals are promising candidates for developing polymer nanocomposites and the exchange of intercalating anions and metal ions in the LDH structure considerably affects their ultimate properties. Despite the fact that the synthesis of various kinds of LDHs has been the subject of numerous studies, the cure kinetics of LDH-based thermoset polymer composites has rarely been investigated. Herein, binary and ternary structures, including [Mg0.75 Al0.25 (OH)2]0.25+ [(CO32−)0.25/2∙m H2O]0.25−, [Mg0.75 Al0.25 (OH)2]0.25+ [(NO3−)0.25∙m H2O]0.25− and [Mg0.64 Zn0.11 Al0.25 (OH)2]0.25+ [(CO32−)0.25/2∙m H2O]0.25−, have been incorporated into epoxy to study the cure kinetics of the resulting nanocomposites by differential scanning calorimetry (DSC). Both integral and differential isoconversional methods serve to study the non-isothermal curing reactions of epoxy nanocomposites. The effects of carbonate and nitrate ions as intercalating agents on the cure kinetics are also discussed. The activation energy of cure (Eα) was calculated based on the Friedman and Kissinger–Akahira–Sunose (KAS) methods for epoxy/LDH nanocomposites. The order of autocatalytic reaction (m) for the epoxy/Mg-Al-NO3 (0.30 and 0.254 calculated by the Friedman and KAS methods, respectively) was smaller than that of the neat epoxy, which suggested a shift of the curing mechanism from an autocatalytic to noncatalytic reaction. Moreover, a higher frequency factor for the aforementioned nanocomposite suggests that the incorporation of Mg-Al-NO3 in the epoxy composite improved the curability of the epoxy. The results elucidate that the intercalating anions and the metal constituent of LDH significantly govern the cure kinetics of epoxy by the participation of nitrate anions in the epoxide ring-opening reaction.
AbstractList Layered double hydroxide (LDH) minerals are promising candidates for developing polymer nanocomposites and the exchange of intercalating anions and metal ions in the LDH structure considerably affects their ultimate properties. Despite the fact that the synthesis of various kinds of LDHs has been the subject of numerous studies, the cure kinetics of LDH-based thermoset polymer composites has rarely been investigated. Herein, binary and ternary structures, including [Mg0.75 Al0.25 (OH)2]0.25+ [(CO32−)0.25/2∙m H2O]0.25−, [Mg0.75 Al0.25 (OH)2]0.25+ [(NO3−)0.25∙m H2O]0.25− and [Mg0.64 Zn0.11 Al0.25 (OH)2]0.25+ [(CO32−)0.25/2∙m H2O]0.25−, have been incorporated into epoxy to study the cure kinetics of the resulting nanocomposites by differential scanning calorimetry (DSC). Both integral and differential isoconversional methods serve to study the non-isothermal curing reactions of epoxy nanocomposites. The effects of carbonate and nitrate ions as intercalating agents on the cure kinetics are also discussed. The activation energy of cure (Eα) was calculated based on the Friedman and Kissinger–Akahira–Sunose (KAS) methods for epoxy/LDH nanocomposites. The order of autocatalytic reaction (m) for the epoxy/Mg-Al-NO3 (0.30 and 0.254 calculated by the Friedman and KAS methods, respectively) was smaller than that of the neat epoxy, which suggested a shift of the curing mechanism from an autocatalytic to noncatalytic reaction. Moreover, a higher frequency factor for the aforementioned nanocomposite suggests that the incorporation of Mg-Al-NO3 in the epoxy composite improved the curability of the epoxy. The results elucidate that the intercalating anions and the metal constituent of LDH significantly govern the cure kinetics of epoxy by the participation of nitrate anions in the epoxide ring-opening reaction.
Author Ganjali, Mohammad Reza
Vijayan P., Poornima
Karami, Zohre
Saeb, Mohammad Reza
Jouyandeh, Maryam
Esmaeili, Amin
Habibzadeh, Sajjad
Paran, Seyed Mohammad Reza
J. Stadler, Florian
Author_xml – sequence: 1
  givenname: Zohre
  surname: Karami
  fullname: Karami, Zohre
– sequence: 2
  givenname: Seyed Mohammad Reza
  surname: Paran
  fullname: Paran, Seyed Mohammad Reza
– sequence: 3
  givenname: Poornima
  orcidid: 0000-0002-2899-038X
  surname: Vijayan P.
  fullname: Vijayan P., Poornima
– sequence: 4
  givenname: Mohammad Reza
  surname: Ganjali
  fullname: Ganjali, Mohammad Reza
– sequence: 5
  givenname: Maryam
  orcidid: 0000-0003-0435-6226
  surname: Jouyandeh
  fullname: Jouyandeh, Maryam
– sequence: 6
  givenname: Amin
  orcidid: 0000-0002-8414-230X
  surname: Esmaeili
  fullname: Esmaeili, Amin
– sequence: 7
  givenname: Sajjad
  surname: Habibzadeh
  fullname: Habibzadeh, Sajjad
– sequence: 8
  givenname: Florian
  orcidid: 0000-0002-5849-1485
  surname: J. Stadler
  fullname: J. Stadler, Florian
– sequence: 9
  givenname: Mohammad Reza
  orcidid: 0000-0001-9907-9414
  surname: Saeb
  fullname: Saeb, Mohammad Reza
BookMark eNptkFFLwzAUhYNMcM69-AsCvqhQlzRJ2zyObjqx6IMKgg8lTRPI2JqapGP991YmKOLTvRe-c-695xSMGtsoAM4xuiGEo9laeooIwhgfgXHMEI1omr6NfvUnYOr9GiEUp5wiTsbgfQ5zu22FE8HsFHwOXd1D28C8cwo-mEYFIz20GhaiV07VcGG7aqPgqq-d3ZtawctisbqaLVu77-GjaKwc7Kw3QfkzcKzFxqvpd52A19vlS76Kiqe7-3xeRDLmLERJjHSVkARnTDI1XIap1ImOs5hTwquMa5KyRHPNWFXpJJOsHgaqKy24YDUhE3Bx8G2d_eiUD-Xadq4ZVpYxJRQTlqbJQKEDJZ313ildShOGr20TnDCbEqPyK8XyJ8VBcv1H0jqzFa7_D_4EC4Bz8g
CitedBy_id crossref_primary_10_1134_S0965545X21350145
crossref_primary_10_3390_nano11113078
crossref_primary_10_1016_j_aiepr_2023_01_007
crossref_primary_10_1016_j_porgcoat_2022_107121
crossref_primary_10_1021_acssuschemeng_0c08636
crossref_primary_10_1002_mame_202100734
crossref_primary_10_3390_molecules27092870
crossref_primary_10_1002_fam_3181
crossref_primary_10_1016_j_tca_2021_179133
crossref_primary_10_1016_j_colsurfa_2020_125826
crossref_primary_10_1007_s11998_022_00624_y
crossref_primary_10_3390_polym13193452
Cites_doi 10.1016/j.porgcoat.2019.105505
10.1016/j.porgcoat.2019.105227
10.1016/j.porgcoat.2019.105217
10.1002/macp.200350051
10.1016/j.porgcoat.2018.09.019
10.1016/j.porgcoat.2017.07.015
10.1016/j.porgcoat.2019.105290
10.1016/j.porgcoat.2019.105255
10.1016/j.porgcoat.2019.06.044
10.1007/s10973-005-7044-6
10.1016/j.porgcoat.2017.05.007
10.1016/j.tca.2015.06.006
10.1002/pen.20046
10.1016/0040-6031(93)80273-D
10.3390/polym12030644
10.1016/j.porgcoat.2019.105355
10.1016/j.clay.2015.10.018
10.1016/j.clay.2019.105431
10.1021/ef00050a014
10.1016/j.porgcoat.2019.105245
10.1016/j.tca.2019.178317
10.1016/j.tca.2018.12.016
10.1016/j.tca.2011.03.034
10.1016/j.compositesa.2010.11.005
10.1016/j.porgcoat.2019.105264
10.1016/j.clay.2011.11.014
10.1016/j.porgcoat.2019.06.047
10.1016/j.cej.2012.01.134
10.1016/j.porgcoat.2019.105278
10.1016/j.porgcoat.2019.105250
10.1021/cm0110268
10.1016/j.porgcoat.2018.10.007
10.3390/jcs3010011
10.1016/j.porgcoat.2019.105283
10.1039/C7CY02314F
10.1021/ac60131a045
10.1016/j.jallcom.2020.154547
10.1007/s10698-015-9235-y
10.1016/j.tca.2017.09.020
10.1016/j.polymer.2005.03.114
10.3390/jcs4020055
10.1016/0040-6031(89)87270-3
10.1016/j.clay.2019.04.022
10.3390/polym12051157
10.1016/j.clay.2014.04.034
10.1016/j.porgcoat.2019.105252
10.1016/j.tca.2011.11.018
10.1002/polb.20220
10.1002/macp.200700100
10.1016/j.cej.2020.125196
10.1590/01000683rbcs2015081
10.1016/j.porgcoat.2019.105228
10.1016/j.porgcoat.2019.105246
10.1016/j.clay.2017.12.047
10.1007/BF01911411
10.1016/j.porgcoat.2019.06.045
10.2478/s11696-011-0100-8
10.1016/j.apsusc.2019.01.283
10.1016/j.porgcoat.2019.04.034
10.3390/polym12040930
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/jcs4030111
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (New)
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-477X
ExternalDocumentID 10_3390_jcs4030111
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
HCIFZ
KB.
MODMG
M~E
OK1
P62
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c295t-620fb636185c5e27914cf6f2829439b89f3756f9f55bbf68c5df9f4fbfa9a5d33
IEDL.DBID BENPR
ISSN 2504-477X
IngestDate Fri Jul 25 11:44:42 EDT 2025
Tue Jul 01 02:49:21 EDT 2025
Thu Apr 24 23:08:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-620fb636185c5e27914cf6f2829439b89f3756f9f55bbf68c5df9f4fbfa9a5d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2899-038X
0000-0003-0435-6226
0000-0002-5849-1485
0000-0002-8414-230X
0000-0001-9907-9414
OpenAccessLink https://www.proquest.com/docview/2434135776?pq-origsite=%requestingapplication%
PQID 2434135776
PQPubID 2059560
ParticipantIDs proquest_journals_2434135776
crossref_citationtrail_10_3390_jcs4030111
crossref_primary_10_3390_jcs4030111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of composites science
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jouyandeh (ref_47) 2019; 136
Jouyandeh (ref_24) 2019; 136
Ozawa (ref_59) 1970; 2
Jouyandeh (ref_46) 2020; 140
ref_53
Sbirrazzuoli (ref_58) 2007; 208
Qu (ref_5) 2016; 119
Leroux (ref_7) 2001; 13
Kissinger (ref_56) 1957; 29
Saeb (ref_41) 2017; 110
Jouyandeh (ref_44) 2019; 136
Jouyandeh (ref_54) 2019; 136
Karami (ref_17) 2019; 136
Wu (ref_4) 2018; 8
Montserrat (ref_49) 1993; 228
Peng (ref_50) 2018; 659
Tao (ref_60) 2014; 95
Costa (ref_45) 2012; 56
Jouyandeh (ref_19) 2019; 133
Xie (ref_20) 2004; 42
Jouyandeh (ref_12) 2019; 136
Jouyandeh (ref_16) 2019; 479
Jouyandeh (ref_22) 2019; 136
ref_25
Wang (ref_55) 2019; 672
Wan (ref_37) 2012; 188
Grivel (ref_38) 2012; 529
Jouyandeh (ref_43) 2020; 829
Karami (ref_34) 2020; 138
Jouyandeh (ref_23) 2019; 137
Ay (ref_3) 2012; 66
Jouyandeh (ref_51) 2019; 136
ref_27
Karami (ref_30) 2019; 136
Li (ref_62) 2015; 614
ref_26
Karami (ref_31) 2019; 136
Jouyandeh (ref_29) 2019; 126
Seidi (ref_42) 2020; 6
Silva (ref_6) 2015; 39
Dimier (ref_36) 2004; 44
Jouyandeh (ref_10) 2019; 136
Bello (ref_52) 2019; 679
Saeb (ref_28) 2017; 112
Karami (ref_32) 2020; 139
Akahira (ref_57) 1971; 16
Bajat (ref_13) 2018; 154
Jouyandeh (ref_11) 2020; 396
Jouyandeh (ref_18) 2019; 137
Miura (ref_40) 1995; 9
Vyazovkin (ref_39) 2006; 83
Schaming (ref_1) 2015; 17
Zhou (ref_61) 2005; 46
Karami (ref_35) 2018; 125
Vyazovkin (ref_33) 2011; 520
Chatterjee (ref_2) 2019; 177
(ref_48) 1989; 138
Zuo (ref_14) 2020; 186
Bayat (ref_15) 2019; 136
Becker (ref_9) 2011; 42
ref_8
Sbirrazzuoli (ref_21) 2003; 204
References_xml – volume: 140
  start-page: 105505
  year: 2020
  ident: ref_46
  article-title: Nonisothermal cure kinetics of epoxy/MnxFe3-xO4 nanocomposites
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105505
– volume: 136
  start-page: 105227
  year: 2019
  ident: ref_54
  article-title: Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized ZnxFe3-xO4 magnetic nanoparticles
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105227
– volume: 136
  start-page: 105217
  year: 2019
  ident: ref_47
  article-title: Cure kinetics of epoxy/graphene oxide (GO) nanocomposites: Effect of starch functionalization of GO nanosheets
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105217
– volume: 204
  start-page: 1815
  year: 2003
  ident: ref_21
  article-title: A study of epoxy-amine cure kinetics by combining isoconversional analysis with temperature modulated DSC and dynamic rheometry
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.200350051
– volume: 16
  start-page: 22
  year: 1971
  ident: ref_57
  article-title: Res. Report Chiba Inst
  publication-title: Technol. Sci. Technol
– volume: 125
  start-page: 222
  year: 2018
  ident: ref_35
  article-title: State of cure in silicone/clay nanocomposite coatings: The puzzle and the solution
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2018.09.019
– volume: 112
  start-page: 176
  year: 2017
  ident: ref_28
  article-title: Calorimetric analysis and molecular dynamics simulation of cure kinetics of epoxy/chitosan-modified Fe3O4 nanocomposites
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2017.07.015
– volume: 136
  start-page: 105290
  year: 2019
  ident: ref_51
  article-title: Nonisothermal cure kinetics of epoxy/ZnxFe3-xO4 nanocomposites
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105290
– volume: 139
  start-page: 105255
  year: 2020
  ident: ref_32
  article-title: Exploring curing potential of epoxy nanocomposites containing nitrate anion intercalated Mg–Al–LDH with Cure Index
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105255
– volume: 136
  start-page: 105198
  year: 2019
  ident: ref_10
  article-title: Curing epoxy with electrochemically synthesized NixFe3-xO4 magnetic nanoparticles
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.06.044
– volume: 83
  start-page: 45
  year: 2006
  ident: ref_39
  article-title: Model-free kinetics
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-005-7044-6
– volume: 110
  start-page: 172
  year: 2017
  ident: ref_41
  article-title: Cure kinetics of epoxy/β-cyclodextrin-functionalized Fe3O4 nanocomposites: Experimental analysis, mathematical modeling, and molecular dynamics simulation
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2017.05.007
– volume: 614
  start-page: 76
  year: 2015
  ident: ref_62
  article-title: Curing characteristics of an epoxy resin in the presence of functional graphite oxide with amine-rich surface
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2015.06.006
– volume: 44
  start-page: 518
  year: 2004
  ident: ref_36
  article-title: Curing kinetics and chemorheological analysis of polyurethane formation
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.20046
– volume: 228
  start-page: 47
  year: 1993
  ident: ref_49
  article-title: A kinetic analysis of the curing reaction of an epoxy resin
  publication-title: Thermochim. Acta
  doi: 10.1016/0040-6031(93)80273-D
– ident: ref_26
  doi: 10.3390/polym12030644
– volume: 138
  start-page: 105355
  year: 2020
  ident: ref_34
  article-title: Epoxy/Zn-Al-CO3 LDH nanocomposites: Curability assessment
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105355
– volume: 119
  start-page: 185
  year: 2016
  ident: ref_5
  article-title: Mechanochemical approaches to synthesize layered double hydroxides: A review
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2015.10.018
– volume: 186
  start-page: 105431
  year: 2020
  ident: ref_14
  article-title: Effects of metakaolin on the mechanical and anticorrosion properties of epoxy emulsion cement mortar
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2019.105431
– volume: 9
  start-page: 302
  year: 1995
  ident: ref_40
  article-title: A new and simple method to estimate f (E) and k0 (E) in the distributed activation energy model from three sets of experimental data
  publication-title: Energy Fuels
  doi: 10.1021/ef00050a014
– volume: 136
  start-page: 105245
  year: 2019
  ident: ref_44
  article-title: Curing epoxy with electrochemically synthesized GdxFe3-xO4 magnetic nanoparticles
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105245
– volume: 679
  start-page: 178317
  year: 2019
  ident: ref_52
  article-title: Curing kinetics of chemically recyclable thermoset and their nanocomposites
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2019.178317
– volume: 672
  start-page: 60
  year: 2019
  ident: ref_55
  article-title: Optimizing curing process of graphene oxide/waterborne epoxy blends by curing kinetics simulation considering the coupling of heat conduction and curing reaction
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2018.12.016
– volume: 520
  start-page: 1
  year: 2011
  ident: ref_33
  article-title: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2011.03.034
– volume: 42
  start-page: 196
  year: 2011
  ident: ref_9
  article-title: Mechanical and flame-retardant properties of epoxy/Mg–Al LDH composites
  publication-title: Compos. Part A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2010.11.005
– volume: 136
  start-page: 105264
  year: 2019
  ident: ref_31
  article-title: Development of Mg-Zn-Al-CO3 ternary LDH and its curability in epoxy/amine system
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105264
– volume: 56
  start-page: 16
  year: 2012
  ident: ref_45
  article-title: Comparative Structural, thermodynamic and electronic analyses of ZnAlAn− hydrotalcite-like compounds (An− Cl−, F−, Br−, OH−, CO32− or NO3−): An ab initio study
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2011.11.014
– volume: 136
  start-page: 105201
  year: 2019
  ident: ref_15
  article-title: Thin films of epoxy adhesives containing recycled polymers and graphene oxide nanoflakes for metal/polymer composite interface
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.06.047
– volume: 188
  start-page: 160
  year: 2012
  ident: ref_37
  article-title: A comparative study of epoxy resin cured with a linear diamine and a branched polyamine
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.01.134
– volume: 136
  start-page: 105278
  year: 2019
  ident: ref_30
  article-title: Curing epoxy with Mg-Al LDH nanoplatelets intercalated with carbonate ion
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105278
– volume: 136
  start-page: 105250
  year: 2019
  ident: ref_24
  article-title: Curing epoxy with polyethylene glycol (PEG) surface-functionalized NixFe3-xO4magnetic nanoparticles
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105250
– volume: 13
  start-page: 3507
  year: 2001
  ident: ref_7
  article-title: Polymer interleaved layered double hydroxide: A new emerging class of nanocomposites
  publication-title: Chem. Mater.
  doi: 10.1021/cm0110268
– volume: 126
  start-page: 129
  year: 2019
  ident: ref_29
  article-title: Curing epoxy resin with anhydride in the presence of halloysite nanotubes: The contradictory effects of filler concentration
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2018.10.007
– ident: ref_8
  doi: 10.3390/jcs3010011
– volume: 137
  start-page: 105283
  year: 2019
  ident: ref_18
  article-title: Curing epoxy with polyethylene glycol (PEG) surface-functionalized GdxFe3-xO4 magnetic nanoparticles
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105283
– volume: 8
  start-page: 1207
  year: 2018
  ident: ref_4
  article-title: A review on fabricating heterostructures from layered double hydroxides for enhanced photocatalytic activities
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY02314F
– volume: 29
  start-page: 1702
  year: 1957
  ident: ref_56
  article-title: Reaction kinetics in differential thermal analysis
  publication-title: Anal. Chem.
  doi: 10.1021/ac60131a045
– volume: 829
  start-page: 154547
  year: 2020
  ident: ref_43
  article-title: Synthesis, characterization, and high potential of 3D metal–organic framework (MOF) nanoparticles for curing with epoxy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154547
– volume: 17
  start-page: 187
  year: 2015
  ident: ref_1
  article-title: Nanotechnology: From the ancient time to nowadays
  publication-title: Found. Chem.
  doi: 10.1007/s10698-015-9235-y
– volume: 659
  start-page: 27
  year: 2018
  ident: ref_50
  article-title: Curing kinetics study on highly efficient thermal synergistic polymerization effect between alicyclic imide moiety and phthalonitrile
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2017.09.020
– volume: 46
  start-page: 6174
  year: 2005
  ident: ref_61
  article-title: Studying on the curing kinetics of a DGEBA/EMI-2, 4/nano-sized carborundum system with two curing kinetic methods
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.03.114
– ident: ref_27
  doi: 10.3390/jcs4020055
– volume: 138
  start-page: 337
  year: 1989
  ident: ref_48
  article-title: A computer program for kinetic analysis of non-isothermal thermoanalytical data
  publication-title: Thermochim. Acta
  doi: 10.1016/0040-6031(89)87270-3
– volume: 177
  start-page: 19
  year: 2019
  ident: ref_2
  article-title: Layered double hydroxide based bionanocomposites
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2019.04.022
– ident: ref_53
  doi: 10.3390/polym12051157
– volume: 95
  start-page: 317
  year: 2014
  ident: ref_60
  article-title: Effect of functionalized kaolinite on the curing kinetics of cycloaliphatic epoxy/anhydride system
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2014.04.034
– volume: 6
  start-page: e03798
  year: 2020
  ident: ref_42
  article-title: Super-crosslinked ionic liquid-intercalated montmorillonite/epoxy nanocomposites: Cure kinetics, viscoelastic behavior and thermal degradation mechanism
  publication-title: Polym. Eng. Sci.
– volume: 137
  start-page: 105252
  year: 2019
  ident: ref_23
  article-title: Curing epoxy with electrochemically synthesized CoxFe3-xO4 magnetic nanoparticles
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105252
– volume: 529
  start-page: 29
  year: 2012
  ident: ref_38
  article-title: Study on the non-isothermal curing kinetics of a polyfurfuryl alcohol bioresin by DSC using different amounts of catalyst
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2011.11.018
– volume: 42
  start-page: 3701
  year: 2004
  ident: ref_20
  article-title: Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry
  publication-title: J. Polym. Sci. Part B Polym. Phys.
  doi: 10.1002/polb.20220
– volume: 208
  start-page: 1592
  year: 2007
  ident: ref_58
  article-title: Is the Friedman method applicable to transformations with temperature dependent reaction heat?
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.200700100
– volume: 396
  start-page: 125196
  year: 2020
  ident: ref_11
  article-title: Highly curable self-healing vitrimer-like cellulose-modified halloysite nanotube/epoxy nanocomposite coatings
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125196
– volume: 39
  start-page: 1
  year: 2015
  ident: ref_6
  article-title: Layered double hydroxides: Nanomaterials for applications in agriculture
  publication-title: Rev. Bras. Ciênc. Solo
  doi: 10.1590/01000683rbcs2015081
– volume: 136
  start-page: 105228
  year: 2019
  ident: ref_17
  article-title: Cure Index for labeling curing potential of epoxy/LDH nanocomposites: A case study on nitrate anion intercalated Ni-Al-LDH
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105228
– volume: 136
  start-page: 105246
  year: 2019
  ident: ref_12
  article-title: Curing epoxy with electrochemically synthesized ZnxFe3-xO4 magnetic nanoparticles
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.105246
– volume: 154
  start-page: 52
  year: 2018
  ident: ref_13
  article-title: Dispersion efficiency of montmorillonites in epoxy nanocomposites using solution intercalation and direct mixing methods
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2017.12.047
– volume: 2
  start-page: 301
  year: 1970
  ident: ref_59
  article-title: Kinetic analysis of derivative curves in thermal analysis
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/BF01911411
– volume: 136
  start-page: 105199
  year: 2019
  ident: ref_22
  article-title: Curing epoxy with electrochemically synthesized MnxFe3-xO4 magnetic nanoparticles
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.06.045
– volume: 66
  start-page: 1
  year: 2012
  ident: ref_3
  article-title: Layered double hydroxides—Multifunctional nanomaterials
  publication-title: Chem. Pap.
  doi: 10.2478/s11696-011-0100-8
– volume: 479
  start-page: 1148
  year: 2019
  ident: ref_16
  article-title: Bushy-surface hybrid nanoparticles for developing epoxy superadhesives
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.01.283
– volume: 133
  start-page: 220
  year: 2019
  ident: ref_19
  article-title: Properties of nano-Fe3O4 incorporated epoxy coatings from Cure Index perspective
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2019.04.034
– ident: ref_25
  doi: 10.3390/polym12040930
SSID ssj0002794093
Score 2.186321
Snippet Layered double hydroxide (LDH) minerals are promising candidates for developing polymer nanocomposites and the exchange of intercalating anions and metal ions...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 111
SubjectTerms Aluminum
Anion exchanging
Comparative studies
Curing
Epoxy resins
Heat
Hydroxides
Kinetics
Magnesium
Mathematical analysis
Metallurgical constituents
Methods
Nanocomposites
Nanoparticles
Nitrates
Polymer matrix composites
Reaction kinetics
Ring opening
Thermosetting resins
Title A Comparative Study on Cure Kinetics of Layered Double Hydroxide (LDH)/Epoxy Nanocomposites
URI https://www.proquest.com/docview/2434135776
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSwJBEF5SX3qJoiLLZKEe8uHwvNvdu3sKM03KJCJB6OHYn1CIZ56C_vfN6qoI0eNx-3Izt99838wwg9CtMH4kOXgA4FF4JJKAg1EkvFiFKuEqbHBjK7qvfdYdkOchHbqEW-7aKjeYuAJqlUmbI68HxOItjSJ2P_nx7NYoW111KzQKqAQQHIP4Kj20-2_v2yxLAL8baPb1XNIQ9H39W-ZkJQMa-5FoH4hX0aVzjI4cLcTNtR9P0IEen6LPJm7thnNj2_K3xNkYt-ZTjV-AHtoRyzgzuMeXduUmBjYsRhp3l2qaLb6Uxne9x26t3p5kiyUGHM1sA7nt0tL5GRp02h-trueWIXgySOjMY4FvBAsZxFdJNXxXg0jDjC2EAqcQcWLCiDKTGEqFMCyWVMEDMcLwhFMVhueoOM7G-gLhmFMpBFA_P06IpowTETHjx0RRykjCy6i2MUwq3aRwu7BilIJisEZMd0Yso5vt2cl6Psafpyob-6bujuTpzqOX_7--QoeBVbmrxEcFFWfTub4GKjATVVSIO09V5_VfAsm1Ww
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyNBEG7EPexell1cWXfVbVBBD0MmM_2YPsgSonE00ZOC4GHsJ7hIJptEzPwpf6NVk4xBEG8em276UFX91bOrCNk1IZZWAwcAHk3EpAUclNJEmUud0i5t64AZ3fMLkV-xs2t-vUKemr8wWFbZYGIN1K60GCNvJQzxlksp_o7-Rzg1CrOrzQiNuVj0ffUILtvk8PQI-LuXJL3jy24eLaYKRDZRfBqJJA5GpAIUleU-karNbBABM4qgnE2mQiq5CCpwbkwQmeUOFiyYoJXmDgOgAPmfWJoqfFFZ7-QlpgOXgbuUzrugwn7c-mcnrHY62q_13mvYr3VZ7xv5ujBCaWcuNd_Jih-ukZsO7S5bgVMsMKxoOaTdh7GnfTBGsaEzLQMd6AoHfFKwvc29p3nlxuXsznm6PzjKD1rHo3JWUUDtEsvVsSbMT36Qqw8h0jpZHZZD_5PQTHNrDBiacaaY50IzI0WIM-Y4F0zpDXLQEKawi77kOB7jvgD_BIlYLIm4QXZezo7m3TjePLXZ0LdYvMhJsZSfX-9v_yGf88vzQTE4vej_Jl8S9K_rkMsmWZ2OH_wWGCFTs11znpLbjxa1Zzdx8C0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6CDSWXkJKGJnHThTSQHIRlaR_aQyipHzi1Y0yJIZCDsk9oMZbjB7X-Wn5dZm0pJlB6y1Fo0WFm9M18M7MzCH1TLuRaggYAHlVAuAYc5FwFiYmNkCZuSOcrurcD1h2Rn_f0fgc9l3dhfFtliYlroDaZ9jnyekQ83lLOWd0VbRHDVuf79CnwG6R8pbVcp7ExkZ7N_wJ9m1_dtEDX51HUad81u0GxYSDQkaCLgEWhUyxm4LQ0tREXDaIdc766CI5aJcLFnDInHKVKOZZoauCBOOWkkNT4ZCjAf5UDKworqPqjPRj-es3wwOeAPMWbmahxLML6Hz0nawrSeOsF3zqBtWfr7KO9IiTF1xsb-oh27OQAPVzj5nYwOPbthjnOJri5nFncg9DUj3fGmcN9mft1nxgicTW2uJubWbb6bSy-6Le6l_X2NFvlGDA8883rvkPMzj-h0buI6RBVJtnEfkY4kVQrBWFnmAhiKZNEcebChBhKGRHyCF2Wgkl1MaXcL8sYp8BWvBDTrRCP0Nnr2elmNsc_T9VK-abF_zlPt9Z0_P_XX9EHMLO0fzPonaDdyJPtdf6lhiqL2dJ-gYhkoU4L1WP0-N7W9gIkA_W_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+on+Cure+Kinetics+of+Layered+Double+Hydroxide+%28LDH%29%2FEpoxy+Nanocomposites&rft.jtitle=Journal+of+composites+science&rft.au=Karami%2C+Zohre&rft.au=Paran%2C+Seyed+Mohammad+Reza&rft.au=Vijayan+P.%2C+Poornima&rft.au=Ganjali%2C+Mohammad+Reza&rft.date=2020&rft.issn=2504-477X&rft.eissn=2504-477X&rft.volume=4&rft.issue=3&rft.spage=111&rft_id=info:doi/10.3390%2Fjcs4030111&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jcs4030111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-477X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-477X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-477X&client=summon