Tensorial Multi-View Clustering via Low-Rank Constrained High-Order Graph Learning
Multi-view clustering aims to partition multi-view data into different categories by optimally exploring the consistency and complementary information from multiple sources. However, most existing multi-view clustering algorithms heavily rely on the similarity graphs from respective views and fail t...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 8; pp. 5307 - 5318 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multi-view clustering aims to partition multi-view data into different categories by optimally exploring the consistency and complementary information from multiple sources. However, most existing multi-view clustering algorithms heavily rely on the similarity graphs from respective views and fail to comprehend multiple views holistically. Moreover, due to the noise and redundancy maintained in the original data, the original errors of multiple similarity graphs will continue to accumulate in the process of constructing consistent graphs. These situations always lead to the limitation to effective fuse the essential information from multiple views, which always influences the clustering performance and cries out for reliable solutions. Based on the above considerations, we propose a novel method termed Tensorial Multi-view Clustering (TMvC), which learns high-order graph by low-rank tensor constraint to uncover the essential information stored in multiple views. TMvC first learns the Laplacian graphs of all views and stacks them into a tensor which can be viewed as a high-order graph. With the high-order graph, consistency and complementary information from different views can be propagated smoothly across all views. Then, based on low-rank constraint, high-order graph is constrained in the horizontal and vertical directions to better uncover the inter-view and inter-class correlations between multi-view data, which is of vital importance for multi-view clustering. Extensive experiments on document and image datasets demonstrate that TMvC can achieve the state-of-the-art performance for multi-view clustering. |
---|---|
AbstractList | Multi-view clustering aims to partition multi-view data into different categories by optimally exploring the consistency and complementary information from multiple sources. However, most existing multi-view clustering algorithms heavily rely on the similarity graphs from respective views and fail to comprehend multiple views holistically. Moreover, due to the noise and redundancy maintained in the original data, the original errors of multiple similarity graphs will continue to accumulate in the process of constructing consistent graphs. These situations always lead to the limitation to effective fuse the essential information from multiple views, which always influences the clustering performance and cries out for reliable solutions. Based on the above considerations, we propose a novel method termed Tensorial Multi-view Clustering (TMvC), which learns high-order graph by low-rank tensor constraint to uncover the essential information stored in multiple views. TMvC first learns the Laplacian graphs of all views and stacks them into a tensor which can be viewed as a high-order graph. With the high-order graph, consistency and complementary information from different views can be propagated smoothly across all views. Then, based on low-rank constraint, high-order graph is constrained in the horizontal and vertical directions to better uncover the inter-view and inter-class correlations between multi-view data, which is of vital importance for multi-view clustering. Extensive experiments on document and image datasets demonstrate that TMvC can achieve the state-of-the-art performance for multi-view clustering. |
Author | Mi, Zetian Jiang, Guangqi Wang, Huibing Peng, Jinjia Fu, Xianping |
Author_xml | – sequence: 1 givenname: Guangqi orcidid: 0000-0001-9748-0407 surname: Jiang fullname: Jiang, Guangqi email: guangqi-j@dlmu.edu.cn organization: College of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning, China – sequence: 2 givenname: Jinjia surname: Peng fullname: Peng, Jinjia email: jinjia_peng@163.com organization: School of Cyber Security and Computer, Hebei University, Baoding, Hebei, China – sequence: 3 givenname: Huibing orcidid: 0000-0002-6591-9304 surname: Wang fullname: Wang, Huibing email: huibing.wang@dlmu.edu.cn organization: College of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning, China – sequence: 4 givenname: Zetian surname: Mi fullname: Mi, Zetian email: mizetian@dlmu.edu.cn organization: College of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning, China – sequence: 5 givenname: Xianping surname: Fu fullname: Fu, Xianping email: fxp@dlmu.edu.cn organization: College of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning, China |
BookMark | eNp9kL1OwzAURi1UJNrCC8BiidnFv4k9oghapKBKJXSNnNRpXYJT7ISKtyelFQMD073DPd-ne0Zg4BpnALgmeEIIVndZ8rLMJhRTOmGEM8nlGRgSISSiFItBv2NBkKREXIBRCFuMCZc8HoJFZlxovNU1fO7q1qKlNXuY1F1ojbduDT-thmmzRwvt3mDSuNB6bZ1ZwZldb9Dcr4yHU693G5ga7V2PXILzStfBXJ3mGLw-PmTJDKXz6VNyn6KSKtEigWWMC66igsciYoIRTbjQRGFSrCKNcaUMLQjnkmijKsYYlRWlFY9KTLmJ2RjcHnN3vvnoTGjzbdN511fmNFKxiEnUqxgDerwqfROCN1W-8_Zd-6-c4PzgLv9xlx_c5Sd3PST_QKVtdWsbd_i-_h-9OaLWGPPbpSLJmVLsGz5bfPI |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_3390_app13010322 crossref_primary_10_1109_TNNLS_2023_3239033 crossref_primary_10_3390_electronics13122421 crossref_primary_10_1109_TCSVT_2023_3278285 crossref_primary_10_1007_s00530_023_01234_3 crossref_primary_10_1007_s00530_024_01400_1 crossref_primary_10_1109_TCSVT_2024_3370149 crossref_primary_10_1016_j_engappai_2023_106209 crossref_primary_10_1007_s13042_023_01969_5 crossref_primary_10_1016_j_inffus_2024_102709 crossref_primary_10_3390_app13158993 crossref_primary_10_1016_j_patcog_2024_111140 crossref_primary_10_1016_j_knosys_2022_110145 crossref_primary_10_1016_j_neucom_2024_128266 crossref_primary_10_1016_j_neunet_2023_01_037 crossref_primary_10_1016_j_ins_2023_01_116 crossref_primary_10_3390_app13010674 crossref_primary_10_1109_TMM_2022_3212270 crossref_primary_10_1109_TCSVT_2023_3266801 crossref_primary_10_1109_TNNLS_2022_3224748 crossref_primary_10_1109_TCSVT_2023_3263853 crossref_primary_10_1109_TMM_2024_3405650 crossref_primary_10_1109_TMM_2024_3521771 crossref_primary_10_1109_TCSVT_2022_3227172 crossref_primary_10_1007_s12559_023_10146_3 crossref_primary_10_1109_TCSVT_2023_3266283 crossref_primary_10_1016_j_imavis_2023_104796 crossref_primary_10_1109_TCSVT_2022_3229356 crossref_primary_10_1109_TCSVT_2024_3430041 crossref_primary_10_1016_j_patcog_2024_110598 crossref_primary_10_1109_TIP_2024_3388969 crossref_primary_10_1016_j_jvcir_2023_103961 crossref_primary_10_1109_TBDATA_2024_3433525 crossref_primary_10_1109_TCSVT_2023_3312979 crossref_primary_10_1007_s11042_024_18493_5 crossref_primary_10_1109_TCSVT_2023_3276362 crossref_primary_10_1109_TNSE_2024_3485646 crossref_primary_10_1007_s10489_023_04499_3 crossref_primary_10_1016_j_sigpro_2023_109014 crossref_primary_10_1007_s00521_023_08915_0 crossref_primary_10_1016_j_inffus_2022_12_012 crossref_primary_10_1007_s10489_023_04472_0 crossref_primary_10_1007_s10489_024_05616_6 crossref_primary_10_1016_j_knosys_2022_110244 crossref_primary_10_1109_TPAMI_2022_3179556 crossref_primary_10_1016_j_iot_2024_101203 crossref_primary_10_1016_j_ins_2024_120625 crossref_primary_10_1007_s11760_023_02815_5 crossref_primary_10_1007_s11704_024_40004_w crossref_primary_10_1109_TKDE_2024_3399707 crossref_primary_10_1016_j_knosys_2024_112273 crossref_primary_10_1109_TCSVT_2023_3258926 crossref_primary_10_1007_s11042_023_16387_6 crossref_primary_10_1109_TCSVT_2022_3200451 |
Cites_doi | 10.1109/ICDM.2019.00148 10.1109/TIP.2010.2044957 10.1109/TPAMI.2020.3037734 10.1145/3394171.3413807 10.1109/TPAMI.2012.88 10.1109/TNNLS.2020.3009953 10.1109/TCYB.2020.2987164 10.1109/TCSVT.2021.3101953 10.1109/TIP.2021.3068646 10.1109/TCSVT.2018.2889514 10.1109/TCSVT.2020.3017118 10.1609/aaai.v28i1.8950 10.1609/aaai.v34i04.6052 10.1109/TNNLS.2018.2851444 10.2316/P.2013.798-098 10.1109/TNNLS.2021.3059874 10.1109/TCSVT.2021.3055625 10.1109/TMM.2021.3112230 10.1109/TPAMI.2020.3011148 10.1016/j.knosys.2019.105102 10.1609/aaai.v32i1.11625 10.1109/TIP.2018.2877937 10.1109/CVPR.2015.7298657 10.1016/j.inffus.2020.08.017 10.1109/TCYB.2021.3088519 10.1109/TNNLS.2017.2777489 10.1016/j.patcog.2020.107673 10.1109/CVPR.2010.5540018 10.1109/ICCV.2015.482 10.1109/TCSVT.2021.3055039 10.1109/CVPR.2005.177 10.1109/TSMCB.2009.2039566 10.1007/s11263-018-1086-2 10.1609/aaai.v34i04.5756 10.1109/TIP.2018.2877335 10.24963/ijcai.2020/416 10.1145/3219819.3220049 10.1109/ICCV.2015.185 10.1007/s11222-007-9033-z 10.1109/TMI.2020.2992546 10.1609/aaai.v31i1.10909 10.1109/TCYB.2017.2751646 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2022.3143848 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 5318 |
ExternalDocumentID | 10_1109_TCSVT_2022_3143848 9684399 |
Genre | orig-research |
GrantInformation_xml | – fundername: Foundation of Liaoning Key Research and Development Program funderid: 10.13039/501100019033 – fundername: Dalian Leading Talent Grant – fundername: Dalian Science and Technology Innovation Fund grantid: 2021JJ12GX028 funderid: 10.13039/501100017683 – fundername: Liaoning Doctoral Research Start-Up Fund Project grantid: 2021-BS-075 – fundername: National Natural Science Foundation of China grantid: 62002041; 62176037; 61272368; 61802043 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 3132021238 funderid: 10.13039/501100012226 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-50870b496b47563531a145a1901bd6a00f9e2b14481ae9f33328f22f46c024e73 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 10:17:26 EDT 2025 Tue Jul 01 00:41:17 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Wed Aug 27 02:23:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-50870b496b47563531a145a1901bd6a00f9e2b14481ae9f33328f22f46c024e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6591-9304 0000-0001-9748-0407 |
PQID | 2697571614 |
PQPubID | 85433 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TCSVT_2022_3143848 ieee_primary_9684399 crossref_citationtrail_10_1109_TCSVT_2022_3143848 proquest_journals_2697571614 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref52 wen (ref10) 2021; 35 ref17 ref19 ref18 guo (ref14) 2010; 19 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref8 lan (ref7) 2021 ref9 ref4 ref6 ref40 liu (ref11) 2021 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 tang (ref3) 2020 ref1 wu (ref5) 2020; 30 ref39 ref38 cheng (ref16) 2021; 35 yin (ref37) 2016 huang (ref47) 2012 kumar (ref24) 2011; 24 ref23 ref26 ref25 ref20 ref22 nie (ref27) 2016 ref21 ref28 ref29 |
References_xml | – ident: ref33 doi: 10.1109/ICDM.2019.00148 – volume: 19 start-page: 1657 year: 2010 ident: ref14 article-title: A completed modeling of local binary pattern operator for texture classification publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2010.2044957 – ident: ref18 doi: 10.1109/TPAMI.2020.3037734 – volume: 35 start-page: 10273 year: 2021 ident: ref10 article-title: Unified tensor framework for incomplete multi-view clustering and missing-view inferring publication-title: Proc AAAI Conf Artif Intell – volume: 24 start-page: 1413 year: 2011 ident: ref24 article-title: Co-regularized multi-view spectral clustering publication-title: Proc Adv Neural Inf Process Syst – ident: ref29 doi: 10.1145/3394171.3413807 – ident: ref44 doi: 10.1109/TPAMI.2012.88 – ident: ref41 doi: 10.1109/TNNLS.2020.3009953 – ident: ref28 doi: 10.1109/TCYB.2020.2987164 – ident: ref9 doi: 10.1109/TCSVT.2021.3101953 – ident: ref21 doi: 10.1109/TIP.2021.3068646 – year: 2021 ident: ref7 article-title: Generalized multi-view collaborative subspace clustering publication-title: IEEE Trans Circuits Syst Video Technol – ident: ref8 doi: 10.1109/TCSVT.2018.2889514 – year: 2016 ident: ref37 article-title: Low-rank multi-view clustering in third-order tensor space publication-title: arXiv 1608 08336 – ident: ref6 doi: 10.1109/TCSVT.2020.3017118 – ident: ref45 doi: 10.1609/aaai.v28i1.8950 – ident: ref34 doi: 10.1609/aaai.v34i04.6052 – ident: ref39 doi: 10.1109/TNNLS.2018.2851444 – start-page: 1881 year: 2016 ident: ref27 article-title: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification publication-title: Proc IJCAI – ident: ref42 doi: 10.2316/P.2013.798-098 – ident: ref30 doi: 10.1109/TNNLS.2021.3059874 – ident: ref4 doi: 10.1109/TCSVT.2021.3055625 – ident: ref23 doi: 10.1109/TMM.2021.3112230 – ident: ref17 doi: 10.1109/TPAMI.2020.3011148 – ident: ref51 doi: 10.1016/j.knosys.2019.105102 – ident: ref49 doi: 10.1609/aaai.v32i1.11625 – start-page: 773 year: 2012 ident: ref47 article-title: Affinity aggregation for spectral clustering publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref38 doi: 10.1109/TIP.2018.2877937 – ident: ref26 doi: 10.1109/CVPR.2015.7298657 – ident: ref19 doi: 10.1016/j.inffus.2020.08.017 – ident: ref2 doi: 10.1109/TCYB.2021.3088519 – volume: 30 start-page: 2081 year: 2020 ident: ref5 article-title: Cross-entropy adversarial view adaptation for person re-identification publication-title: IEEE Trans Circuits Syst Video Technol – ident: ref1 doi: 10.1109/TNNLS.2017.2777489 – ident: ref20 doi: 10.1016/j.patcog.2020.107673 – volume: 35 start-page: 7099 year: 2021 ident: ref16 article-title: Neighborhood consensus networks for unsupervised multi-view outlier detection publication-title: Proc AAAI Conf Artif Intell – ident: ref15 doi: 10.1109/CVPR.2010.5540018 – ident: ref52 doi: 10.1109/ICCV.2015.482 – ident: ref31 doi: 10.1109/TCSVT.2021.3055039 – ident: ref13 doi: 10.1109/CVPR.2005.177 – ident: ref25 doi: 10.1109/TSMCB.2009.2039566 – ident: ref36 doi: 10.1007/s11263-018-1086-2 – ident: ref46 doi: 10.1609/aaai.v34i04.5756 – start-page: 6850 year: 2021 ident: ref11 article-title: One pass late fusion multi-view clustering publication-title: Proc Int Conf Mach Learn – ident: ref50 doi: 10.1109/TIP.2018.2877335 – ident: ref12 doi: 10.24963/ijcai.2020/416 – ident: ref48 doi: 10.1145/3219819.3220049 – ident: ref35 doi: 10.1109/ICCV.2015.185 – ident: ref43 doi: 10.1007/s11222-007-9033-z – ident: ref22 doi: 10.1109/TMI.2020.2992546 – ident: ref40 doi: 10.1609/aaai.v31i1.10909 – ident: ref32 doi: 10.1109/TCYB.2017.2751646 – year: 2020 ident: ref3 article-title: DeFusionNET: Defocus blur detection via recurrently fusing and refining discriminative multi-scale deep features publication-title: IEEE Trans Pattern Anal Mach Intell |
SSID | ssj0014847 |
Score | 2.6295774 |
Snippet | Multi-view clustering aims to partition multi-view data into different categories by optimally exploring the consistency and complementary information from... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5307 |
SubjectTerms | Algorithms Clustering Clustering algorithms Consistency Constraints Correlation Graphs High-order graph learning Laplace equations low-rank constraint Mathematical analysis multi-view clustering Optimization Redundancy Similarity Task analysis Tensors |
Title | Tensorial Multi-View Clustering via Low-Rank Constrained High-Order Graph Learning |
URI | https://ieeexplore.ieee.org/document/9684399 https://www.proquest.com/docview/2697571614 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kx78LU6n5OBNs7VJ2iZHGc4h_gDdxFtJ20SGsoluDvzrfS_txlARbz0kIc1L876vee97hBw750wewukXS2uAoEQFU64QzGrh4CjUyuZ4o3t9E3f78vIxelwip_NcGGutDz6zTXz0d_nFKJ_gr7KWjhXC52WyDMStzNWa3xhI5YuJAVwImQI_NkuQCXSr175_6AEV5BwYqhQKa_0sOCFfVeXHUez9S2edXM9mVoaVPDcn46yZf34Tbfzv1DfIWgU06Vm5MzbJkh1ukdUF-cFtctcDDjvCHUh9Hi57GNgpbb9MUDwBWtCPgaFXoym7M8NniqU9fUEJW1CMDmG3qNpJL1DxmlYyrU87pN8577W7rKqxwHKuozEDfJYEmdRxJpMIwIcITSgjgzAhK2ITBE5bngHrUqGx2gkhuHKcOxnn4N1tInZJbTga2j3M_gYrZ1HCRaFkERoTCedUwp2Cl4dR6iScLXqaVwLkOO2X1BORQKfeUCkaKq0MVScn8z6vpfzGn623ceXnLatFr5PGzLZp9YW-pzzWSQRkMZT7v_c6ICs4dhns1yC18dvEHgIAGWdHfud9AWP21Yo |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvArqQgEf4IS8TfxI7AMHtFC2dFukkla9BSexq6rVLqK7rOC39K_0vzHjZFcVIG6VuOVgO4nny8x88TwAXoYQXJ2i9suUd0hQdMNNaCT3VgZUhdb4mk50d_ey4YH6eKSPVuBimQvjvY_BZ75Pl_Esv5nUM_pVtmkzQ-5zF0K543_MkaCdv9l-h9J8JcTW-2Iw5F0PAV4Lq6cc_Y88qZTNKpVrNK4ydanSjsxg1WQuSYL1okJWYVLnbZBSChOECCqr0Xr5XOK6N-Am-hlatNlhyzMKZWL7MnRQUm7Qci5SchK7WQw-HxZIPoVATqykoe5CV8xe7OPyh_KPFm3rHlwu9qINZDntz6ZVv_75W5nI_3Wz7sPdzpVmb1vsP4AVP34Id64UWFyD_QJZ-oS-MRYzjfnhiZ-zwdmMykPgCPb9xLHRZM733fiUUfPS2DLDN4ziX_gnqkvKPlBNb9YVoj1-BAfX8lKPYXU8Gft1ym9HHFc6F7Ixqkmd0zIEk4tgcLNxlR6kCyGXdVdinR77rIxUK7FlBEZJwCg7YPTg9XLO17bAyD9Hr5GklyM7IfdgY4GlstNB56XIbK6RDqfqyd9nvYBbw2J3VI6293aewm26TxvauAGr028z_wzdrWn1PKKewZfrRs4vlt0upw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensorial+Multi-View+Clustering+via+Low-Rank+Constrained+High-Order+Graph+Learning&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Jiang%2C+Guangqi&rft.au=Peng%2C+Jinjia&rft.au=Wang%2C+Huibing&rft.au=Mi%2C+Zetian&rft.date=2022-08-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=8&rft.spage=5307&rft.epage=5318&rft_id=info:doi/10.1109%2FTCSVT.2022.3143848&rft.externalDocID=9684399 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |