Automated Detection of Posterior Myocardial Infarction From VCG Signals Using Stationary Wavelet Transform Based Features
Posterior myocardial infarction (PMI), also known as "the dark side of the moon," is a lethal heart condition that can cause a heart attack if left untreated. The popularly used standard 12-lead electrocardiogram signals show poor sensitivity for the detection of PMI as it does not have po...
Saved in:
Published in | IEEE sensors letters Vol. 4; no. 6; pp. 1 - 4 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2475-1472 2475-1472 |
DOI | 10.1109/LSENS.2020.2992760 |
Cover
Loading…
Abstract | Posterior myocardial infarction (PMI), also known as "the dark side of the moon," is a lethal heart condition that can cause a heart attack if left untreated. The popularly used standard 12-lead electrocardiogram signals show poor sensitivity for the detection of PMI as it does not have posterior monitoring electrodes. The three-lead vectorcardiogram [(three-lead vectorcardiogram (VCG)] signals, on the other hand, has an electrode toward the posterior side, which improves its reliability for PMI diagnosis. Therefore, in this article, we exploit the three-lead VCG signals for the automatic identification of PMI patients from healthy control (HC) subjects. The proposed method quantifies the electrical conduction abnormalities of PMI patients by extracting discriminative multiscale eigenfeatures from the stationary wavelet transform subband matrices. Furthermore, to combat class imbalance, a cost-sensitive support vector machine classifier is used. The experimental results on the physikalisch-technische bundesanstalt (PTB) diagnostic database show an impressive PMI detection accuracy without compromising on the HC detection. |
---|---|
AbstractList | Posterior myocardial infarction (PMI), also known as “the dark side of the moon,” is a lethal heart condition that can cause a heart attack if left untreated. The popularly used standard 12-lead electrocardiogram signals show poor sensitivity for the detection of PMI as it does not have posterior monitoring electrodes. The three-lead vectorcardiogram [(three-lead vectorcardiogram (VCG)] signals, on the other hand, has an electrode toward the posterior side, which improves its reliability for PMI diagnosis. Therefore, in this article, we exploit the three-lead VCG signals for the automatic identification of PMI patients from healthy control (HC) subjects. The proposed method quantifies the electrical conduction abnormalities of PMI patients by extracting discriminative multiscale eigenfeatures from the stationary wavelet transform subband matrices. Furthermore, to combat class imbalance, a cost-sensitive support vector machine classifier is used. The experimental results on the physikalisch-technische bundesanstalt (PTB) diagnostic database show an impressive PMI detection accuracy without compromising on the HC detection. |
Author | Prabhakararao, Eedara Dandapat, Samarendra |
Author_xml | – sequence: 1 givenname: Eedara orcidid: 0000-0002-9094-7534 surname: Prabhakararao fullname: Prabhakararao, Eedara organization: Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, India – sequence: 2 givenname: Samarendra orcidid: 0000-0002-6467-8713 surname: Dandapat fullname: Dandapat, Samarendra organization: Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, India |
BookMark | eNp9kF1LwzAUhoMoqHN_QG8CXm-epO3SXurcpjA_YFMvS5KeSGRrNMmE_XtbO0S88CoH8j7n4zkm-7WrkZBTBkPGoLiYLyb3iyEHDkNeFFyMYI8c8VRkA5YKvv-rPiT9EN4AgOVcQAJHZHu5iW4tI1b0GiPqaF1NnaGPLkT01nl6t3Va-srKFb2tjfRdZOrdmj6PZ3RhX2u5CvQp2PqVLqJsv6Xf0hf5iSuMdOllHYzza3olQzNmijJuPIYTcmAaEPu7t0eeppPl-GYwf5jdji_nA82LLA6yUSaBGSEMsFSpROeFyrUqmJGCIQilJY6MqRRPC8yVwmpUqRS0EBIwYTrpkfOu77t3HxsMsXxzG9_uXPIUBKSNDmhSeZfS3oXg0ZTadrdEL-2qZFC2rstv12Xruty5blD-B333dt0o-B866yCLiD9AAXnO8yz5Ainbjtg |
CODEN | ISLECD |
CitedBy_id | crossref_primary_10_3390_app11177920 crossref_primary_10_1016_j_bspc_2021_103051 crossref_primary_10_1109_ACCESS_2024_3367597 crossref_primary_10_1109_ACCESS_2021_3119630 crossref_primary_10_3390_s22208073 crossref_primary_10_1016_j_engappai_2022_105428 crossref_primary_10_1515_bmt_2020_0329 crossref_primary_10_1109_JSEN_2023_3247728 crossref_primary_10_1109_LSENS_2021_3070142 crossref_primary_10_1016_j_measurement_2023_114094 crossref_primary_10_3390_s21155186 crossref_primary_10_1016_j_compbiomed_2022_105270 crossref_primary_10_1049_sil2_12072 |
Cites_doi | 10.1109/EMBC.2015.7319393 10.1109/NCC.2019.8732238 10.1109/TBME.2015.2405134 10.1109/IECBES.2018.8626686 10.1002/clc.14 10.1109/TBME.2010.2063704 10.1016/j.compbiomed.2015.03.005 10.1016/j.amjcard.2008.09.008 10.1109/TSMCB.2008.2002909 10.1088/0967-3334/33/9/E01 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/LSENS.2020.2992760 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2475-1472 |
EndPage | 4 |
ExternalDocumentID | 10_1109_LSENS_2020_2992760 9088285 |
Genre | orig-research |
GrantInformation_xml | – fundername: Department of Biotechnology Ministry of Science and Technology grantid: BT/COE/34/SP28408/2018 funderid: 10.13039/501100001407 |
GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c295t-565a01f77f014bb3c89b8cb91fa71e07bcae6ffdb249e8bbed6db40c77a0e31c3 |
IEDL.DBID | RIE |
ISSN | 2475-1472 |
IngestDate | Sun Jun 29 16:14:22 EDT 2025 Tue Jul 01 03:45:04 EDT 2025 Thu Apr 24 22:59:40 EDT 2025 Wed Aug 27 02:32:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-565a01f77f014bb3c89b8cb91fa71e07bcae6ffdb249e8bbed6db40c77a0e31c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9094-7534 0000-0002-6467-8713 |
PQID | 2407040000 |
PQPubID | 4437223 |
PageCount | 4 |
ParticipantIDs | proquest_journals_2407040000 ieee_primary_9088285 crossref_citationtrail_10_1109_LSENS_2020_2992760 crossref_primary_10_1109_LSENS_2020_2992760 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE sensors letters |
PublicationTitleAbbrev | LSENS |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref11 ref10 oeff (ref14) 2012 (ref1) 2017 ref16 ref18 fuster (ref2) 2013 shlens (ref17) 2014 ref8 zhou (ref6) 0 ref9 levis (ref7) 2015; 19 ref3 van gorselen (ref4) 2007; 15 din (ref5) 2014; 28 |
References_xml | – ident: ref13 doi: 10.1109/EMBC.2015.7319393 – volume: 15 start-page: 16 year: 2007 ident: ref4 article-title: Posterior myocardial infarction: The dark side of the moon publication-title: Netherlands Heart Journal – ident: ref10 doi: 10.1109/NCC.2019.8732238 – volume: 19 start-page: 143e year: 2015 ident: ref7 article-title: ECG diagnosis: Isolated posterior wall myocardial infarction publication-title: Clin Med Permanente J – ident: ref16 doi: 10.1109/TBME.2015.2405134 – volume: 28 start-page: 145 year: 2014 ident: ref5 article-title: Accuracy of 12 lead ECG for diagnosis of posterior myocardial infarction publication-title: Postgraduate Institute of Medicine – year: 2017 ident: ref1 article-title: Fact sheet on CVDs publication-title: World Health Organization – ident: ref12 doi: 10.1109/IECBES.2018.8626686 – ident: ref9 doi: 10.1002/clc.14 – ident: ref3 doi: 10.1109/TBME.2010.2063704 – year: 2012 ident: ref14 article-title: The PTB diagnostic ECG database – start-page: 33 year: 0 ident: ref6 article-title: An automated algorithm to improve ECG detection of posterior STEMI associated with left circumflex coronary artery occlusion publication-title: Proc Comput Cardiol – ident: ref15 doi: 10.1016/j.compbiomed.2015.03.005 – ident: ref8 doi: 10.1016/j.amjcard.2008.09.008 – ident: ref18 doi: 10.1109/TSMCB.2008.2002909 – ident: ref11 doi: 10.1088/0967-3334/33/9/E01 – year: 2013 ident: ref2 publication-title: Hurst's the heart manual of cardiology – year: 2014 ident: ref17 article-title: A tutorial on principal component analysis publication-title: arXiv preprint 1404 1100 |
SSID | ssj0001827030 |
Score | 2.2184079 |
Snippet | Posterior myocardial infarction (PMI), also known as "the dark side of the moon," is a lethal heart condition that can cause a heart attack if left untreated.... Posterior myocardial infarction (PMI), also known as “the dark side of the moon,” is a lethal heart condition that can cause a heart attack if left untreated.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Abnormalities Automatic control detection Diagnostic systems Electrical conduction electrocardiogram (ECG) signals Electrocardiography Electrodes Feature extraction Heart Heart attacks Mathematical analysis Matrix methods Moon multiscale features Myocardial infarction Myocardium posterior myocardial infarction sensor signal processing Sensor signals processing Support vector machines Transforms vectorcardiogram (VCG) signals wavelet transform Wavelet transforms |
Title | Automated Detection of Posterior Myocardial Infarction From VCG Signals Using Stationary Wavelet Transform Based Features |
URI | https://ieeexplore.ieee.org/document/9088285 https://www.proquest.com/docview/2407040000 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLagJy4DxNA6YPJhN9bipG1sHzug_BDtpYVxi2zneZoGCSrJofvr956TFAmmiVsOTmTpe_H7Pvvze4x9NcIkMPS65xKnqKg2mQBQuGoFKtEmyrJwXDCdJZe3w-v70f0G-7a-CwMAwXwGfXoMZ_lZ4SraKjshT06sRptsE4VbfVfrZT9FxRS87b0YoU9u5uezOSrAWPRxzY1lqEL5kntCM5U3K3BIK5NtNm0nVLtJfver0vbdn1e1Gt874x32oeGXfFwHxC7bgHyPrcZVWSA1hYyfQRnMVzkvPKdOvRiBxZJPV5jTKFYe-FXuMfjDkMmyeOR3pxd8_usn1VnmwWDA5_XxvVmu-A9DjStKvmj5L_-OaTHjxCwrVPIf2e3kfHF62Wt6LvRcrEdlD_mdEZGX0qN2snbglLbKWR15IyMQ0joDifeZRdkGylqghlRD4aQ0AgaRG-yzTl7k8IlxqY1FOoZ8LBNDL4w1yN4SAR4ymbhIdVnUopG6piA59cV4SIMwEToNCKaEYNog2GXH63ee6nIc_x29R5CsRzZodNlhC3ra_LHPKSlbWtCE-Pzvtw7YFn27tokdsk65rOAICUlpv4RI_AuLk-AA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9MwFLbGdoALMG2Isg184AbtnDSN7ePYVrrR9tIOdots53lCjAR1yaH8et5zkk4aCO2Wg6NY-l78vs_-_B5j740wKSRe913qFBXVJhMACletQKXaRHkejgtm83RylVxej6632MfNXRgACOYzGNBjOMvPS1fTVtkxeXJiNXrCdjDvJ7q5rXW_o6JiCt_uZozQx9PF-XyBGjAWA1x1YxnqUN5nn9BO5a81OCSW8Qs266bU-El-DOrKDtzvB9UaHzvnl-x5yzD5SRMSu2wLij22PqmrEskp5PwMqmC_KnjpOfXqxRgsV3y2xqxG0XLLLwqP4R-GjFflT_719DNffL-hSss8WAz4ojnAN6s1_2aodUXFlx0D5p8wMeacuGWNWn6fXY3Pl6eTftt1oe9iPar6yPCMiLyUHtWTtUOntFXO6sgbGYGQ1hlIvc8tCjdQ1gK1pEqEk9IIGEZu-IptF2UBrxmX2lgkZMjIcpF4YaxB_pYK8JDL1EWqx6IOjcy1JcmpM8ZtFqSJ0FlAMCMEsxbBHvuweedXU5Djv6P3CJLNyBaNHjvsQM_af_YuI21LS5oQb_791jv2dLKcTbPpxfzLAXtG32lMY4dsu1rVcIT0pLJvQ1T-AXC_41A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Detection+of+Posterior+Myocardial+Infarction+From+VCG+Signals+Using+Stationary+Wavelet+Transform+Based+Features&rft.jtitle=IEEE+sensors+letters&rft.au=Prabhakararao%2C+Eedara&rft.au=Dandapat%2C+Samarendra&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=2475-1472&rft.volume=4&rft.issue=6&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FLSENS.2020.2992760&rft.externalDocID=9088285 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1472&client=summon |