On the Effect of Observed Subject Biases in Apparent Personality Analysis From Audio-Visual Signals
Personality perception is implicitly biased due to many subjective factors, such as cultural, social, contextual, gender, and appearance. Approaches developed for automatic personality perception are not expected to predict the real personality of the target but the personality external observers at...
Saved in:
Published in | IEEE transactions on affective computing Vol. 12; no. 3; pp. 607 - 621 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Personality perception is implicitly biased due to many subjective factors, such as cultural, social, contextual, gender, and appearance. Approaches developed for automatic personality perception are not expected to predict the real personality of the target but the personality external observers attributed to it. Hence, they have to deal with human bias, inherently transferred to the training data. However, bias analysis in personality computing is an almost unexplored area. In this article, we study different possible sources of bias affecting personality perception, including emotions from facial expressions, attractiveness, age, gender, and ethnicity, as well as their influence on prediction ability for apparent personality estimation. To this end, we propose a multimodal deep neural network that combines raw audio and visual information alongside predictions of attribute-specific models to regress apparent personality. We also analyze spatio-temporal aggregation schemes and the effect of different time intervals on first impressions. We base our study on the ChaLearn first impressions dataset, consisting of one-person conversational videos. Our model shows state-of-the-art results regressing apparent personality based on the Big-Five model. Furthermore, given the interpretability nature of our network design, we provide an incremental analysis on the impact of each possible source of bias on final network predictions. |
---|---|
AbstractList | Personality perception is implicitly biased due to many subjective factors, such as cultural, social, contextual, gender, and appearance. Approaches developed for automatic personality perception are not expected to predict the real personality of the target but the personality external observers attributed to it. Hence, they have to deal with human bias, inherently transferred to the training data. However, bias analysis in personality computing is an almost unexplored area. In this article, we study different possible sources of bias affecting personality perception, including emotions from facial expressions, attractiveness, age, gender, and ethnicity, as well as their influence on prediction ability for apparent personality estimation. To this end, we propose a multimodal deep neural network that combines raw audio and visual information alongside predictions of attribute-specific models to regress apparent personality. We also analyze spatio-temporal aggregation schemes and the effect of different time intervals on first impressions. We base our study on the ChaLearn first impressions dataset, consisting of one-person conversational videos. Our model shows state-of-the-art results regressing apparent personality based on the Big-Five model. Furthermore, given the interpretability nature of our network design, we provide an incremental analysis on the impact of each possible source of bias on final network predictions. |
Author | Principi, Ricardo Dario Perez Escalera, Sergio Junior, Julio C. S. Jacques Palmero, Cristina |
Author_xml | – sequence: 1 givenname: Ricardo Dario Perez surname: Principi fullname: Principi, Ricardo Dario Perez email: principidario@gmail.com organization: Universitat de Barcelona, Barcelona, Spain – sequence: 2 givenname: Cristina orcidid: 0000-0002-6085-6527 surname: Palmero fullname: Palmero, Cristina email: crpalmec7@alumnes.ub.edu organization: Universitat de Barcelona, Barcelona, Spain – sequence: 3 givenname: Julio C. S. Jacques orcidid: 0000-0001-6785-7146 surname: Junior fullname: Junior, Julio C. S. Jacques email: jsilveira@uoc.edu organization: Universitat Oberta de Catalunya, Barcelona, Spain – sequence: 4 givenname: Sergio orcidid: 0000-0003-0617-8873 surname: Escalera fullname: Escalera, Sergio email: sergio@maia.ub.es organization: Universitat de Barcelona, Barcelona, Spain |
BookMark | eNp9UE1PAjEQbQwmIvIH9NLE82K73e5ujysBNSHBBPS6Kd2plsAW264J_94ixBgPzuVN5s2bj3eJeq1tAaFrSkaUEnG3rKbT8SglVIxSwXPCyBnqU5GJhJGM937lF2jo_ZrEYIzladFHat7i8A54ojWogK3G85UH9wkNXnSr9aF2b6QHj02Lq91OOmgDfgbnbSs3JuxxFXHvjcdTZ7e46hpjk1fjO7nBC_MWSX-FznUEGJ5wgF6mk-X4MZnNH57G1SxR8eyQcAW8yThd0UzlDUDGoCzLvBCKsDxTAnTKZS604I2OP4LkTZOSVBU8MqVu2ADdHufunP3owId6bTt3uKBOeV4WRS4Yj13psUs5670DXe-c2Uq3rympD37W337WBz_rk59RVP4RKRNkMLYNTprN_9Kbo9QAwM-uUlDGCWVfOJGE3Q |
CODEN | ITACBQ |
CitedBy_id | crossref_primary_10_1109_TCSS_2022_3161708 crossref_primary_10_1109_TAFFC_2023_3318367 crossref_primary_10_1109_TAFFC_2020_2973984 crossref_primary_10_1109_TAFFC_2022_3230672 crossref_primary_10_3389_fnins_2022_1107284 crossref_primary_10_1057_s41599_023_01999_y crossref_primary_10_3389_fnins_2022_865201 crossref_primary_10_1109_TAFFC_2021_3064601 crossref_primary_10_3389_fpsyg_2022_839619 crossref_primary_10_1007_s11042_024_20356_y crossref_primary_10_1016_j_engappai_2023_106661 crossref_primary_10_1016_j_eswa_2023_122441 crossref_primary_10_1109_ACCESS_2020_3034639 crossref_primary_10_1016_j_ipm_2022_103217 |
Cites_doi | 10.1109/FG.2017.20 10.1017/CBO9780511596544.010 10.1109/TPAMI.2017.2738004 10.1109/TAFFC.2017.2762299 10.1111/j.1467-9450.2012.00939.x 10.1177/0956797614532474 10.1109/CVPRW.2017.217 10.1109/CVPRW.2015.7301352 10.1037/xge0000152 10.1109/CVPR.2014.241 10.18653/v1/P18-2096 10.1111/j.1467-6494.1992.tb00970.x 10.1080/02699931.2016.1227305 10.1080/00221325.2010.526154 10.1007/978-3-642-13923-9_3 10.1109/T-AFFC.2012.17 10.1109/ICPR.2018.8546038 10.1145/3282894.3282922 10.5244/C.29.41 10.1111/bjop.12206 10.1145/1452392.1452404 10.1007/978-3-319-49409-8_30 10.1109/TAFFC.2017.2751469 10.1109/ICPR.2016.7899605 10.1007/978-3-319-46843-3_10 10.1016/j.imavis.2014.04.011 10.1007/978-3-319-49409-8_25 10.1007/978-3-319-49409-8_27 10.1109/ICPR.2014.492 10.1037/a0029712 10.1177/0956797610388048 10.1177/1948550611402519 10.1371/journal.pone.0135529 10.1109/CVPR.2018.00915 10.1109/TAFFC.2019.2930058 10.1016/j.jesp.2016.06.005 10.1109/AFGR.2004.1301530 10.1007/978-3-319-49409-8_32 10.1037/0022-3514.81.2.322 10.1109/TAFFC.2014.2330816 10.1109/CVPRW.2017.210 10.1109/ICCVW.2015.41 10.1145/2813524.2813528 10.1109/TPAMI.2016.2515606 10.1145/2388676.2388689 10.1109/ICB.2016.7550082 10.1073/pnas.1409860111 10.1109/TAFFC.2014.2370044 10.1109/TMM.2012.2225032 10.1145/2647868.2655014 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TAFFC.2019.2956030 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1949-3045 |
EndPage | 621 |
ExternalDocumentID | 10_1109_TAFFC_2019_2956030 8913501 |
Genre | orig-research |
GrantInformation_xml | – fundername: Institució Catalana de Recerca i Estudis Avançats; ICREA funderid: 10.13039/501100003741 – fundername: CERCA Programme/Generalitat de Catalunya – fundername: Spanish projects grantid: TIN2015-66951-C2-2-R; TIN2016-74946-P (MINECO/FEDER,UE) – fundername: Spanish Ministry of Science, Innovation and Universities grantid: RTI2018-095232-B-C22 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNI RZB AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-5ce5d451b14c6dee43e888679c0364c9ef25a69f95df030ea5dd202c75ef28fd3 |
IEDL.DBID | RIE |
ISSN | 1949-3045 |
IngestDate | Mon Jun 30 05:08:10 EDT 2025 Tue Jul 01 02:57:52 EDT 2025 Thu Apr 24 23:03:47 EDT 2025 Wed Aug 27 02:27:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-5ce5d451b14c6dee43e888679c0364c9ef25a69f95df030ea5dd202c75ef28fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6085-6527 0000-0001-6785-7146 0000-0003-0617-8873 |
PQID | 2568776935 |
PQPubID | 2040414 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TAFFC_2019_2956030 ieee_primary_8913501 proquest_journals_2568776935 crossref_citationtrail_10_1109_TAFFC_2019_2956030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on affective computing |
PublicationTitleAbbrev | TAFFC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref11 ref10 todorov (ref3) 2017 güçlütürk (ref25) 2016 ref17 song (ref54) 2017 ref16 ref19 ref18 ref50 ref46 king (ref51) 2009; 10 ref45 ref48 ref47 ref42 ref41 ref44 güçlütürk (ref26) 2018; 9 ref43 ref49 ref8 nguyen (ref30) 2015 ref7 ref9 ref4 rosa ramos (ref55) 2018 ref5 ref40 ref35 ref34 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 escalante (ref6) 2018 ref24 ref23 ref20 ref22 ref21 ref28 ref27 ref29 todorov (ref37) 2012 ref60 |
References_xml | – year: 2015 ident: ref30 article-title: Computational analysis of behavior in employment interviews and video resumes – start-page: 349 year: 2016 ident: ref25 article-title: Deep impression: Audiovisual deep residual networks for multimodal apparent personality trait recognition publication-title: Proc Eur Conf Comput Vis – ident: ref43 doi: 10.1109/FG.2017.20 – ident: ref1 doi: 10.1017/CBO9780511596544.010 – ident: ref48 doi: 10.1109/TPAMI.2017.2738004 – ident: ref28 doi: 10.1109/TAFFC.2017.2762299 – ident: ref59 doi: 10.1111/j.1467-9450.2012.00939.x – ident: ref10 doi: 10.1177/0956797614532474 – ident: ref27 doi: 10.1109/CVPRW.2017.217 – ident: ref45 doi: 10.1109/CVPRW.2015.7301352 – ident: ref60 doi: 10.1037/xge0000152 – ident: ref52 doi: 10.1109/CVPR.2014.241 – year: 2017 ident: ref3 publication-title: Face Value The Irresistible Influence of First Impressions – ident: ref29 doi: 10.18653/v1/P18-2096 – ident: ref13 doi: 10.1111/j.1467-6494.1992.tb00970.x – ident: ref34 doi: 10.1080/02699931.2016.1227305 – ident: ref39 doi: 10.1080/00221325.2010.526154 – ident: ref40 doi: 10.1007/978-3-642-13923-9_3 – ident: ref31 doi: 10.1109/T-AFFC.2012.17 – ident: ref41 doi: 10.1109/ICPR.2018.8546038 – ident: ref21 doi: 10.1145/3282894.3282922 – ident: ref56 doi: 10.5244/C.29.41 – ident: ref33 doi: 10.1111/bjop.12206 – ident: ref9 doi: 10.1111/bjop.12206 – ident: ref2 doi: 10.1145/1452392.1452404 – ident: ref22 doi: 10.1007/978-3-319-49409-8_30 – volume: 9 start-page: 316 year: 2018 ident: ref26 article-title: Multimodal first impression analysis with deep residual networks publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2017.2751469 – ident: ref23 doi: 10.1109/ICPR.2016.7899605 – year: 2018 ident: ref6 article-title: Explaining first impressions: Modeling, recognizing, and explaining apparent personality from videos publication-title: arXiv 1802 00745 – ident: ref15 doi: 10.1007/978-3-319-46843-3_10 – ident: ref47 doi: 10.1016/j.imavis.2014.04.011 – ident: ref50 doi: 10.1007/978-3-319-49409-8_25 – ident: ref24 doi: 10.1007/978-3-319-49409-8_27 – ident: ref58 doi: 10.1109/ICPR.2014.492 – ident: ref42 doi: 10.1037/a0029712 – ident: ref38 doi: 10.1177/0956797610388048 – year: 2012 ident: ref37 publication-title: Personality Impressions from Facial Appearance – volume: 10 start-page: 1755 year: 2009 ident: ref51 article-title: Dlib-ml: A machine learning toolkit publication-title: J Mach Learn Res – ident: ref8 doi: 10.1177/1948550611402519 – ident: ref11 doi: 10.1371/journal.pone.0135529 – ident: ref32 doi: 10.1109/CVPR.2018.00915 – ident: ref7 doi: 10.1109/TAFFC.2019.2930058 – ident: ref35 doi: 10.1177/1948550611402519 – ident: ref12 doi: 10.1016/j.jesp.2016.06.005 – ident: ref49 doi: 10.1109/AFGR.2004.1301530 – ident: ref5 doi: 10.1007/978-3-319-49409-8_32 – year: 2018 ident: ref55 article-title: Deep learning for universal emotion recognition in still images – ident: ref44 doi: 10.1037/0022-3514.81.2.322 – ident: ref4 doi: 10.1109/TAFFC.2014.2330816 – ident: ref57 doi: 10.1109/CVPRW.2017.210 – ident: ref53 doi: 10.1109/ICCVW.2015.41 – ident: ref17 doi: 10.1145/2813524.2813528 – start-page: 4352 year: 2017 ident: ref54 article-title: Age progression/regression by conditional adversarial autoencoder publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref36 doi: 10.1109/TPAMI.2016.2515606 – ident: ref18 doi: 10.1145/2388676.2388689 – ident: ref46 doi: 10.1109/ICB.2016.7550082 – ident: ref16 doi: 10.1073/pnas.1409860111 – ident: ref20 doi: 10.1109/TAFFC.2014.2370044 – ident: ref19 doi: 10.1109/TMM.2012.2225032 – ident: ref14 doi: 10.1145/2647868.2655014 |
SSID | ssj0000333627 |
Score | 2.4064941 |
Snippet | Personality perception is implicitly biased due to many subjective factors, such as cultural, social, contextual, gender, and appearance. Approaches developed... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 607 |
SubjectTerms | Artificial neural networks Audio data audio-visual recordings Automatic personality perception Bias big-five Computational modeling convolutional neural networks Deep learning Feature extraction first impressions Human bias Impact analysis multi-modal recognition Network design Observers OCEAN Perception Personality personality computing subjective bias Videos Visual observation Visual signals Visualization |
Title | On the Effect of Observed Subject Biases in Apparent Personality Analysis From Audio-Visual Signals |
URI | https://ieeexplore.ieee.org/document/8913501 https://www.proquest.com/docview/2568776935 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYop166wIK6vORDb22WPOwkPi4rohVSS6XuIm5RYk-qqJCg3eTCr2fGSbYVINScIsVWrPlsz3uGsS9aqlyGmXJE7IWOKEA7MbiBY7IchPC1p4wNkP0RLlbi-k7e7bBv21wYALDBZzClV-vLN7VuyVR2QS41SclaH1Bx63K1tvYUNwjwLo6GvBhXXSxnSTKn4C019UkLoEDnf3iPbaby6ga2bCUZse_Dgrpokj_Ttsmn-ulFrcb_XfEe-9TLl3zWbYh9tgPVARsNvRt4f5THTN9UHGU_3lUv5nXBb3Iy0ILheJeQcYZflsjhNrysOIqqlDPW8J9_RXc-lDPhybp-4LPWlLVzW25a_Puv8jeVZT5kq-RqOV84fcMFRyOFGkdqkEZIL_eEDg2ACAAV5DBSmryVWkHhyyxUhZKmQHJCJo3xXV9HEr_EhQmO2G5VV_CZcaS3dHPfLyKBj9bkXgxRuMtijYwxCybMG6BIdV-NnJpi3KdWK3FVauFLCb60h2_Cvm7nPHa1ON4dPSY8tiN7KCbsdEA87Y_rJkW5L46oK6Q8fnvWCfvoUzCLjdM9ZbvNuoUzlEaa_Nxuw2ck1du5 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pj5UwEJ5s1oNeXHU1Pl21B2_KWygt0ONzI3nq_jDxrdkbgXYwRAWzDy7-9c4UeBo1Rk4ktKHptJ2vM9_MADy32lQ6KU2gsigJVI02yDCMA1dWqJS0kXGeIHuerC_V2yt9tQcvd7EwiOjJZ7jkV-_Ld50d2FR2zC41zcFaN0jvazlGa-0sKmEc02mczpExoTnerPL8hOlbZin5HsBU51-0jy-n8scZ7BVLfgBn85BGPsnn5dBXS_v9t2yN_zvmO3B7QphiNS6Ju7CH7T04mKs3iGkzH4K9aAWhPzHmLxZdLS4qNtGiE3SasHlGvGpIx21F0woCqxw11ov3P8G7mBOaiPy6-ypWg2u64GOzHejvH5pPnJj5Plzmrzcn62AquRBYmqE-0Ba1UzqqImUTh6hipCtykhrL_kprsJa6TExttKtpOrHUzslQ2lTTl6x28QPYb7sWH4Kg-dZhJWWdKnqsZQdjQvCuzCypxjJeQDSLorBTPnIui_Gl8PeS0BRefAWLr5jEt4AXuz7fxmwc_2x9yPLYtZxEsYCjWeLFtGG3BSG_LOW6kPrR33s9g5vrzdlpcfrm_N1juCWZ2uJZu0ew318P-ISwSV899UvyB8at3wM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Effect+of+Observed+Subject+Biases+in+Apparent+Personality+Analysis+From+Audio-Visual+Signals&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Principi%2C+Ricardo+Dario+Perez&rft.au=Palmero%2C+Cristina&rft.au=Junior%2C+Julio+C.+S.+Jacques&rft.au=Escalera%2C+Sergio&rft.date=2021-07-01&rft.pub=IEEE&rft.eissn=1949-3045&rft.volume=12&rft.issue=3&rft.spage=607&rft.epage=621&rft_id=info:doi/10.1109%2FTAFFC.2019.2956030&rft.externalDocID=8913501 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |