On the Effect of Observed Subject Biases in Apparent Personality Analysis From Audio-Visual Signals

Personality perception is implicitly biased due to many subjective factors, such as cultural, social, contextual, gender, and appearance. Approaches developed for automatic personality perception are not expected to predict the real personality of the target but the personality external observers at...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 12; no. 3; pp. 607 - 621
Main Authors Principi, Ricardo Dario Perez, Palmero, Cristina, Junior, Julio C. S. Jacques, Escalera, Sergio
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Personality perception is implicitly biased due to many subjective factors, such as cultural, social, contextual, gender, and appearance. Approaches developed for automatic personality perception are not expected to predict the real personality of the target but the personality external observers attributed to it. Hence, they have to deal with human bias, inherently transferred to the training data. However, bias analysis in personality computing is an almost unexplored area. In this article, we study different possible sources of bias affecting personality perception, including emotions from facial expressions, attractiveness, age, gender, and ethnicity, as well as their influence on prediction ability for apparent personality estimation. To this end, we propose a multimodal deep neural network that combines raw audio and visual information alongside predictions of attribute-specific models to regress apparent personality. We also analyze spatio-temporal aggregation schemes and the effect of different time intervals on first impressions. We base our study on the ChaLearn first impressions dataset, consisting of one-person conversational videos. Our model shows state-of-the-art results regressing apparent personality based on the Big-Five model. Furthermore, given the interpretability nature of our network design, we provide an incremental analysis on the impact of each possible source of bias on final network predictions.
AbstractList Personality perception is implicitly biased due to many subjective factors, such as cultural, social, contextual, gender, and appearance. Approaches developed for automatic personality perception are not expected to predict the real personality of the target but the personality external observers attributed to it. Hence, they have to deal with human bias, inherently transferred to the training data. However, bias analysis in personality computing is an almost unexplored area. In this article, we study different possible sources of bias affecting personality perception, including emotions from facial expressions, attractiveness, age, gender, and ethnicity, as well as their influence on prediction ability for apparent personality estimation. To this end, we propose a multimodal deep neural network that combines raw audio and visual information alongside predictions of attribute-specific models to regress apparent personality. We also analyze spatio-temporal aggregation schemes and the effect of different time intervals on first impressions. We base our study on the ChaLearn first impressions dataset, consisting of one-person conversational videos. Our model shows state-of-the-art results regressing apparent personality based on the Big-Five model. Furthermore, given the interpretability nature of our network design, we provide an incremental analysis on the impact of each possible source of bias on final network predictions.
Author Principi, Ricardo Dario Perez
Escalera, Sergio
Junior, Julio C. S. Jacques
Palmero, Cristina
Author_xml – sequence: 1
  givenname: Ricardo Dario Perez
  surname: Principi
  fullname: Principi, Ricardo Dario Perez
  email: principidario@gmail.com
  organization: Universitat de Barcelona, Barcelona, Spain
– sequence: 2
  givenname: Cristina
  orcidid: 0000-0002-6085-6527
  surname: Palmero
  fullname: Palmero, Cristina
  email: crpalmec7@alumnes.ub.edu
  organization: Universitat de Barcelona, Barcelona, Spain
– sequence: 3
  givenname: Julio C. S. Jacques
  orcidid: 0000-0001-6785-7146
  surname: Junior
  fullname: Junior, Julio C. S. Jacques
  email: jsilveira@uoc.edu
  organization: Universitat Oberta de Catalunya, Barcelona, Spain
– sequence: 4
  givenname: Sergio
  orcidid: 0000-0003-0617-8873
  surname: Escalera
  fullname: Escalera, Sergio
  email: sergio@maia.ub.es
  organization: Universitat de Barcelona, Barcelona, Spain
BookMark eNp9UE1PAjEQbQwmIvIH9NLE82K73e5ujysBNSHBBPS6Kd2plsAW264J_94ixBgPzuVN5s2bj3eJeq1tAaFrSkaUEnG3rKbT8SglVIxSwXPCyBnqU5GJhJGM937lF2jo_ZrEYIzladFHat7i8A54ojWogK3G85UH9wkNXnSr9aF2b6QHj02Lq91OOmgDfgbnbSs3JuxxFXHvjcdTZ7e46hpjk1fjO7nBC_MWSX-FznUEGJ5wgF6mk-X4MZnNH57G1SxR8eyQcAW8yThd0UzlDUDGoCzLvBCKsDxTAnTKZS604I2OP4LkTZOSVBU8MqVu2ADdHufunP3owId6bTt3uKBOeV4WRS4Yj13psUs5670DXe-c2Uq3rympD37W337WBz_rk59RVP4RKRNkMLYNTprN_9Kbo9QAwM-uUlDGCWVfOJGE3Q
CODEN ITACBQ
CitedBy_id crossref_primary_10_1109_TCSS_2022_3161708
crossref_primary_10_1109_TAFFC_2023_3318367
crossref_primary_10_1109_TAFFC_2020_2973984
crossref_primary_10_1109_TAFFC_2022_3230672
crossref_primary_10_3389_fnins_2022_1107284
crossref_primary_10_1057_s41599_023_01999_y
crossref_primary_10_3389_fnins_2022_865201
crossref_primary_10_1109_TAFFC_2021_3064601
crossref_primary_10_3389_fpsyg_2022_839619
crossref_primary_10_1007_s11042_024_20356_y
crossref_primary_10_1016_j_engappai_2023_106661
crossref_primary_10_1016_j_eswa_2023_122441
crossref_primary_10_1109_ACCESS_2020_3034639
crossref_primary_10_1016_j_ipm_2022_103217
Cites_doi 10.1109/FG.2017.20
10.1017/CBO9780511596544.010
10.1109/TPAMI.2017.2738004
10.1109/TAFFC.2017.2762299
10.1111/j.1467-9450.2012.00939.x
10.1177/0956797614532474
10.1109/CVPRW.2017.217
10.1109/CVPRW.2015.7301352
10.1037/xge0000152
10.1109/CVPR.2014.241
10.18653/v1/P18-2096
10.1111/j.1467-6494.1992.tb00970.x
10.1080/02699931.2016.1227305
10.1080/00221325.2010.526154
10.1007/978-3-642-13923-9_3
10.1109/T-AFFC.2012.17
10.1109/ICPR.2018.8546038
10.1145/3282894.3282922
10.5244/C.29.41
10.1111/bjop.12206
10.1145/1452392.1452404
10.1007/978-3-319-49409-8_30
10.1109/TAFFC.2017.2751469
10.1109/ICPR.2016.7899605
10.1007/978-3-319-46843-3_10
10.1016/j.imavis.2014.04.011
10.1007/978-3-319-49409-8_25
10.1007/978-3-319-49409-8_27
10.1109/ICPR.2014.492
10.1037/a0029712
10.1177/0956797610388048
10.1177/1948550611402519
10.1371/journal.pone.0135529
10.1109/CVPR.2018.00915
10.1109/TAFFC.2019.2930058
10.1016/j.jesp.2016.06.005
10.1109/AFGR.2004.1301530
10.1007/978-3-319-49409-8_32
10.1037/0022-3514.81.2.322
10.1109/TAFFC.2014.2330816
10.1109/CVPRW.2017.210
10.1109/ICCVW.2015.41
10.1145/2813524.2813528
10.1109/TPAMI.2016.2515606
10.1145/2388676.2388689
10.1109/ICB.2016.7550082
10.1073/pnas.1409860111
10.1109/TAFFC.2014.2370044
10.1109/TMM.2012.2225032
10.1145/2647868.2655014
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TAFFC.2019.2956030
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1949-3045
EndPage 621
ExternalDocumentID 10_1109_TAFFC_2019_2956030
8913501
Genre orig-research
GrantInformation_xml – fundername: Institució Catalana de Recerca i Estudis Avançats; ICREA
  funderid: 10.13039/501100003741
– fundername: CERCA Programme/Generalitat de Catalunya
– fundername: Spanish projects
  grantid: TIN2015-66951-C2-2-R; TIN2016-74946-P (MINECO/FEDER,UE)
– fundername: Spanish Ministry of Science, Innovation and Universities
  grantid: RTI2018-095232-B-C22
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNI
RZB
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-5ce5d451b14c6dee43e888679c0364c9ef25a69f95df030ea5dd202c75ef28fd3
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Mon Jun 30 05:08:10 EDT 2025
Tue Jul 01 02:57:52 EDT 2025
Thu Apr 24 23:03:47 EDT 2025
Wed Aug 27 02:27:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-5ce5d451b14c6dee43e888679c0364c9ef25a69f95df030ea5dd202c75ef28fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6085-6527
0000-0001-6785-7146
0000-0003-0617-8873
PQID 2568776935
PQPubID 2040414
PageCount 15
ParticipantIDs crossref_primary_10_1109_TAFFC_2019_2956030
ieee_primary_8913501
proquest_journals_2568776935
crossref_citationtrail_10_1109_TAFFC_2019_2956030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev TAFFC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref11
ref10
todorov (ref3) 2017
güçlütürk (ref25) 2016
ref17
song (ref54) 2017
ref16
ref19
ref18
ref50
ref46
king (ref51) 2009; 10
ref45
ref48
ref47
ref42
ref41
ref44
güçlütürk (ref26) 2018; 9
ref43
ref49
ref8
nguyen (ref30) 2015
ref7
ref9
ref4
rosa ramos (ref55) 2018
ref5
ref40
ref35
ref34
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
escalante (ref6) 2018
ref24
ref23
ref20
ref22
ref21
ref28
ref27
ref29
todorov (ref37) 2012
ref60
References_xml – year: 2015
  ident: ref30
  article-title: Computational analysis of behavior in employment interviews and video resumes
– start-page: 349
  year: 2016
  ident: ref25
  article-title: Deep impression: Audiovisual deep residual networks for multimodal apparent personality trait recognition
  publication-title: Proc Eur Conf Comput Vis
– ident: ref43
  doi: 10.1109/FG.2017.20
– ident: ref1
  doi: 10.1017/CBO9780511596544.010
– ident: ref48
  doi: 10.1109/TPAMI.2017.2738004
– ident: ref28
  doi: 10.1109/TAFFC.2017.2762299
– ident: ref59
  doi: 10.1111/j.1467-9450.2012.00939.x
– ident: ref10
  doi: 10.1177/0956797614532474
– ident: ref27
  doi: 10.1109/CVPRW.2017.217
– ident: ref45
  doi: 10.1109/CVPRW.2015.7301352
– ident: ref60
  doi: 10.1037/xge0000152
– ident: ref52
  doi: 10.1109/CVPR.2014.241
– year: 2017
  ident: ref3
  publication-title: Face Value The Irresistible Influence of First Impressions
– ident: ref29
  doi: 10.18653/v1/P18-2096
– ident: ref13
  doi: 10.1111/j.1467-6494.1992.tb00970.x
– ident: ref34
  doi: 10.1080/02699931.2016.1227305
– ident: ref39
  doi: 10.1080/00221325.2010.526154
– ident: ref40
  doi: 10.1007/978-3-642-13923-9_3
– ident: ref31
  doi: 10.1109/T-AFFC.2012.17
– ident: ref41
  doi: 10.1109/ICPR.2018.8546038
– ident: ref21
  doi: 10.1145/3282894.3282922
– ident: ref56
  doi: 10.5244/C.29.41
– ident: ref33
  doi: 10.1111/bjop.12206
– ident: ref9
  doi: 10.1111/bjop.12206
– ident: ref2
  doi: 10.1145/1452392.1452404
– ident: ref22
  doi: 10.1007/978-3-319-49409-8_30
– volume: 9
  start-page: 316
  year: 2018
  ident: ref26
  article-title: Multimodal first impression analysis with deep residual networks
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2017.2751469
– ident: ref23
  doi: 10.1109/ICPR.2016.7899605
– year: 2018
  ident: ref6
  article-title: Explaining first impressions: Modeling, recognizing, and explaining apparent personality from videos
  publication-title: arXiv 1802 00745
– ident: ref15
  doi: 10.1007/978-3-319-46843-3_10
– ident: ref47
  doi: 10.1016/j.imavis.2014.04.011
– ident: ref50
  doi: 10.1007/978-3-319-49409-8_25
– ident: ref24
  doi: 10.1007/978-3-319-49409-8_27
– ident: ref58
  doi: 10.1109/ICPR.2014.492
– ident: ref42
  doi: 10.1037/a0029712
– ident: ref38
  doi: 10.1177/0956797610388048
– year: 2012
  ident: ref37
  publication-title: Personality Impressions from Facial Appearance
– volume: 10
  start-page: 1755
  year: 2009
  ident: ref51
  article-title: Dlib-ml: A machine learning toolkit
  publication-title: J Mach Learn Res
– ident: ref8
  doi: 10.1177/1948550611402519
– ident: ref11
  doi: 10.1371/journal.pone.0135529
– ident: ref32
  doi: 10.1109/CVPR.2018.00915
– ident: ref7
  doi: 10.1109/TAFFC.2019.2930058
– ident: ref35
  doi: 10.1177/1948550611402519
– ident: ref12
  doi: 10.1016/j.jesp.2016.06.005
– ident: ref49
  doi: 10.1109/AFGR.2004.1301530
– ident: ref5
  doi: 10.1007/978-3-319-49409-8_32
– year: 2018
  ident: ref55
  article-title: Deep learning for universal emotion recognition in still images
– ident: ref44
  doi: 10.1037/0022-3514.81.2.322
– ident: ref4
  doi: 10.1109/TAFFC.2014.2330816
– ident: ref57
  doi: 10.1109/CVPRW.2017.210
– ident: ref53
  doi: 10.1109/ICCVW.2015.41
– ident: ref17
  doi: 10.1145/2813524.2813528
– start-page: 4352
  year: 2017
  ident: ref54
  article-title: Age progression/regression by conditional adversarial autoencoder
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref36
  doi: 10.1109/TPAMI.2016.2515606
– ident: ref18
  doi: 10.1145/2388676.2388689
– ident: ref46
  doi: 10.1109/ICB.2016.7550082
– ident: ref16
  doi: 10.1073/pnas.1409860111
– ident: ref20
  doi: 10.1109/TAFFC.2014.2370044
– ident: ref19
  doi: 10.1109/TMM.2012.2225032
– ident: ref14
  doi: 10.1145/2647868.2655014
SSID ssj0000333627
Score 2.4064941
Snippet Personality perception is implicitly biased due to many subjective factors, such as cultural, social, contextual, gender, and appearance. Approaches developed...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 607
SubjectTerms Artificial neural networks
Audio data
audio-visual recordings
Automatic personality perception
Bias
big-five
Computational modeling
convolutional neural networks
Deep learning
Feature extraction
first impressions
Human bias
Impact analysis
multi-modal recognition
Network design
Observers
OCEAN
Perception
Personality
personality computing
subjective bias
Videos
Visual observation
Visual signals
Visualization
Title On the Effect of Observed Subject Biases in Apparent Personality Analysis From Audio-Visual Signals
URI https://ieeexplore.ieee.org/document/8913501
https://www.proquest.com/docview/2568776935
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYop166wIK6vORDb22WPOwkPi4rohVSS6XuIm5RYk-qqJCg3eTCr2fGSbYVINScIsVWrPlsz3uGsS9aqlyGmXJE7IWOKEA7MbiBY7IchPC1p4wNkP0RLlbi-k7e7bBv21wYALDBZzClV-vLN7VuyVR2QS41SclaH1Bx63K1tvYUNwjwLo6GvBhXXSxnSTKn4C019UkLoEDnf3iPbaby6ga2bCUZse_Dgrpokj_Ttsmn-ulFrcb_XfEe-9TLl3zWbYh9tgPVARsNvRt4f5THTN9UHGU_3lUv5nXBb3Iy0ILheJeQcYZflsjhNrysOIqqlDPW8J9_RXc-lDPhybp-4LPWlLVzW25a_Puv8jeVZT5kq-RqOV84fcMFRyOFGkdqkEZIL_eEDg2ACAAV5DBSmryVWkHhyyxUhZKmQHJCJo3xXV9HEr_EhQmO2G5VV_CZcaS3dHPfLyKBj9bkXgxRuMtijYwxCybMG6BIdV-NnJpi3KdWK3FVauFLCb60h2_Cvm7nPHa1ON4dPSY8tiN7KCbsdEA87Y_rJkW5L46oK6Q8fnvWCfvoUzCLjdM9ZbvNuoUzlEaa_Nxuw2ck1du5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pj5UwEJ5s1oNeXHU1Pl21B2_KWygt0ONzI3nq_jDxrdkbgXYwRAWzDy7-9c4UeBo1Rk4ktKHptJ2vM9_MADy32lQ6KU2gsigJVI02yDCMA1dWqJS0kXGeIHuerC_V2yt9tQcvd7EwiOjJZ7jkV-_Ld50d2FR2zC41zcFaN0jvazlGa-0sKmEc02mczpExoTnerPL8hOlbZin5HsBU51-0jy-n8scZ7BVLfgBn85BGPsnn5dBXS_v9t2yN_zvmO3B7QphiNS6Ju7CH7T04mKs3iGkzH4K9aAWhPzHmLxZdLS4qNtGiE3SasHlGvGpIx21F0woCqxw11ov3P8G7mBOaiPy6-ypWg2u64GOzHejvH5pPnJj5Plzmrzcn62AquRBYmqE-0Ba1UzqqImUTh6hipCtykhrL_kprsJa6TExttKtpOrHUzslQ2lTTl6x28QPYb7sWH4Kg-dZhJWWdKnqsZQdjQvCuzCypxjJeQDSLorBTPnIui_Gl8PeS0BRefAWLr5jEt4AXuz7fxmwc_2x9yPLYtZxEsYCjWeLFtGG3BSG_LOW6kPrR33s9g5vrzdlpcfrm_N1juCWZ2uJZu0ew318P-ISwSV899UvyB8at3wM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Effect+of+Observed+Subject+Biases+in+Apparent+Personality+Analysis+From+Audio-Visual+Signals&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Principi%2C+Ricardo+Dario+Perez&rft.au=Palmero%2C+Cristina&rft.au=Junior%2C+Julio+C.+S.+Jacques&rft.au=Escalera%2C+Sergio&rft.date=2021-07-01&rft.pub=IEEE&rft.eissn=1949-3045&rft.volume=12&rft.issue=3&rft.spage=607&rft.epage=621&rft_id=info:doi/10.1109%2FTAFFC.2019.2956030&rft.externalDocID=8913501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon