MVF-Net: A Multi-View Fusion Network for Event-Based Object Classification
Event-based object recognition has drawn increasing attention for event cameras' distinguished advantages of low power consumption and high dynamic range. For this new modality, previous works based on customizing low-level descriptors are vulnerable to noise and with limited generalizability....
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 12; pp. 8275 - 8284 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Event-based object recognition has drawn increasing attention for event cameras' distinguished advantages of low power consumption and high dynamic range. For this new modality, previous works based on customizing low-level descriptors are vulnerable to noise and with limited generalizability. Although recent works turn to design various deep neural networks to extract event features, they either suffer from data insufficiency to fully train the event-based model or fail to encode spatial and temporal cues simultaneously with their single view network. In this work, we address these limitations by proposing a multi-view attention-aware network, in which an event stream is projected to multi-view 2D maps to utilize well-trained 2D models and explore spatio-temporal complements. Besides, the attention mechanism is used to boost the complements in different streams for better joint inference. Comprehensive experiments show the large superiority of our model over state-of-the-art methods as well as the efficacy of our multi-view fusion framework for event data. |
---|---|
AbstractList | Event-based object recognition has drawn increasing attention for event cameras’ distinguished advantages of low power consumption and high dynamic range. For this new modality, previous works based on customizing low-level descriptors are vulnerable to noise and with limited generalizability. Although recent works turn to design various deep neural networks to extract event features, they either suffer from data insufficiency to fully train the event-based model or fail to encode spatial and temporal cues simultaneously with their single view network. In this work, we address these limitations by proposing a multi-view attention-aware network, in which an event stream is projected to multi-view 2D maps to utilize well-trained 2D models and explore spatio-temporal complements. Besides, the attention mechanism is used to boost the complements in different streams for better joint inference. Comprehensive experiments show the large superiority of our model over state-of-the-art methods as well as the efficacy of our multi-view fusion framework for event data. |
Author | Deng, Yongjian Li, Youfu Chen, Hao |
Author_xml | – sequence: 1 givenname: Yongjian orcidid: 0000-0001-6253-3564 surname: Deng fullname: Deng, Yongjian email: yongjdeng2-c@my.cityu.edu.hk organization: Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR – sequence: 2 givenname: Hao orcidid: 0000-0002-3138-505X surname: Chen fullname: Chen, Hao email: haochen593@gmail.com organization: School of Computer Science and Engineering, Southeast University, Nanjing, China – sequence: 3 givenname: Youfu orcidid: 0000-0002-5227-1326 surname: Li fullname: Li, Youfu email: meyfli@cityu.edu.hk organization: Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR |
BookMark | eNp9kMlOwzAQhi0EEm3hBeBiiXOKlzhOuJWqZVFLD5ReLcexJZeQFNuh4u1xF3HggOYwI83_zfL3wWnTNhqAK4yGGKPidjl-XS2HBBE8pIjTjNMT0MOM5QkhiJ3GGjGc5ASzc9D3fo0QTvOU98DzfDVNXnS4gyM47-pgk5XVWzjtvG0bGBvb1r1D0zo4-dJNSO6l1xVclGutAhzX0ntrrJIhqi_AmZG115fHPABv08ly_JjMFg9P49EsUaRgIWGq4NpIwilDHBVGZZnOecUqXDGiVamoLiuKlSxKiUyRpWmFmKKEpIXhHDE6ADeHuRvXfnbaB7FuO9fElYLwlGc4fpxHVX5QKdd677QRyob9ncFJWwuMxM45sXdO7JwTR-ciSv6gG2c_pPv-H7o-QFZr_QsUKcpi0B_QbHqL |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TCSVT_2023_3322470 crossref_primary_10_3390_electronics14010043 crossref_primary_10_1109_TCSVT_2023_3263853 crossref_primary_10_1007_s10489_023_04963_0 crossref_primary_10_1109_TCSVT_2023_3272375 crossref_primary_10_1109_TCSVT_2024_3443122 crossref_primary_10_3390_s22166090 crossref_primary_10_1016_j_infrared_2021_103823 crossref_primary_10_1016_j_ins_2023_119170 crossref_primary_10_1109_TGRS_2024_3366536 crossref_primary_10_1109_TMM_2024_3380255 crossref_primary_10_1016_j_neucom_2024_128268 crossref_primary_10_1002_aisy_202400265 crossref_primary_10_1109_LRA_2022_3140819 crossref_primary_10_1109_TCSVT_2024_3359681 crossref_primary_10_1109_TCSVT_2024_3448615 crossref_primary_10_1016_j_eswa_2023_122743 crossref_primary_10_1016_j_neucom_2025_130026 crossref_primary_10_3390_electronics12173567 crossref_primary_10_1109_TCSVT_2023_3301176 crossref_primary_10_1109_JSEN_2024_3524301 crossref_primary_10_1109_TCSVT_2022_3189480 |
Cites_doi | 10.1007/978-3-030-58565-5_9 10.1109/CVPR.2018.00745 10.1109/TCYB.2019.2934986 10.1109/CVPR.2019.00398 10.1109/TCSVT.2017.2786999 10.3389/fnins.2017.00309 10.1109/ICCV.2015.114 10.1109/TPAMI.2015.2392947 10.1109/CVPR.2018.00186 10.1177/0278364917691115 10.1109/ICCV.2019.00573 10.1109/TNNLS.2013.2273537 10.1109/ICCV.2019.00760 10.1109/LRA.2020.3002480 10.1109/THMS.2015.2504550 10.2139/ssrn.3349696 10.1109/TIP.2020.3023597 10.1109/CVPR.2018.00568 10.1109/TIP.2019.2891104 10.1109/JSSC.2010.2085952 10.1145/2964284.2967191 10.5244/C.30.94 10.1016/S0893-6080(97)00011-7 10.1109/JSSC.2007.914337 10.1109/ICCV.2019.00706 10.1109/CVPR.2017.602 10.1109/CVPR.2017.781 10.1016/j.neunet.2015.02.013 10.1109/ICCV.2019.00058 10.3389/fnins.2015.00137 10.1109/TIP.2020.3013168 10.1016/j.patcog.2019.107037 10.1109/TCSVT.2018.2864148 10.1109/TIP.2020.3014734 10.1109/TNNLS.2018.2876865 10.3389/fnins.2015.00437 10.1109/IROS.2016.7759610 10.15607/RSS.2018.XIV.062 10.1109/TPAMI.2016.2574707 10.1109/JPROC.2014.2346763 10.1109/CVPR.2016.90 10.1109/ICCV.2017.74 10.1109/CVPR.2009.5206848 10.1109/TCSVT.2018.2834480 10.1109/TCSVT.2014.2333151 10.1109/TPAMI.2017.2769655 10.5244/C.31.33 10.3389/fnins.2016.00594 10.1109/CVPR42600.2020.00192 10.1109/TNNLS.2014.2362542 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2021.3073673 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 8284 |
ExternalDocumentID | 10_1109_TCSVT_2021_3073673 9406060 |
Genre | orig-research |
GrantInformation_xml | – fundername: Research Grants Council of Hong Kong grantid: CityU 11213420 funderid: 10.13039/501100002920 – fundername: National Natural Science Foundation of China grantid: 61873220 funderid: 10.13039/501100001809 – fundername: Science and Technology Development Fund, Macau grantid: 0022/2019/AKP funderid: 10.13039/501100003009 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-5c97efa27350709fc66e87d5d1d52ecbc3ebd31ca9ba0f9644d05c32249f77053 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 03:29:40 EDT 2025 Tue Jul 01 00:41:15 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Wed Aug 27 02:15:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-5c97efa27350709fc66e87d5d1d52ecbc3ebd31ca9ba0f9644d05c32249f77053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3138-505X 0000-0001-6253-3564 0000-0002-5227-1326 |
PQID | 2747612058 |
PQPubID | 85433 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2747612058 ieee_primary_9406060 crossref_citationtrail_10_1109_TCSVT_2021_3073673 crossref_primary_10_1109_TCSVT_2021_3073673 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref15 simonyan (ref7) 2015 zihao zhu (ref11) 2018 ref14 ref53 ref52 ref10 ref17 ref16 ref19 ref18 neil (ref41) 2016 ref51 ref50 etienne perot (ref4) 2020 ref46 gallego (ref3) 2020 ref45 ref48 ref47 ref42 ref44 ref43 ref49 ref8 ref9 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 kingma (ref54) 2014 ref38 ref24 sutskever (ref55) 2013 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref14 doi: 10.1007/978-3-030-58565-5_9 – ident: ref17 doi: 10.1109/CVPR.2018.00745 – ident: ref35 doi: 10.1109/TCYB.2019.2934986 – ident: ref12 doi: 10.1109/CVPR.2019.00398 – ident: ref30 doi: 10.1109/TCSVT.2017.2786999 – ident: ref53 doi: 10.3389/fnins.2017.00309 – ident: ref45 doi: 10.1109/ICCV.2015.114 – ident: ref38 doi: 10.1109/TPAMI.2015.2392947 – ident: ref43 doi: 10.1109/CVPR.2018.00186 – ident: ref26 doi: 10.1177/0278364917691115 – ident: ref13 doi: 10.1109/ICCV.2019.00573 – ident: ref21 doi: 10.1109/TNNLS.2013.2273537 – ident: ref46 doi: 10.1109/ICCV.2019.00760 – year: 2014 ident: ref54 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref15 doi: 10.1109/LRA.2020.3002480 – ident: ref49 doi: 10.1109/THMS.2015.2504550 – start-page: 1 year: 2015 ident: ref7 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc Int Conf Learn Represent – ident: ref27 doi: 10.2139/ssrn.3349696 – ident: ref6 doi: 10.1109/TIP.2020.3023597 – ident: ref9 doi: 10.1109/CVPR.2018.00568 – ident: ref36 doi: 10.1109/TIP.2019.2891104 – ident: ref2 doi: 10.1109/JSSC.2010.2085952 – ident: ref48 doi: 10.1145/2964284.2967191 – ident: ref25 doi: 10.5244/C.30.94 – ident: ref5 doi: 10.1016/S0893-6080(97)00011-7 – ident: ref1 doi: 10.1109/JSSC.2007.914337 – ident: ref33 doi: 10.1109/ICCV.2019.00706 – ident: ref50 doi: 10.1109/CVPR.2017.602 – ident: ref40 doi: 10.1109/CVPR.2017.781 – ident: ref18 doi: 10.1016/j.neunet.2015.02.013 – start-page: 1 year: 2020 ident: ref4 article-title: Learning to detect objects with a 1 megapixel event camera publication-title: Proc Conf Neural Inf Process Syst – year: 2020 ident: ref3 article-title: Event-based vision: A survey publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref44 doi: 10.1109/ICCV.2019.00058 – start-page: 3882 year: 2016 ident: ref41 article-title: Phased LSTM: Accelerating recurrent network training for long or event-based sequences publication-title: Proc Conf Neural Inf Process Syst – start-page: 1139 year: 2013 ident: ref55 article-title: On the importance of initialization and momentum in deep learning publication-title: Proc Int Conf Mach Learn – ident: ref23 doi: 10.3389/fnins.2015.00137 – ident: ref32 doi: 10.1109/TIP.2020.3013168 – start-page: 711 year: 2018 ident: ref11 article-title: Unsupervised event-based optical flow using motion compensation publication-title: Proc Eur Conf Comput Vis – ident: ref34 doi: 10.1016/j.patcog.2019.107037 – ident: ref28 doi: 10.1109/TCSVT.2018.2864148 – ident: ref37 doi: 10.1109/TIP.2020.3014734 – ident: ref31 doi: 10.1109/TNNLS.2018.2876865 – ident: ref52 doi: 10.3389/fnins.2015.00437 – ident: ref20 doi: 10.1109/IROS.2016.7759610 – ident: ref10 doi: 10.15607/RSS.2018.XIV.062 – ident: ref42 doi: 10.1109/TPAMI.2016.2574707 – ident: ref24 doi: 10.1109/JPROC.2014.2346763 – ident: ref8 doi: 10.1109/CVPR.2016.90 – ident: ref56 doi: 10.1109/ICCV.2017.74 – ident: ref16 doi: 10.1109/CVPR.2009.5206848 – ident: ref57 doi: 10.1109/TCSVT.2018.2834480 – ident: ref29 doi: 10.1109/TCSVT.2014.2333151 – ident: ref51 doi: 10.1109/TPAMI.2017.2769655 – ident: ref19 doi: 10.5244/C.31.33 – ident: ref22 doi: 10.3389/fnins.2016.00594 – ident: ref47 doi: 10.1109/CVPR42600.2020.00192 – ident: ref39 doi: 10.1109/TNNLS.2014.2362542 |
SSID | ssj0014847 |
Score | 2.5980427 |
Snippet | Event-based object recognition has drawn increasing attention for event cameras' distinguished advantages of low power consumption and high dynamic range. For... Event-based object recognition has drawn increasing attention for event cameras’ distinguished advantages of low power consumption and high dynamic range. For... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8275 |
SubjectTerms | Artificial neural networks attention Cameras Data models Event data Feature extraction multi-view object categorization Object recognition Power consumption Power demand Streaming media Task analysis Three-dimensional displays Two dimensional models |
Title | MVF-Net: A Multi-View Fusion Network for Event-Based Object Classification |
URI | https://ieeexplore.ieee.org/document/9406060 https://www.proquest.com/docview/2747612058 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6qJz34qmJ9kYM3TU32lY23Wiyl0HqwFm_L5rEgSiu6RfDXO8luiy9E9rKHZAkzyc43k29mAE61YdwUmtPYpDmNtBJUIcyloeQhV5FSwpMxh6OkfxcN7uP7Bpwvc2GstZ58Ztvu1d_lm5meu1DZhUTrg88KrKDjVuVqLW8MotQ3E0O4wGmKdmyRIMPkxbh7OxmjKxjwttvRiQi_GCHfVeXHr9jbl94mDBcrq2glj-15qdr6_VvRxv8ufQs2aqBJOtXO2IaGne7A-qfyg00YDCc9OrLlJekQn4hLJw_2jfTmLoJGRhVBnCCqJdeOFUmv0OIZcqNc6Ib4bpqOZ-RVuwt3vetxt0_r3gpUBzIuaaylsEWO4AUBIZOFThKbChMbbuLAaqVDq0zIdS5VzgqJqMmwWOPpj2QhBJ7cPVidzqZ2HwiPTKE0TzSzaaSFyCMHQ_H7LJAmLYoW8IWwM10XHnf9L54y74AwmXkFZU5BWa2gFpwt5zxXZTf-HN10El-OrIXdgqOFTrP6ZL5mzgtHVMfi9OD3WYewFrgUB09ZOYLV8mVujxF4lOrE77gPnVfSaA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT9wwEB0heoAeSoFWLGxbH-gJebGTOI4rcaCU1fKx20OXFbc0_oiEihYEWa3a39K_0v_G2MmuaIu4IaFccrAjJfPieR6_mQHYNpZxWxpOhc0KmhgtqUaaS2PFY64TrWUQY_YHae8sOT4X5wvwe54L45wL4jPX8bfhLN9emYkPle0q9D54NRLKE_dzihu0272jL2jNj1HUPRwe9GjTQ4CaSImKCqOkKwt00kh8mCpNmrpMWmG5FZEz2sRO25ibQumClQrZgWXCIMoTVUrJfE8IXOBfIM8QUZ0dNj-jSLLQvgwJCqcZes5ZSg5Tu8ODb6Mhbj4j3vH_UCrjv9xe6OPy3-IfPFp3Bf7MvkUtZPnRmVS6Y379UybyuX6s1_CqodJkv8b-Kiy48Rq8vFdgcR2O-6MuHbjqE9knIdWYji7clHQnPkZIBrUEniBvJ4de90k_o0-35Kv2wSkS-oV6JVUA7xs4e5KXeQuL46ux2wDCE1tqw1PDXJYYKYvEE218PouUzcqyBXxm3Nw0pdV9h4_LPGyxmMoDIHIPiLwBRAt25nOu68Iij45e9xaej2yM24L2DEN5s_bc5j7OgLyViWzz4VkfYKk37J_mp0eDky1YjnxCRxDotGGxupm4d0izKv0-oJ3A96dGzB38OTBT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MVF-Net%3A+A+Multi-View+Fusion+Network+for+Event-Based+Object+Classification&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Deng%2C+Yongjian&rft.au=Chen%2C+Hao&rft.au=Li%2C+Youfu&rft.date=2022-12-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=12&rft.spage=8275&rft.epage=8284&rft_id=info:doi/10.1109%2FTCSVT.2021.3073673&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2021_3073673 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |