A Novel Triangular Fuzzy Analytic Hierarchy Process

Triangular fuzzy multiplicative preference relation (TFMPR) is a widely used preference representation framework in the fuzzy analytic hierarchy process (FAHP). In this article, we develop a triangular fuzzy multiplication-based equation to characterize transitivity among original fuzzy assessments...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 29; no. 7; pp. 2032 - 2046
Main Author Wang, Zhou-Jing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Triangular fuzzy multiplicative preference relation (TFMPR) is a widely used preference representation framework in the fuzzy analytic hierarchy process (FAHP). In this article, we develop a triangular fuzzy multiplication-based equation to characterize transitivity among original fuzzy assessments in a consistent TFMPR. A geometric consistency index is then proposed to measure the inconsistency of TFMPRs. By capturing row fuzziness proportionalities and the difference between the row increasing and decreasing part fuzziness indices, this article establishes two logarithmic least square models to find normalized fuzzy weights from two kinds of TFMPRs. The two logarithmic least square models are further integrated into one whose analytic solution is found by the method of Lagrange multipliers. A novel method is put forward to check the acceptability of TFMPRs by both examining acceptable consistency and acceptable fuzziness. This article devises a parametric defuzzification approach to obtain the real-valued weights of criteria for aggregating the local normalized fuzzy weights into the global fuzzy weights in the triangular FAHP. A comparative analysis of the proposed model with existing fuzzy eigenvector methods and fuzzy average methods is carried out by a numerical example with four TFMPRs to clarify its validity and merits. An outstanding teacher award selection problem is provided to show the practicality of the proposed triangular FAHP.
AbstractList Triangular fuzzy multiplicative preference relation (TFMPR) is a widely used preference representation framework in the fuzzy analytic hierarchy process (FAHP). In this article, we develop a triangular fuzzy multiplication-based equation to characterize transitivity among original fuzzy assessments in a consistent TFMPR. A geometric consistency index is then proposed to measure the inconsistency of TFMPRs. By capturing row fuzziness proportionalities and the difference between the row increasing and decreasing part fuzziness indices, this article establishes two logarithmic least square models to find normalized fuzzy weights from two kinds of TFMPRs. The two logarithmic least square models are further integrated into one whose analytic solution is found by the method of Lagrange multipliers. A novel method is put forward to check the acceptability of TFMPRs by both examining acceptable consistency and acceptable fuzziness. This article devises a parametric defuzzification approach to obtain the real-valued weights of criteria for aggregating the local normalized fuzzy weights into the global fuzzy weights in the triangular FAHP. A comparative analysis of the proposed model with existing fuzzy eigenvector methods and fuzzy average methods is carried out by a numerical example with four TFMPRs to clarify its validity and merits. An outstanding teacher award selection problem is provided to show the practicality of the proposed triangular FAHP.
Author Wang, Zhou-Jing
Author_xml – sequence: 1
  givenname: Zhou-Jing
  orcidid: 0000-0001-5778-5855
  surname: Wang
  fullname: Wang, Zhou-Jing
  email: wangzj@xmu.edu.cn
  organization: School of Information, Zhejiang University of Finance and Economics, Hangzhou, China
BookMark eNp9kD1PwzAURS0EEm3hD8ASiTnF37HHqqIUqQKGduliuc4LuApJsROk9NeT0oqBgem-4Z6nqzNE51VdAUI3BI8Jwfp-OVut12OKKR5TrSnB7AwNiOYkxZjx8_7GkqUyw_ISDWPcYky4IGqA2CR5rr-gTJbB2-qtLW1IZu1-3yWTypZd410y9xBscO9d8hpqBzFeoYvClhGuTzlCq9nDcjpPFy-PT9PJInVUiyYVwmVU5KwoOLMbKRQooYjNlVM5x1zyjRK2gIJnwAGYzKmS1oLiUjlNGGEjdHf8uwv1ZwuxMdu6Df2saKjgmeRMY9G31LHlQh1jgMI439jG11UTrC8NweagyPwoMgdF5qSoR-kfdBf8hw3d_9DtEfIA8AtorIQWhH0DfD1zPQ
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_ins_2023_03_048
crossref_primary_10_1016_j_cam_2025_116647
crossref_primary_10_1016_j_ins_2022_06_048
crossref_primary_10_1109_TAES_2023_3274511
crossref_primary_10_3390_ani13122035
crossref_primary_10_1109_TFUZZ_2023_3253681
crossref_primary_10_1080_01605682_2022_2096503
crossref_primary_10_1016_j_jenvman_2022_114491
crossref_primary_10_1080_01605682_2022_2129491
crossref_primary_10_1007_s10489_022_04024_y
crossref_primary_10_1016_j_eswa_2023_119948
crossref_primary_10_1016_j_apenergy_2023_122038
crossref_primary_10_1016_j_asoc_2024_111688
crossref_primary_10_1016_j_ins_2024_121494
crossref_primary_10_3233_JIFS_236850
crossref_primary_10_1016_j_asoc_2022_109613
crossref_primary_10_1016_j_ress_2023_109454
crossref_primary_10_1109_TETCI_2022_3231655
crossref_primary_10_1007_s13132_024_02074_w
crossref_primary_10_1016_j_apenergy_2024_124919
crossref_primary_10_1016_j_ins_2021_08_051
Cites_doi 10.1109/TFUZZ.2016.2646749
10.1016/0377-2217(95)00300-2
10.1007/s10479-016-2166-8
10.1007/s40815-017-0333-y
10.1007/s40815-019-00711-0
10.1016/j.tourman.2019.103961
10.1016/j.inffus.2013.04.002
10.1109/TFUZZ.2018.2856125
10.1016/S0165-0114(83)80082-7
10.1016/j.ins.2015.03.074
10.1016/j.ejor.2017.05.041
10.1504/IJISM.2014.064353
10.1016/j.knosys.2018.09.015
10.1016/j.cie.2017.07.002
10.1016/S0377-2217(02)00255-2
10.1016/j.ejor.2005.10.057
10.1016/j.fss.2006.06.008
10.1016/j.fss.2017.02.004
10.1007/s13369-019- 04053-9
10.1016/j.fss.2011.06.003
10.1007/s40815-016-0150-8
10.1016/j.ins.2014.12.061
10.1016/j.ejor.2015.03.010
10.1016/0165-0114(85)90090-9
10.1057/jors.2013.135
10.1016/j.eswa.2016.08.064
10.3846/tede.2019.11412
10.1016/j.ejor.2013.10.019
10.1016/j.amc.2006.02.026
10.1109/TFUZZ.2012.2226893
10.1007/s10479-013-1413-5
10.1109/TFUZZ.2018.2852307
10.1016/0022-2496(85)90002-1
10.1016/j.ejor.2013.10.039
10.1016/j.fss.2016.03.006
10.1016/j.fss.2006.08.010
10.1109/TFUZZ.2017.2788881
10.1109/TFUZZ.2017.2697403
10.1016/S0165-0114(99)00155-4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2020.2992103
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 2046
ExternalDocumentID 10_1109_TFUZZ_2020_2992103
9085951
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  grantid: LY19G010004
  funderid: 10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 71671160
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-55c725d3ff43ab658e8581ad8c8d40464b85afef47e4ee36d286aae8468c91313
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Mon Jun 30 04:08:16 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
Tue Jul 01 01:55:30 EDT 2025
Wed Aug 27 02:26:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-55c725d3ff43ab658e8581ad8c8d40464b85afef47e4ee36d286aae8468c91313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5778-5855
PQID 2547643905
PQPubID 85428
PageCount 15
ParticipantIDs proquest_journals_2547643905
crossref_primary_10_1109_TFUZZ_2020_2992103
crossref_citationtrail_10_1109_TFUZZ_2020_2992103
ieee_primary_9085951
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
krej?í (ref29) 2017; 315
ref2
ref39
ref17
ref38
ref16
saaty (ref4) 1980
ref19
ref18
ref24
ref23
ref26
brunelli (ref1) 2014
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref3
ref6
ref5
ref40
References_xml – ident: ref33
  doi: 10.1109/TFUZZ.2016.2646749
– ident: ref36
  doi: 10.1016/0377-2217(95)00300-2
– ident: ref18
  doi: 10.1007/s10479-016-2166-8
– ident: ref38
  doi: 10.1007/s40815-017-0333-y
– ident: ref20
  doi: 10.1007/s40815-019-00711-0
– year: 1980
  ident: ref4
  publication-title: The Analytic Hierarchy Process Planning Priority Setting Resource Allocation
– ident: ref8
  doi: 10.1016/j.tourman.2019.103961
– ident: ref40
  doi: 10.1016/j.inffus.2013.04.002
– ident: ref6
  doi: 10.1109/TFUZZ.2018.2856125
– ident: ref9
  doi: 10.1016/S0165-0114(83)80082-7
– ident: ref26
  doi: 10.1016/j.ins.2015.03.074
– ident: ref2
  doi: 10.1016/j.ejor.2017.05.041
– ident: ref28
  doi: 10.1504/IJISM.2014.064353
– ident: ref31
  doi: 10.1016/j.knosys.2018.09.015
– ident: ref21
  doi: 10.1016/j.cie.2017.07.002
– ident: ref13
  doi: 10.1016/S0377-2217(02)00255-2
– ident: ref14
  doi: 10.1016/j.ejor.2005.10.057
– year: 2014
  ident: ref1
  publication-title: Introduction to the Analytic Hierarchy Process
– ident: ref39
  doi: 10.1016/j.fss.2006.06.008
– ident: ref24
  doi: 10.1016/j.fss.2017.02.004
– ident: ref12
  doi: 10.1007/s13369-019- 04053-9
– ident: ref5
  doi: 10.1016/j.fss.2011.06.003
– ident: ref25
  doi: 10.1007/s40815-016-0150-8
– ident: ref32
  doi: 10.1016/j.ins.2014.12.061
– ident: ref17
  doi: 10.1016/j.ejor.2015.03.010
– ident: ref10
  doi: 10.1016/0165-0114(85)90090-9
– ident: ref19
  doi: 10.1057/jors.2013.135
– ident: ref11
  doi: 10.1016/j.eswa.2016.08.064
– ident: ref7
  doi: 10.3846/tede.2019.11412
– ident: ref16
  doi: 10.1016/j.ejor.2013.10.019
– ident: ref30
  doi: 10.1016/j.amc.2006.02.026
– ident: ref34
  doi: 10.1109/TFUZZ.2012.2226893
– ident: ref15
  doi: 10.1007/s10479-013-1413-5
– ident: ref22
  doi: 10.1109/TFUZZ.2018.2852307
– ident: ref35
  doi: 10.1016/0022-2496(85)90002-1
– ident: ref23
  doi: 10.1016/j.ejor.2013.10.039
– volume: 315
  start-page: 26
  year: 2017
  ident: ref29
  article-title: Fuzzy eigenvector method for obtaining normalized fuzzy weights from fuzzy pairwise comparison matrices
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2016.03.006
– ident: ref37
  doi: 10.1016/j.fss.2006.08.010
– ident: ref3
  doi: 10.1109/TFUZZ.2017.2788881
– ident: ref41
  doi: 10.1109/TFUZZ.2017.2697403
– ident: ref27
  doi: 10.1016/S0165-0114(99)00155-4
SSID ssj0014518
Score 2.4850583
Snippet Triangular fuzzy multiplicative preference relation (TFMPR) is a widely used preference representation framework in the fuzzy analytic hierarchy process...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2032
SubjectTerms Acceptability
Analytic hierarchy process
Analytical models
Biological system modeling
Computational modeling
Consistency
Eigenvectors
Exact solutions
fuzzy analytic hierarchy process (FAHP)
geometric consistency index (GCI)
Indexes
Lagrange multiplier
Least squares
Linguistics
logarithmic least square
Mathematical analysis
Mathematical model
Multiplication
triangular fuzzy multiplicative preference relation (TFMPR)
Title A Novel Triangular Fuzzy Analytic Hierarchy Process
URI https://ieeexplore.ieee.org/document/9085951
https://www.proquest.com/docview/2547643905
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjBQaEEUCvLABkmT-JFkrBBRhdROrVR1iRzHEQjUopIgtb8e23mIlxBbBjuy7s72fb677wCuOWGpAl066k8S_VrlWoGXCSvEGeahcgmIYdefTNl4Th4WdNGC26YWRkppks-krT9NLD9di0I_lQ1Dw8alsM6eAm5lrVYTMSDULcveGLaY77C6QMYJh7NovlwqKOg5tjp8FcbBXy4h01Xlx1Fs7peoA5N6ZWVaybNd5Iktdt9IG_-79CM4rBxNNCot4xhactWFTt3EAVV7ugsHnxgJe4BHaLp-ly9opgxzpdvUb1BU7HZbZNhL1L_Q-EnXLIvHLaqKDE5gHt3P7sZW1VfBEl5Ic4tS4Xs0xVlGME-UCyIDGrg8DUSQEh3qTALKM5kRXxIpMUu9gHEulacSiNDFLj6F9mq9kmeAdJqo8FPppjQknGecSaJUzGim-99Qvw9uLehYVKTjuvfFS2zAhxPGRjmxVk5cKacPN82c15Jy48_RPS3tZmQl6D4Man3G1a58ixUY9rUH5tDz32ddwL6nc1ZMOu4A2vmmkJfK6ciTK2NtH6xG0GA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9tAEB5ReqAcoOUhUh7dA5yQg70v2wcOCBqFV06JhLiY9XoMCJRUJSlKfgt_hf_G7nodtbTqDYmbD-uVvPN5HjvfzABsKy4LE3TZrD_P7W1VFCS01EHKSqZS4xJw113_vCPbPX5yIS5m4GlaC4OIjnyGTfvocvnFQI_sVdle6rpxRZ5CeYrjRxOgPewfHxlp7lDa-t49bAd-hkCgaSqGgRA6pqJgZcmZyo25xUQkkSoSnRTcpvXyRKgSSx4jR2SyoIlUCo1VTnQasYiZfT_AR-NnCFpVh01zFFxEVaGdZIGMQ1mX5ITpXrfVu7w0wScNm0bdm6iK_WH23ByXv5S_s2itRXiuz6Iistw1R8O8qSev2kS-18P6DAvelSYHFfa_wAz2l2CxHlNBvNZagvnfei4uAzsgncEvvCdd8-v1ry0Ll7RGk8mYuP4sZi_SvrVV2fpmTHwZxQr03uRDVmG2P-jjGhBLhNVxgVEhUq5UqSRyA2IpSjvhR8QNiGrBZtq3VbfTPe4zF16FaebAkFkwZB4MDdidvvOjairy39XLVrrTlV6wDdio8ZN5vfOQmXA_tj5mKL7--61vMNfunp9lZ8ed03X4RC1Dx5GPN2B2-HOEm8bFGuZbDukErt4aLS-Zgy39
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Triangular+Fuzzy+Analytic+Hierarchy+Process&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Wang%2C+Zhou-Jing&rft.date=2021-07-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=29&rft.issue=7&rft.spage=2032&rft.epage=2046&rft_id=info:doi/10.1109%2FTFUZZ.2020.2992103&rft.externalDocID=9085951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon