A Goal-Programming-Based Heuristic Approach to Deriving Fuzzy Weights in Analytic Form from Triangular Fuzzy Preference Relations

Triangular fuzzy preference relations (TFPRs) have long been viewed as an effective framework to express subjective preferences with ambiguity in fuzzy multicriteria decision-making systems. This paper focuses on solving two important and challenging issues: First, how to judge the quality of nondia...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 27; no. 2; pp. 234 - 248
Main Author Wang, Zhou-Jing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Triangular fuzzy preference relations (TFPRs) have long been viewed as an effective framework to express subjective preferences with ambiguity in fuzzy multicriteria decision-making systems. This paper focuses on solving two important and challenging issues: First, how to judge the quality of nondiagonal preferences in a TFPR; and second, how to find an analytic solution of optimal fuzzy weights for consistent TFPRs and an analytic solution of heuristic fuzzy weights for inconsistent TFPRs. This paper analyzes two existing normalization models of triangular fuzzy weights and illustrates their deficiency. Notions of normalized triangular fuzzy multiplicative weights (TFMWs) and basic TFMWs are then introduced and used to characterize a group of triangular fuzzy weight vectors with equivalency. This paper proposes transformation models among triangular fuzzy weights, normalized TFMWs and basic TFMWs, and employs basic TFMWs to define consistent TFPRs. Some important properties are presented for the fuzziness of a consistent TFPR and its corresponding basic TFMWs. These properties are subsequently used to develop a two-step approach consisting of three-goal programming (GP) models to find basic TFMWs of consistent TFPRs. By using the Lagrangian multiplier method, this paper finds analytic solutions of the three GP models and obtains optimized basic TFMWs denoted by three computation formulas for consistent TFPRs. By changing the constraints of the three GP models and using heuristics, three concise and visualized formulas are devised, respectively, to obtain the lower and upper support bounds and the modal values of heuristic-based TFMWs for any TFPR. A numerical example comprising of a consistent TFPR and two inconsistent TFPRs is supplied and a comparative study is conducted to show that the two challenging issues are reasonably solved, and a hierarchical fuzzy multicriteria decision-making example is offered to illustrate the applicability of the proposed fuzzy priority model.
AbstractList Triangular fuzzy preference relations (TFPRs) have long been viewed as an effective framework to express subjective preferences with ambiguity in fuzzy multicriteria decision-making systems. This paper focuses on solving two important and challenging issues: First, how to judge the quality of nondiagonal preferences in a TFPR; and second, how to find an analytic solution of optimal fuzzy weights for consistent TFPRs and an analytic solution of heuristic fuzzy weights for inconsistent TFPRs. This paper analyzes two existing normalization models of triangular fuzzy weights and illustrates their deficiency. Notions of normalized triangular fuzzy multiplicative weights (TFMWs) and basic TFMWs are then introduced and used to characterize a group of triangular fuzzy weight vectors with equivalency. This paper proposes transformation models among triangular fuzzy weights, normalized TFMWs and basic TFMWs, and employs basic TFMWs to define consistent TFPRs. Some important properties are presented for the fuzziness of a consistent TFPR and its corresponding basic TFMWs. These properties are subsequently used to develop a two-step approach consisting of three-goal programming (GP) models to find basic TFMWs of consistent TFPRs. By using the Lagrangian multiplier method, this paper finds analytic solutions of the three GP models and obtains optimized basic TFMWs denoted by three computation formulas for consistent TFPRs. By changing the constraints of the three GP models and using heuristics, three concise and visualized formulas are devised, respectively, to obtain the lower and upper support bounds and the modal values of heuristic-based TFMWs for any TFPR. A numerical example comprising of a consistent TFPR and two inconsistent TFPRs is supplied and a comparative study is conducted to show that the two challenging issues are reasonably solved, and a hierarchical fuzzy multicriteria decision-making example is offered to illustrate the applicability of the proposed fuzzy priority model.
Author Wang, Zhou-Jing
Author_xml – sequence: 1
  givenname: Zhou-Jing
  orcidid: 0000-0001-5778-5855
  surname: Wang
  fullname: Wang, Zhou-Jing
  email: wangzj@xmu.edu.cn
  organization: School of Information, Zhejiang University of Finance and Economics, Hangzhou, China
BookMark eNp9kLtOwzAUhi0EEm3hBWCxxJziS5zYYym0RUICoVZIXSI3OUldJXGxE6Sy8eaktGJgYDpn-P5z-frotLY1IHRFyZBSom7nk8VyOWSEyiGTgnESn6AeVSENCOHhadeTiAdRTKJz1Pd-QwgNBZU99DXCU6vL4MXZwumqMnUR3GkPGZ5B64xvTIpH262zOl3jxuJ7cOajg_Ck_fzc4Tcwxbrx2NR4VOtyt8cn1lU4d7bCc2d0XbSldkf8xUEODuoU8CuUujG29hfoLNelh8tjHaDF5GE-ngVPz9PH8egpSJkSTSB0lKYqI1wwphkRYiVYLnIgOuZZLAVn0SoGFispSZZxzoCDVFSLDGIeKeADdHOY2z3z3oJvko1tXXe0TxiNRedGqrCj2IFKnfW-OzfZOlNpt0soSfaqkx_VyV51clTdheSfUGqan-8ap035f_T6EDUA8LtLhoQqFvFviaOPpw
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_cam_2025_116647
crossref_primary_10_1016_j_eswa_2021_115837
crossref_primary_10_1007_s40815_023_01558_2
crossref_primary_10_1109_TFUZZ_2020_2965909
crossref_primary_10_1109_ACCESS_2019_2933457
crossref_primary_10_1007_s11081_020_09524_9
crossref_primary_10_1016_j_asoc_2024_111355
crossref_primary_10_1007_s40815_019_00711_0
crossref_primary_10_1007_s10489_022_04024_y
crossref_primary_10_1016_j_cie_2019_106086
crossref_primary_10_3390_math10040592
crossref_primary_10_1007_s10115_020_01507_7
crossref_primary_10_1016_j_asoc_2024_111688
crossref_primary_10_1016_j_ins_2019_12_055
crossref_primary_10_1016_j_asoc_2021_107292
crossref_primary_10_1109_TFUZZ_2020_2992103
crossref_primary_10_2174_2352096513999200721005731
crossref_primary_10_1016_j_ins_2019_04_002
crossref_primary_10_1080_0952813X_2023_2181404
crossref_primary_10_1016_j_ins_2021_08_063
crossref_primary_10_1109_TFUZZ_2019_2941174
crossref_primary_10_1109_TII_2019_2927349
crossref_primary_10_1016_j_ins_2020_12_047
crossref_primary_10_1016_j_ins_2021_08_051
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2018.2852307
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 248
ExternalDocumentID 10_1109_TFUZZ_2018_2852307
8401926
Genre orig-research
GrantInformation_xml – fundername: Open Foundation of Medical Data Mining and Application Engineering Research Center of Fujian Province of China
  grantid: MDM2018001
– fundername: National Natural Science Foundation of China
  grantid: 71671160
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-5a6cc9d03522a2055b52f5fe0a73d785326b7e279880dd332e3e891a5de7369e3
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Sun Jun 29 12:52:32 EDT 2025
Thu Apr 24 22:56:24 EDT 2025
Tue Jul 01 01:55:27 EDT 2025
Wed Aug 27 03:06:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-5a6cc9d03522a2055b52f5fe0a73d785326b7e279880dd332e3e891a5de7369e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5778-5855
PQID 2175670894
PQPubID 85428
PageCount 15
ParticipantIDs crossref_primary_10_1109_TFUZZ_2018_2852307
proquest_journals_2175670894
crossref_citationtrail_10_1109_TFUZZ_2018_2852307
ieee_primary_8401926
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0014518
Score 2.401544
Snippet Triangular fuzzy preference relations (TFPRs) have long been viewed as an effective framework to express subjective preferences with ambiguity in fuzzy...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 234
SubjectTerms Analytic solution
Analytical models
Biological system modeling
Comparative studies
Computational modeling
consistency
Constraint modelling
Decision making
Exact solutions
Fuzzy systems
Goal programming
goal programming (GP)
Heuristic
Heuristic methods
Multiple criterion
Numerical models
Preferences
Programming
triangular fuzzy preference relation (TFPR)
Visualization
Weight
Title A Goal-Programming-Based Heuristic Approach to Deriving Fuzzy Weights in Analytic Form from Triangular Fuzzy Preference Relations
URI https://ieeexplore.ieee.org/document/8401926
https://www.proquest.com/docview/2175670894
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PcGBQgtioa184AbeJvHajo8LbbpCatXDrqh6iRzbQRUli2hyYG_8c8aOE5UPVVyiKBpHlubZnhnPvAF4w-paMKstTWzlo1VS01zYlAqd2loZbYTz1cjnF2Kxmn284ldb8G6shXHOheQzN_Wv4S7frk3nQ2XH6IygQSK2YRsdt75Wa7wxmPG0L3sTjAqZiKFAJlHHy2J1fe2zuPJplvsoqPztEApdVf7aisP5UuzC-TCzPq3ky7Rrq6nZ_EHa-L9TfwpPoqFJ5j0ynsGWa_Zgd2jiQOKa3oPH9xgJ9-HnnJyt9S297NO2vuJH-h4POksWrutJnck80pCTdk1OcJwPSZCi22x-kE8h0HpHbhoS2E68eIFWMfFVLGSJYG8--7zXKH45NjkhY1Lec1gVp8sPCxq7NFCTKd5SroUxynpe1UxnCecVz2peu0RLZiVaA5mopMs8L1piLWOZYy5XqebWSSaUYy9gp1k37iWQvMpFYlKBTzmrESXWpYpbRJBCR1aaCaSD2koTKcx9J43bMrgyiSqDqkuv6jKqegJvxzHfegKPB6X3ve5Gyai2CRwM6CjjGr8r0ZnjiLRczV79e9RreIT_Vn2O9wHstN87d4gmTFsdBez-ApPr7kk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcgAOLbQgthTwAU7I28RZ2_GBw0IJW_qjHnZF1Uua2A5ClCzqJqq6N96DV-HdGCdOxJ-4VeISRdE4kZxv7JnxzDcAz6KiEJHJDA1M7qJVMqOxMCEVWWgKpTMtrKtGPjwSk9no3Qk_WYFvfS2MtbZJPrNDd9uc5Zu5rl2obAedETRIhE-h3LdXl-igLV7u7eLffM5Y8mb6ekJ9DwGqmeIV5ZnQWhnH-skyFnCec1bwwgaZjIzEvYqJXFrmWLsCY6KI2cjGKsy4sTISykb43htwE-0MztrqsP6MYsTDttBORFTIQHQlOYHamSaz01OXNxYPWezirvKXba_p4_LH4t_saMk6fO_mok1k-TSsq3yol7_RRP6vk3UX1rwpTcYt9u_Bii03YL1rU0H8qrUBd37iXNyEr2Pydp6d0-M2Me0zPqSvcCs3ZGLrlraajD3ROqnmZBfHuaALSerl8oq8b0LJC_KxJA2fixNP0O4nrk6HTFGdyw8us9eLH_dtXEifdngfZtcyLQ9gtZyX9iGQOI9FoEOBVzkqUA-MDRU3qCMKXXWpBxB2MEm1J2l3vULO08ZZC1TaQCt10Eo9tAbwoh_zpaUo-af0psNKL-lhMoDtDo2pX8UWKbqrHJEdq9HW30c9hVuT6eFBerB3tP8IbuN3VJvRvg2r1UVtH6PBVuVPGr0hcHbd2PsBpStKAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Goal-Programming-Based+Heuristic+Approach+to+Deriving+Fuzzy+Weights+in+Analytic+Form+from+Triangular+Fuzzy+Preference+Relations&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zhou-Jing%2C+Wang&rft.date=2019-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=27&rft.issue=2&rft.spage=234&rft_id=info:doi/10.1109%2FTFUZZ.2018.2852307&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon