Automated Detection of Posterior Myocardial Infarction From VCG Signals Using Stationary Wavelet Transform Based Features

Posterior myocardial infarction (PMI), also known as "the dark side of the moon," is a lethal heart condition that can cause a heart attack if left untreated. The popularly used standard 12-lead electrocardiogram signals show poor sensitivity for the detection of PMI as it does not have po...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors letters Vol. 4; no. 6; pp. 1 - 4
Main Authors Prabhakararao, Eedara, Dandapat, Samarendra
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2475-1472
2475-1472
DOI10.1109/LSENS.2020.2992760

Cover

Loading…
Abstract Posterior myocardial infarction (PMI), also known as "the dark side of the moon," is a lethal heart condition that can cause a heart attack if left untreated. The popularly used standard 12-lead electrocardiogram signals show poor sensitivity for the detection of PMI as it does not have posterior monitoring electrodes. The three-lead vectorcardiogram [(three-lead vectorcardiogram (VCG)] signals, on the other hand, has an electrode toward the posterior side, which improves its reliability for PMI diagnosis. Therefore, in this article, we exploit the three-lead VCG signals for the automatic identification of PMI patients from healthy control (HC) subjects. The proposed method quantifies the electrical conduction abnormalities of PMI patients by extracting discriminative multiscale eigenfeatures from the stationary wavelet transform subband matrices. Furthermore, to combat class imbalance, a cost-sensitive support vector machine classifier is used. The experimental results on the physikalisch-technische bundesanstalt (PTB) diagnostic database show an impressive PMI detection accuracy without compromising on the HC detection.
AbstractList Posterior myocardial infarction (PMI), also known as “the dark side of the moon,” is a lethal heart condition that can cause a heart attack if left untreated. The popularly used standard 12-lead electrocardiogram signals show poor sensitivity for the detection of PMI as it does not have posterior monitoring electrodes. The three-lead vectorcardiogram [(three-lead vectorcardiogram (VCG)] signals, on the other hand, has an electrode toward the posterior side, which improves its reliability for PMI diagnosis. Therefore, in this article, we exploit the three-lead VCG signals for the automatic identification of PMI patients from healthy control (HC) subjects. The proposed method quantifies the electrical conduction abnormalities of PMI patients by extracting discriminative multiscale eigenfeatures from the stationary wavelet transform subband matrices. Furthermore, to combat class imbalance, a cost-sensitive support vector machine classifier is used. The experimental results on the physikalisch-technische bundesanstalt (PTB) diagnostic database show an impressive PMI detection accuracy without compromising on the HC detection.
Author Prabhakararao, Eedara
Dandapat, Samarendra
Author_xml – sequence: 1
  givenname: Eedara
  orcidid: 0000-0002-9094-7534
  surname: Prabhakararao
  fullname: Prabhakararao, Eedara
  organization: Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
– sequence: 2
  givenname: Samarendra
  orcidid: 0000-0002-6467-8713
  surname: Dandapat
  fullname: Dandapat, Samarendra
  organization: Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
BookMark eNp9kF1LwzAUhoMoqHN_QG8CXm-epO3SXurcpjA_YFMvS5KeSGRrNMmE_XtbO0S88CoH8j7n4zkm-7WrkZBTBkPGoLiYLyb3iyEHDkNeFFyMYI8c8VRkA5YKvv-rPiT9EN4AgOVcQAJHZHu5iW4tI1b0GiPqaF1NnaGPLkT01nl6t3Va-srKFb2tjfRdZOrdmj6PZ3RhX2u5CvQp2PqVLqJsv6Xf0hf5iSuMdOllHYzza3olQzNmijJuPIYTcmAaEPu7t0eeppPl-GYwf5jdji_nA82LLA6yUSaBGSEMsFSpROeFyrUqmJGCIQilJY6MqRRPC8yVwmpUqRS0EBIwYTrpkfOu77t3HxsMsXxzG9_uXPIUBKSNDmhSeZfS3oXg0ZTadrdEL-2qZFC2rstv12Xruty5blD-B333dt0o-B866yCLiD9AAXnO8yz5Ainbjtg
CODEN ISLECD
CitedBy_id crossref_primary_10_3390_app11177920
crossref_primary_10_1016_j_bspc_2021_103051
crossref_primary_10_1109_ACCESS_2024_3367597
crossref_primary_10_1109_ACCESS_2021_3119630
crossref_primary_10_3390_s22208073
crossref_primary_10_1016_j_engappai_2022_105428
crossref_primary_10_1515_bmt_2020_0329
crossref_primary_10_1109_JSEN_2023_3247728
crossref_primary_10_1109_LSENS_2021_3070142
crossref_primary_10_1016_j_measurement_2023_114094
crossref_primary_10_3390_s21155186
crossref_primary_10_1016_j_compbiomed_2022_105270
crossref_primary_10_1049_sil2_12072
Cites_doi 10.1109/EMBC.2015.7319393
10.1109/NCC.2019.8732238
10.1109/TBME.2015.2405134
10.1109/IECBES.2018.8626686
10.1002/clc.14
10.1109/TBME.2010.2063704
10.1016/j.compbiomed.2015.03.005
10.1016/j.amjcard.2008.09.008
10.1109/TSMCB.2008.2002909
10.1088/0967-3334/33/9/E01
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LSENS.2020.2992760
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2475-1472
EndPage 4
ExternalDocumentID 10_1109_LSENS_2020_2992760
9088285
Genre orig-research
GrantInformation_xml – fundername: Department of Biotechnology Ministry of Science and Technology
  grantid: BT/COE/34/SP28408/2018
  funderid: 10.13039/501100001407
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-565a01f77f014bb3c89b8cb91fa71e07bcae6ffdb249e8bbed6db40c77a0e31c3
IEDL.DBID RIE
ISSN 2475-1472
IngestDate Sun Jun 29 16:14:22 EDT 2025
Tue Jul 01 03:45:04 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Wed Aug 27 02:32:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-565a01f77f014bb3c89b8cb91fa71e07bcae6ffdb249e8bbed6db40c77a0e31c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9094-7534
0000-0002-6467-8713
PQID 2407040000
PQPubID 4437223
PageCount 4
ParticipantIDs proquest_journals_2407040000
ieee_primary_9088285
crossref_citationtrail_10_1109_LSENS_2020_2992760
crossref_primary_10_1109_LSENS_2020_2992760
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE sensors letters
PublicationTitleAbbrev LSENS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
oeff (ref14) 2012
(ref1) 2017
ref16
ref18
fuster (ref2) 2013
shlens (ref17) 2014
ref8
zhou (ref6) 0
ref9
levis (ref7) 2015; 19
ref3
van gorselen (ref4) 2007; 15
din (ref5) 2014; 28
References_xml – ident: ref13
  doi: 10.1109/EMBC.2015.7319393
– volume: 15
  start-page: 16
  year: 2007
  ident: ref4
  article-title: Posterior myocardial infarction: The dark side of the moon
  publication-title: Netherlands Heart Journal
– ident: ref10
  doi: 10.1109/NCC.2019.8732238
– volume: 19
  start-page: 143e
  year: 2015
  ident: ref7
  article-title: ECG diagnosis: Isolated posterior wall myocardial infarction
  publication-title: Clin Med Permanente J
– ident: ref16
  doi: 10.1109/TBME.2015.2405134
– volume: 28
  start-page: 145
  year: 2014
  ident: ref5
  article-title: Accuracy of 12 lead ECG for diagnosis of posterior myocardial infarction
  publication-title: Postgraduate Institute of Medicine
– year: 2017
  ident: ref1
  article-title: Fact sheet on CVDs
  publication-title: World Health Organization
– ident: ref12
  doi: 10.1109/IECBES.2018.8626686
– ident: ref9
  doi: 10.1002/clc.14
– ident: ref3
  doi: 10.1109/TBME.2010.2063704
– year: 2012
  ident: ref14
  article-title: The PTB diagnostic ECG database
– start-page: 33
  year: 0
  ident: ref6
  article-title: An automated algorithm to improve ECG detection of posterior STEMI associated with left circumflex coronary artery occlusion
  publication-title: Proc Comput Cardiol
– ident: ref15
  doi: 10.1016/j.compbiomed.2015.03.005
– ident: ref8
  doi: 10.1016/j.amjcard.2008.09.008
– ident: ref18
  doi: 10.1109/TSMCB.2008.2002909
– ident: ref11
  doi: 10.1088/0967-3334/33/9/E01
– year: 2013
  ident: ref2
  publication-title: Hurst's the heart manual of cardiology
– year: 2014
  ident: ref17
  article-title: A tutorial on principal component analysis
  publication-title: arXiv preprint 1404 1100
SSID ssj0001827030
Score 2.2184079
Snippet Posterior myocardial infarction (PMI), also known as "the dark side of the moon," is a lethal heart condition that can cause a heart attack if left untreated....
Posterior myocardial infarction (PMI), also known as “the dark side of the moon,” is a lethal heart condition that can cause a heart attack if left untreated....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Abnormalities
Automatic control
detection
Diagnostic systems
Electrical conduction
electrocardiogram (ECG) signals
Electrocardiography
Electrodes
Feature extraction
Heart
Heart attacks
Mathematical analysis
Matrix methods
Moon
multiscale features
Myocardial infarction
Myocardium
posterior myocardial infarction
sensor signal processing
Sensor signals processing
Support vector machines
Transforms
vectorcardiogram (VCG) signals
wavelet transform
Wavelet transforms
Title Automated Detection of Posterior Myocardial Infarction From VCG Signals Using Stationary Wavelet Transform Based Features
URI https://ieeexplore.ieee.org/document/9088285
https://www.proquest.com/docview/2407040000
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLagJy4DxNA6YPJhN9bipG1sHzug_BDtpYVxi2zneZoGCSrJofvr956TFAmmiVsOTmTpe_H7Pvvze4x9NcIkMPS65xKnqKg2mQBQuGoFKtEmyrJwXDCdJZe3w-v70f0G-7a-CwMAwXwGfXoMZ_lZ4SraKjshT06sRptsE4VbfVfrZT9FxRS87b0YoU9u5uezOSrAWPRxzY1lqEL5kntCM5U3K3BIK5NtNm0nVLtJfver0vbdn1e1Gt874x32oeGXfFwHxC7bgHyPrcZVWSA1hYyfQRnMVzkvPKdOvRiBxZJPV5jTKFYe-FXuMfjDkMmyeOR3pxd8_usn1VnmwWDA5_XxvVmu-A9DjStKvmj5L_-OaTHjxCwrVPIf2e3kfHF62Wt6LvRcrEdlD_mdEZGX0qN2snbglLbKWR15IyMQ0joDifeZRdkGylqghlRD4aQ0AgaRG-yzTl7k8IlxqY1FOoZ8LBNDL4w1yN4SAR4ymbhIdVnUopG6piA59cV4SIMwEToNCKaEYNog2GXH63ee6nIc_x29R5CsRzZodNlhC3ra_LHPKSlbWtCE-Pzvtw7YFn27tokdsk65rOAICUlpv4RI_AuLk-AA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9MwFLbGdoALMG2Isg184AbtnDSN7ePYVrrR9tIOdots53lCjAR1yaH8et5zkk4aCO2Wg6NY-l78vs_-_B5j740wKSRe913qFBXVJhMACletQKXaRHkejgtm83RylVxej6632MfNXRgACOYzGNBjOMvPS1fTVtkxeXJiNXrCdjDvJ7q5rXW_o6JiCt_uZozQx9PF-XyBGjAWA1x1YxnqUN5nn9BO5a81OCSW8Qs266bU-El-DOrKDtzvB9UaHzvnl-x5yzD5SRMSu2wLij22PqmrEskp5PwMqmC_KnjpOfXqxRgsV3y2xqxG0XLLLwqP4R-GjFflT_719DNffL-hSss8WAz4ojnAN6s1_2aodUXFlx0D5p8wMeacuGWNWn6fXY3Pl6eTftt1oe9iPar6yPCMiLyUHtWTtUOntFXO6sgbGYGQ1hlIvc8tCjdQ1gK1pEqEk9IIGEZu-IptF2UBrxmX2lgkZMjIcpF4YaxB_pYK8JDL1EWqx6IOjcy1JcmpM8ZtFqSJ0FlAMCMEsxbBHvuweedXU5Djv6P3CJLNyBaNHjvsQM_af_YuI21LS5oQb_791jv2dLKcTbPpxfzLAXtG32lMY4dsu1rVcIT0pLJvQ1T-AXC_41A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Detection+of+Posterior+Myocardial+Infarction+From+VCG+Signals+Using+Stationary+Wavelet+Transform+Based+Features&rft.jtitle=IEEE+sensors+letters&rft.au=Prabhakararao%2C+Eedara&rft.au=Dandapat%2C+Samarendra&rft.date=2020-06-01&rft.pub=IEEE&rft.eissn=2475-1472&rft.volume=4&rft.issue=6&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FLSENS.2020.2992760&rft.externalDocID=9088285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1472&client=summon