A Goal-Programming-Based Heuristic Approach to Deriving Fuzzy Weights in Analytic Form from Triangular Fuzzy Preference Relations
Triangular fuzzy preference relations (TFPRs) have long been viewed as an effective framework to express subjective preferences with ambiguity in fuzzy multicriteria decision-making systems. This paper focuses on solving two important and challenging issues: First, how to judge the quality of nondia...
Saved in:
Published in | IEEE transactions on fuzzy systems Vol. 27; no. 2; pp. 234 - 248 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Triangular fuzzy preference relations (TFPRs) have long been viewed as an effective framework to express subjective preferences with ambiguity in fuzzy multicriteria decision-making systems. This paper focuses on solving two important and challenging issues: First, how to judge the quality of nondiagonal preferences in a TFPR; and second, how to find an analytic solution of optimal fuzzy weights for consistent TFPRs and an analytic solution of heuristic fuzzy weights for inconsistent TFPRs. This paper analyzes two existing normalization models of triangular fuzzy weights and illustrates their deficiency. Notions of normalized triangular fuzzy multiplicative weights (TFMWs) and basic TFMWs are then introduced and used to characterize a group of triangular fuzzy weight vectors with equivalency. This paper proposes transformation models among triangular fuzzy weights, normalized TFMWs and basic TFMWs, and employs basic TFMWs to define consistent TFPRs. Some important properties are presented for the fuzziness of a consistent TFPR and its corresponding basic TFMWs. These properties are subsequently used to develop a two-step approach consisting of three-goal programming (GP) models to find basic TFMWs of consistent TFPRs. By using the Lagrangian multiplier method, this paper finds analytic solutions of the three GP models and obtains optimized basic TFMWs denoted by three computation formulas for consistent TFPRs. By changing the constraints of the three GP models and using heuristics, three concise and visualized formulas are devised, respectively, to obtain the lower and upper support bounds and the modal values of heuristic-based TFMWs for any TFPR. A numerical example comprising of a consistent TFPR and two inconsistent TFPRs is supplied and a comparative study is conducted to show that the two challenging issues are reasonably solved, and a hierarchical fuzzy multicriteria decision-making example is offered to illustrate the applicability of the proposed fuzzy priority model. |
---|---|
AbstractList | Triangular fuzzy preference relations (TFPRs) have long been viewed as an effective framework to express subjective preferences with ambiguity in fuzzy multicriteria decision-making systems. This paper focuses on solving two important and challenging issues: First, how to judge the quality of nondiagonal preferences in a TFPR; and second, how to find an analytic solution of optimal fuzzy weights for consistent TFPRs and an analytic solution of heuristic fuzzy weights for inconsistent TFPRs. This paper analyzes two existing normalization models of triangular fuzzy weights and illustrates their deficiency. Notions of normalized triangular fuzzy multiplicative weights (TFMWs) and basic TFMWs are then introduced and used to characterize a group of triangular fuzzy weight vectors with equivalency. This paper proposes transformation models among triangular fuzzy weights, normalized TFMWs and basic TFMWs, and employs basic TFMWs to define consistent TFPRs. Some important properties are presented for the fuzziness of a consistent TFPR and its corresponding basic TFMWs. These properties are subsequently used to develop a two-step approach consisting of three-goal programming (GP) models to find basic TFMWs of consistent TFPRs. By using the Lagrangian multiplier method, this paper finds analytic solutions of the three GP models and obtains optimized basic TFMWs denoted by three computation formulas for consistent TFPRs. By changing the constraints of the three GP models and using heuristics, three concise and visualized formulas are devised, respectively, to obtain the lower and upper support bounds and the modal values of heuristic-based TFMWs for any TFPR. A numerical example comprising of a consistent TFPR and two inconsistent TFPRs is supplied and a comparative study is conducted to show that the two challenging issues are reasonably solved, and a hierarchical fuzzy multicriteria decision-making example is offered to illustrate the applicability of the proposed fuzzy priority model. |
Author | Wang, Zhou-Jing |
Author_xml | – sequence: 1 givenname: Zhou-Jing orcidid: 0000-0001-5778-5855 surname: Wang fullname: Wang, Zhou-Jing email: wangzj@xmu.edu.cn organization: School of Information, Zhejiang University of Finance and Economics, Hangzhou, China |
BookMark | eNp9kLtOwzAUhi0EEm3hBWCxxJziS5zYYym0RUICoVZIXSI3OUldJXGxE6Sy8eaktGJgYDpn-P5z-frotLY1IHRFyZBSom7nk8VyOWSEyiGTgnESn6AeVSENCOHhadeTiAdRTKJz1Pd-QwgNBZU99DXCU6vL4MXZwumqMnUR3GkPGZ5B64xvTIpH262zOl3jxuJ7cOajg_Ck_fzc4Tcwxbrx2NR4VOtyt8cn1lU4d7bCc2d0XbSldkf8xUEODuoU8CuUujG29hfoLNelh8tjHaDF5GE-ngVPz9PH8egpSJkSTSB0lKYqI1wwphkRYiVYLnIgOuZZLAVn0SoGFispSZZxzoCDVFSLDGIeKeADdHOY2z3z3oJvko1tXXe0TxiNRedGqrCj2IFKnfW-OzfZOlNpt0soSfaqkx_VyV51clTdheSfUGqan-8ap035f_T6EDUA8LtLhoQqFvFviaOPpw |
CODEN | IEFSEV |
CitedBy_id | crossref_primary_10_1016_j_cam_2025_116647 crossref_primary_10_1016_j_eswa_2021_115837 crossref_primary_10_1007_s40815_023_01558_2 crossref_primary_10_1109_TFUZZ_2020_2965909 crossref_primary_10_1109_ACCESS_2019_2933457 crossref_primary_10_1007_s11081_020_09524_9 crossref_primary_10_1016_j_asoc_2024_111355 crossref_primary_10_1007_s40815_019_00711_0 crossref_primary_10_1007_s10489_022_04024_y crossref_primary_10_1016_j_cie_2019_106086 crossref_primary_10_3390_math10040592 crossref_primary_10_1007_s10115_020_01507_7 crossref_primary_10_1016_j_asoc_2024_111688 crossref_primary_10_1016_j_ins_2019_12_055 crossref_primary_10_1016_j_asoc_2021_107292 crossref_primary_10_1109_TFUZZ_2020_2992103 crossref_primary_10_2174_2352096513999200721005731 crossref_primary_10_1016_j_ins_2019_04_002 crossref_primary_10_1080_0952813X_2023_2181404 crossref_primary_10_1016_j_ins_2021_08_063 crossref_primary_10_1109_TFUZZ_2019_2941174 crossref_primary_10_1109_TII_2019_2927349 crossref_primary_10_1016_j_ins_2020_12_047 crossref_primary_10_1016_j_ins_2021_08_051 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TFUZZ.2018.2852307 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0034 |
EndPage | 248 |
ExternalDocumentID | 10_1109_TFUZZ_2018_2852307 8401926 |
Genre | orig-research |
GrantInformation_xml | – fundername: Open Foundation of Medical Data Mining and Application Engineering Research Center of Fujian Province of China grantid: MDM2018001 – fundername: National Natural Science Foundation of China grantid: 71671160 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-5a6cc9d03522a2055b52f5fe0a73d785326b7e279880dd332e3e891a5de7369e3 |
IEDL.DBID | RIE |
ISSN | 1063-6706 |
IngestDate | Sun Jun 29 12:52:32 EDT 2025 Thu Apr 24 22:56:24 EDT 2025 Tue Jul 01 01:55:27 EDT 2025 Wed Aug 27 03:06:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-5a6cc9d03522a2055b52f5fe0a73d785326b7e279880dd332e3e891a5de7369e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5778-5855 |
PQID | 2175670894 |
PQPubID | 85428 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TFUZZ_2018_2852307 proquest_journals_2175670894 crossref_citationtrail_10_1109_TFUZZ_2018_2852307 ieee_primary_8401926 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on fuzzy systems |
PublicationTitleAbbrev | TFUZZ |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
SSID | ssj0014518 |
Score | 2.401544 |
Snippet | Triangular fuzzy preference relations (TFPRs) have long been viewed as an effective framework to express subjective preferences with ambiguity in fuzzy... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 234 |
SubjectTerms | Analytic solution Analytical models Biological system modeling Comparative studies Computational modeling consistency Constraint modelling Decision making Exact solutions Fuzzy systems Goal programming goal programming (GP) Heuristic Heuristic methods Multiple criterion Numerical models Preferences Programming triangular fuzzy preference relation (TFPR) Visualization Weight |
Title | A Goal-Programming-Based Heuristic Approach to Deriving Fuzzy Weights in Analytic Form from Triangular Fuzzy Preference Relations |
URI | https://ieeexplore.ieee.org/document/8401926 https://www.proquest.com/docview/2175670894 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PcGBQgtioa184AbeJvHajo8LbbpCatXDrqh6iRzbQRUli2hyYG_8c8aOE5UPVVyiKBpHlubZnhnPvAF4w-paMKstTWzlo1VS01zYlAqd2loZbYTz1cjnF2Kxmn284ldb8G6shXHOheQzN_Wv4S7frk3nQ2XH6IygQSK2YRsdt75Wa7wxmPG0L3sTjAqZiKFAJlHHy2J1fe2zuPJplvsoqPztEApdVf7aisP5UuzC-TCzPq3ky7Rrq6nZ_EHa-L9TfwpPoqFJ5j0ynsGWa_Zgd2jiQOKa3oPH9xgJ9-HnnJyt9S297NO2vuJH-h4POksWrutJnck80pCTdk1OcJwPSZCi22x-kE8h0HpHbhoS2E68eIFWMfFVLGSJYG8--7zXKH45NjkhY1Lec1gVp8sPCxq7NFCTKd5SroUxynpe1UxnCecVz2peu0RLZiVaA5mopMs8L1piLWOZYy5XqebWSSaUYy9gp1k37iWQvMpFYlKBTzmrESXWpYpbRJBCR1aaCaSD2koTKcx9J43bMrgyiSqDqkuv6jKqegJvxzHfegKPB6X3ve5Gyai2CRwM6CjjGr8r0ZnjiLRczV79e9RreIT_Vn2O9wHstN87d4gmTFsdBez-ApPr7kk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcgAOLbQgthTwAU7I28RZ2_GBw0IJW_qjHnZF1Uua2A5ClCzqJqq6N96DV-HdGCdOxJ-4VeISRdE4kZxv7JnxzDcAz6KiEJHJDA1M7qJVMqOxMCEVWWgKpTMtrKtGPjwSk9no3Qk_WYFvfS2MtbZJPrNDd9uc5Zu5rl2obAedETRIhE-h3LdXl-igLV7u7eLffM5Y8mb6ekJ9DwGqmeIV5ZnQWhnH-skyFnCec1bwwgaZjIzEvYqJXFrmWLsCY6KI2cjGKsy4sTISykb43htwE-0MztrqsP6MYsTDttBORFTIQHQlOYHamSaz01OXNxYPWezirvKXba_p4_LH4t_saMk6fO_mok1k-TSsq3yol7_RRP6vk3UX1rwpTcYt9u_Bii03YL1rU0H8qrUBd37iXNyEr2Pydp6d0-M2Me0zPqSvcCs3ZGLrlraajD3ROqnmZBfHuaALSerl8oq8b0LJC_KxJA2fixNP0O4nrk6HTFGdyw8us9eLH_dtXEifdngfZtcyLQ9gtZyX9iGQOI9FoEOBVzkqUA-MDRU3qCMKXXWpBxB2MEm1J2l3vULO08ZZC1TaQCt10Eo9tAbwoh_zpaUo-af0psNKL-lhMoDtDo2pX8UWKbqrHJEdq9HW30c9hVuT6eFBerB3tP8IbuN3VJvRvg2r1UVtH6PBVuVPGr0hcHbd2PsBpStKAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Goal-Programming-Based+Heuristic+Approach+to+Deriving+Fuzzy+Weights+in+Analytic+Form+from+Triangular+Fuzzy+Preference+Relations&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zhou-Jing%2C+Wang&rft.date=2019-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=27&rft.issue=2&rft.spage=234&rft_id=info:doi/10.1109%2FTFUZZ.2018.2852307&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |