A Novel Triangular Fuzzy Analytic Hierarchy Process
Triangular fuzzy multiplicative preference relation (TFMPR) is a widely used preference representation framework in the fuzzy analytic hierarchy process (FAHP). In this article, we develop a triangular fuzzy multiplication-based equation to characterize transitivity among original fuzzy assessments...
Saved in:
Published in | IEEE transactions on fuzzy systems Vol. 29; no. 7; pp. 2032 - 2046 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Triangular fuzzy multiplicative preference relation (TFMPR) is a widely used preference representation framework in the fuzzy analytic hierarchy process (FAHP). In this article, we develop a triangular fuzzy multiplication-based equation to characterize transitivity among original fuzzy assessments in a consistent TFMPR. A geometric consistency index is then proposed to measure the inconsistency of TFMPRs. By capturing row fuzziness proportionalities and the difference between the row increasing and decreasing part fuzziness indices, this article establishes two logarithmic least square models to find normalized fuzzy weights from two kinds of TFMPRs. The two logarithmic least square models are further integrated into one whose analytic solution is found by the method of Lagrange multipliers. A novel method is put forward to check the acceptability of TFMPRs by both examining acceptable consistency and acceptable fuzziness. This article devises a parametric defuzzification approach to obtain the real-valued weights of criteria for aggregating the local normalized fuzzy weights into the global fuzzy weights in the triangular FAHP. A comparative analysis of the proposed model with existing fuzzy eigenvector methods and fuzzy average methods is carried out by a numerical example with four TFMPRs to clarify its validity and merits. An outstanding teacher award selection problem is provided to show the practicality of the proposed triangular FAHP. |
---|---|
AbstractList | Triangular fuzzy multiplicative preference relation (TFMPR) is a widely used preference representation framework in the fuzzy analytic hierarchy process (FAHP). In this article, we develop a triangular fuzzy multiplication-based equation to characterize transitivity among original fuzzy assessments in a consistent TFMPR. A geometric consistency index is then proposed to measure the inconsistency of TFMPRs. By capturing row fuzziness proportionalities and the difference between the row increasing and decreasing part fuzziness indices, this article establishes two logarithmic least square models to find normalized fuzzy weights from two kinds of TFMPRs. The two logarithmic least square models are further integrated into one whose analytic solution is found by the method of Lagrange multipliers. A novel method is put forward to check the acceptability of TFMPRs by both examining acceptable consistency and acceptable fuzziness. This article devises a parametric defuzzification approach to obtain the real-valued weights of criteria for aggregating the local normalized fuzzy weights into the global fuzzy weights in the triangular FAHP. A comparative analysis of the proposed model with existing fuzzy eigenvector methods and fuzzy average methods is carried out by a numerical example with four TFMPRs to clarify its validity and merits. An outstanding teacher award selection problem is provided to show the practicality of the proposed triangular FAHP. |
Author | Wang, Zhou-Jing |
Author_xml | – sequence: 1 givenname: Zhou-Jing orcidid: 0000-0001-5778-5855 surname: Wang fullname: Wang, Zhou-Jing email: wangzj@xmu.edu.cn organization: School of Information, Zhejiang University of Finance and Economics, Hangzhou, China |
BookMark | eNp9kD1PwzAURS0EEm3hD8ASiTnF37HHqqIUqQKGduliuc4LuApJsROk9NeT0oqBgem-4Z6nqzNE51VdAUI3BI8Jwfp-OVut12OKKR5TrSnB7AwNiOYkxZjx8_7GkqUyw_ISDWPcYky4IGqA2CR5rr-gTJbB2-qtLW1IZu1-3yWTypZd410y9xBscO9d8hpqBzFeoYvClhGuTzlCq9nDcjpPFy-PT9PJInVUiyYVwmVU5KwoOLMbKRQooYjNlVM5x1zyjRK2gIJnwAGYzKmS1oLiUjlNGGEjdHf8uwv1ZwuxMdu6Df2saKjgmeRMY9G31LHlQh1jgMI439jG11UTrC8NweagyPwoMgdF5qSoR-kfdBf8hw3d_9DtEfIA8AtorIQWhH0DfD1zPQ |
CODEN | IEFSEV |
CitedBy_id | crossref_primary_10_1016_j_ins_2023_03_048 crossref_primary_10_1016_j_cam_2025_116647 crossref_primary_10_1016_j_ins_2022_06_048 crossref_primary_10_1109_TAES_2023_3274511 crossref_primary_10_3390_ani13122035 crossref_primary_10_1109_TFUZZ_2023_3253681 crossref_primary_10_1080_01605682_2022_2096503 crossref_primary_10_1016_j_jenvman_2022_114491 crossref_primary_10_1080_01605682_2022_2129491 crossref_primary_10_1007_s10489_022_04024_y crossref_primary_10_1016_j_eswa_2023_119948 crossref_primary_10_1016_j_apenergy_2023_122038 crossref_primary_10_1016_j_asoc_2024_111688 crossref_primary_10_1016_j_ins_2024_121494 crossref_primary_10_3233_JIFS_236850 crossref_primary_10_1016_j_asoc_2022_109613 crossref_primary_10_1016_j_ress_2023_109454 crossref_primary_10_1109_TETCI_2022_3231655 crossref_primary_10_1007_s13132_024_02074_w crossref_primary_10_1016_j_apenergy_2024_124919 crossref_primary_10_1016_j_ins_2021_08_051 |
Cites_doi | 10.1109/TFUZZ.2016.2646749 10.1016/0377-2217(95)00300-2 10.1007/s10479-016-2166-8 10.1007/s40815-017-0333-y 10.1007/s40815-019-00711-0 10.1016/j.tourman.2019.103961 10.1016/j.inffus.2013.04.002 10.1109/TFUZZ.2018.2856125 10.1016/S0165-0114(83)80082-7 10.1016/j.ins.2015.03.074 10.1016/j.ejor.2017.05.041 10.1504/IJISM.2014.064353 10.1016/j.knosys.2018.09.015 10.1016/j.cie.2017.07.002 10.1016/S0377-2217(02)00255-2 10.1016/j.ejor.2005.10.057 10.1016/j.fss.2006.06.008 10.1016/j.fss.2017.02.004 10.1007/s13369-019- 04053-9 10.1016/j.fss.2011.06.003 10.1007/s40815-016-0150-8 10.1016/j.ins.2014.12.061 10.1016/j.ejor.2015.03.010 10.1016/0165-0114(85)90090-9 10.1057/jors.2013.135 10.1016/j.eswa.2016.08.064 10.3846/tede.2019.11412 10.1016/j.ejor.2013.10.019 10.1016/j.amc.2006.02.026 10.1109/TFUZZ.2012.2226893 10.1007/s10479-013-1413-5 10.1109/TFUZZ.2018.2852307 10.1016/0022-2496(85)90002-1 10.1016/j.ejor.2013.10.039 10.1016/j.fss.2016.03.006 10.1016/j.fss.2006.08.010 10.1109/TFUZZ.2017.2788881 10.1109/TFUZZ.2017.2697403 10.1016/S0165-0114(99)00155-4 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TFUZZ.2020.2992103 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0034 |
EndPage | 2046 |
ExternalDocumentID | 10_1109_TFUZZ_2020_2992103 9085951 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province grantid: LY19G010004 funderid: 10.13039/501100004731 – fundername: National Natural Science Foundation of China grantid: 71671160 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-55c725d3ff43ab658e8581ad8c8d40464b85afef47e4ee36d286aae8468c91313 |
IEDL.DBID | RIE |
ISSN | 1063-6706 |
IngestDate | Mon Jun 30 04:08:16 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 Tue Jul 01 01:55:30 EDT 2025 Wed Aug 27 02:26:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-55c725d3ff43ab658e8581ad8c8d40464b85afef47e4ee36d286aae8468c91313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5778-5855 |
PQID | 2547643905 |
PQPubID | 85428 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2547643905 crossref_primary_10_1109_TFUZZ_2020_2992103 crossref_citationtrail_10_1109_TFUZZ_2020_2992103 ieee_primary_9085951 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on fuzzy systems |
PublicationTitleAbbrev | TFUZZ |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 krej?í (ref29) 2017; 315 ref2 ref39 ref17 ref38 ref16 saaty (ref4) 1980 ref19 ref18 ref24 ref23 ref26 brunelli (ref1) 2014 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref33 doi: 10.1109/TFUZZ.2016.2646749 – ident: ref36 doi: 10.1016/0377-2217(95)00300-2 – ident: ref18 doi: 10.1007/s10479-016-2166-8 – ident: ref38 doi: 10.1007/s40815-017-0333-y – ident: ref20 doi: 10.1007/s40815-019-00711-0 – year: 1980 ident: ref4 publication-title: The Analytic Hierarchy Process Planning Priority Setting Resource Allocation – ident: ref8 doi: 10.1016/j.tourman.2019.103961 – ident: ref40 doi: 10.1016/j.inffus.2013.04.002 – ident: ref6 doi: 10.1109/TFUZZ.2018.2856125 – ident: ref9 doi: 10.1016/S0165-0114(83)80082-7 – ident: ref26 doi: 10.1016/j.ins.2015.03.074 – ident: ref2 doi: 10.1016/j.ejor.2017.05.041 – ident: ref28 doi: 10.1504/IJISM.2014.064353 – ident: ref31 doi: 10.1016/j.knosys.2018.09.015 – ident: ref21 doi: 10.1016/j.cie.2017.07.002 – ident: ref13 doi: 10.1016/S0377-2217(02)00255-2 – ident: ref14 doi: 10.1016/j.ejor.2005.10.057 – year: 2014 ident: ref1 publication-title: Introduction to the Analytic Hierarchy Process – ident: ref39 doi: 10.1016/j.fss.2006.06.008 – ident: ref24 doi: 10.1016/j.fss.2017.02.004 – ident: ref12 doi: 10.1007/s13369-019- 04053-9 – ident: ref5 doi: 10.1016/j.fss.2011.06.003 – ident: ref25 doi: 10.1007/s40815-016-0150-8 – ident: ref32 doi: 10.1016/j.ins.2014.12.061 – ident: ref17 doi: 10.1016/j.ejor.2015.03.010 – ident: ref10 doi: 10.1016/0165-0114(85)90090-9 – ident: ref19 doi: 10.1057/jors.2013.135 – ident: ref11 doi: 10.1016/j.eswa.2016.08.064 – ident: ref7 doi: 10.3846/tede.2019.11412 – ident: ref16 doi: 10.1016/j.ejor.2013.10.019 – ident: ref30 doi: 10.1016/j.amc.2006.02.026 – ident: ref34 doi: 10.1109/TFUZZ.2012.2226893 – ident: ref15 doi: 10.1007/s10479-013-1413-5 – ident: ref22 doi: 10.1109/TFUZZ.2018.2852307 – ident: ref35 doi: 10.1016/0022-2496(85)90002-1 – ident: ref23 doi: 10.1016/j.ejor.2013.10.039 – volume: 315 start-page: 26 year: 2017 ident: ref29 article-title: Fuzzy eigenvector method for obtaining normalized fuzzy weights from fuzzy pairwise comparison matrices publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2016.03.006 – ident: ref37 doi: 10.1016/j.fss.2006.08.010 – ident: ref3 doi: 10.1109/TFUZZ.2017.2788881 – ident: ref41 doi: 10.1109/TFUZZ.2017.2697403 – ident: ref27 doi: 10.1016/S0165-0114(99)00155-4 |
SSID | ssj0014518 |
Score | 2.4850583 |
Snippet | Triangular fuzzy multiplicative preference relation (TFMPR) is a widely used preference representation framework in the fuzzy analytic hierarchy process... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2032 |
SubjectTerms | Acceptability Analytic hierarchy process Analytical models Biological system modeling Computational modeling Consistency Eigenvectors Exact solutions fuzzy analytic hierarchy process (FAHP) geometric consistency index (GCI) Indexes Lagrange multiplier Least squares Linguistics logarithmic least square Mathematical analysis Mathematical model Multiplication triangular fuzzy multiplicative preference relation (TFMPR) |
Title | A Novel Triangular Fuzzy Analytic Hierarchy Process |
URI | https://ieeexplore.ieee.org/document/9085951 https://www.proquest.com/docview/2547643905 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjBQaEEUCvLABkmT-JFkrBBRhdROrVR1iRzHEQjUopIgtb8e23mIlxBbBjuy7s72fb677wCuOWGpAl066k8S_VrlWoGXCSvEGeahcgmIYdefTNl4Th4WdNGC26YWRkppks-krT9NLD9di0I_lQ1Dw8alsM6eAm5lrVYTMSDULcveGLaY77C6QMYJh7NovlwqKOg5tjp8FcbBXy4h01Xlx1Fs7peoA5N6ZWVaybNd5Iktdt9IG_-79CM4rBxNNCot4xhactWFTt3EAVV7ugsHnxgJe4BHaLp-ly9opgxzpdvUb1BU7HZbZNhL1L_Q-EnXLIvHLaqKDE5gHt3P7sZW1VfBEl5Ic4tS4Xs0xVlGME-UCyIDGrg8DUSQEh3qTALKM5kRXxIpMUu9gHEulacSiNDFLj6F9mq9kmeAdJqo8FPppjQknGecSaJUzGim-99Qvw9uLehYVKTjuvfFS2zAhxPGRjmxVk5cKacPN82c15Jy48_RPS3tZmQl6D4Man3G1a58ixUY9rUH5tDz32ddwL6nc1ZMOu4A2vmmkJfK6ciTK2NtH6xG0GA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9tAEB5ReqAcoOUhUh7dA5yQg70v2wcOCBqFV06JhLiY9XoMCJRUJSlKfgt_hf_G7nodtbTqDYmbD-uVvPN5HjvfzABsKy4LE3TZrD_P7W1VFCS01EHKSqZS4xJw113_vCPbPX5yIS5m4GlaC4OIjnyGTfvocvnFQI_sVdle6rpxRZ5CeYrjRxOgPewfHxlp7lDa-t49bAd-hkCgaSqGgRA6pqJgZcmZyo25xUQkkSoSnRTcpvXyRKgSSx4jR2SyoIlUCo1VTnQasYiZfT_AR-NnCFpVh01zFFxEVaGdZIGMQ1mX5ITpXrfVu7w0wScNm0bdm6iK_WH23ByXv5S_s2itRXiuz6Iistw1R8O8qSev2kS-18P6DAvelSYHFfa_wAz2l2CxHlNBvNZagvnfei4uAzsgncEvvCdd8-v1ry0Ll7RGk8mYuP4sZi_SvrVV2fpmTHwZxQr03uRDVmG2P-jjGhBLhNVxgVEhUq5UqSRyA2IpSjvhR8QNiGrBZtq3VbfTPe4zF16FaebAkFkwZB4MDdidvvOjairy39XLVrrTlV6wDdio8ZN5vfOQmXA_tj5mKL7--61vMNfunp9lZ8ed03X4RC1Dx5GPN2B2-HOEm8bFGuZbDukErt4aLS-Zgy39 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Triangular+Fuzzy+Analytic+Hierarchy+Process&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Wang%2C+Zhou-Jing&rft.date=2021-07-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=29&rft.issue=7&rft.spage=2032&rft.epage=2046&rft_id=info:doi/10.1109%2FTFUZZ.2020.2992103&rft.externalDocID=9085951 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |