Tensorial Multi-View Clustering via Low-Rank Constrained High-Order Graph Learning

Multi-view clustering aims to partition multi-view data into different categories by optimally exploring the consistency and complementary information from multiple sources. However, most existing multi-view clustering algorithms heavily rely on the similarity graphs from respective views and fail t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 8; pp. 5307 - 5318
Main Authors Jiang, Guangqi, Peng, Jinjia, Wang, Huibing, Mi, Zetian, Fu, Xianping
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-view clustering aims to partition multi-view data into different categories by optimally exploring the consistency and complementary information from multiple sources. However, most existing multi-view clustering algorithms heavily rely on the similarity graphs from respective views and fail to comprehend multiple views holistically. Moreover, due to the noise and redundancy maintained in the original data, the original errors of multiple similarity graphs will continue to accumulate in the process of constructing consistent graphs. These situations always lead to the limitation to effective fuse the essential information from multiple views, which always influences the clustering performance and cries out for reliable solutions. Based on the above considerations, we propose a novel method termed Tensorial Multi-view Clustering (TMvC), which learns high-order graph by low-rank tensor constraint to uncover the essential information stored in multiple views. TMvC first learns the Laplacian graphs of all views and stacks them into a tensor which can be viewed as a high-order graph. With the high-order graph, consistency and complementary information from different views can be propagated smoothly across all views. Then, based on low-rank constraint, high-order graph is constrained in the horizontal and vertical directions to better uncover the inter-view and inter-class correlations between multi-view data, which is of vital importance for multi-view clustering. Extensive experiments on document and image datasets demonstrate that TMvC can achieve the state-of-the-art performance for multi-view clustering.
AbstractList Multi-view clustering aims to partition multi-view data into different categories by optimally exploring the consistency and complementary information from multiple sources. However, most existing multi-view clustering algorithms heavily rely on the similarity graphs from respective views and fail to comprehend multiple views holistically. Moreover, due to the noise and redundancy maintained in the original data, the original errors of multiple similarity graphs will continue to accumulate in the process of constructing consistent graphs. These situations always lead to the limitation to effective fuse the essential information from multiple views, which always influences the clustering performance and cries out for reliable solutions. Based on the above considerations, we propose a novel method termed Tensorial Multi-view Clustering (TMvC), which learns high-order graph by low-rank tensor constraint to uncover the essential information stored in multiple views. TMvC first learns the Laplacian graphs of all views and stacks them into a tensor which can be viewed as a high-order graph. With the high-order graph, consistency and complementary information from different views can be propagated smoothly across all views. Then, based on low-rank constraint, high-order graph is constrained in the horizontal and vertical directions to better uncover the inter-view and inter-class correlations between multi-view data, which is of vital importance for multi-view clustering. Extensive experiments on document and image datasets demonstrate that TMvC can achieve the state-of-the-art performance for multi-view clustering.
Author Mi, Zetian
Jiang, Guangqi
Wang, Huibing
Peng, Jinjia
Fu, Xianping
Author_xml – sequence: 1
  givenname: Guangqi
  orcidid: 0000-0001-9748-0407
  surname: Jiang
  fullname: Jiang, Guangqi
  email: guangqi-j@dlmu.edu.cn
  organization: College of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning, China
– sequence: 2
  givenname: Jinjia
  surname: Peng
  fullname: Peng, Jinjia
  email: jinjia_peng@163.com
  organization: School of Cyber Security and Computer, Hebei University, Baoding, Hebei, China
– sequence: 3
  givenname: Huibing
  orcidid: 0000-0002-6591-9304
  surname: Wang
  fullname: Wang, Huibing
  email: huibing.wang@dlmu.edu.cn
  organization: College of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning, China
– sequence: 4
  givenname: Zetian
  surname: Mi
  fullname: Mi, Zetian
  email: mizetian@dlmu.edu.cn
  organization: College of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning, China
– sequence: 5
  givenname: Xianping
  surname: Fu
  fullname: Fu, Xianping
  email: fxp@dlmu.edu.cn
  organization: College of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning, China
BookMark eNp9kL1OwzAURi1UJNrCC8BiidnFv4k9oghapKBKJXSNnNRpXYJT7ISKtyelFQMD073DPd-ne0Zg4BpnALgmeEIIVndZ8rLMJhRTOmGEM8nlGRgSISSiFItBv2NBkKREXIBRCFuMCZc8HoJFZlxovNU1fO7q1qKlNXuY1F1ojbduDT-thmmzRwvt3mDSuNB6bZ1ZwZldb9Dcr4yHU693G5ga7V2PXILzStfBXJ3mGLw-PmTJDKXz6VNyn6KSKtEigWWMC66igsciYoIRTbjQRGFSrCKNcaUMLQjnkmijKsYYlRWlFY9KTLmJ2RjcHnN3vvnoTGjzbdN511fmNFKxiEnUqxgDerwqfROCN1W-8_Zd-6-c4PzgLv9xlx_c5Sd3PST_QKVtdWsbd_i-_h-9OaLWGPPbpSLJmVLsGz5bfPI
CODEN ITCTEM
CitedBy_id crossref_primary_10_3390_app13010322
crossref_primary_10_1109_TNNLS_2023_3239033
crossref_primary_10_3390_electronics13122421
crossref_primary_10_1109_TCSVT_2023_3278285
crossref_primary_10_1007_s00530_023_01234_3
crossref_primary_10_1007_s00530_024_01400_1
crossref_primary_10_1109_TCSVT_2024_3370149
crossref_primary_10_1016_j_engappai_2023_106209
crossref_primary_10_1007_s13042_023_01969_5
crossref_primary_10_1016_j_inffus_2024_102709
crossref_primary_10_3390_app13158993
crossref_primary_10_1016_j_patcog_2024_111140
crossref_primary_10_1016_j_knosys_2022_110145
crossref_primary_10_1016_j_neucom_2024_128266
crossref_primary_10_1016_j_neunet_2023_01_037
crossref_primary_10_1016_j_ins_2023_01_116
crossref_primary_10_3390_app13010674
crossref_primary_10_1109_TMM_2022_3212270
crossref_primary_10_1109_TCSVT_2023_3266801
crossref_primary_10_1109_TNNLS_2022_3224748
crossref_primary_10_1109_TCSVT_2023_3263853
crossref_primary_10_1109_TMM_2024_3405650
crossref_primary_10_1109_TMM_2024_3521771
crossref_primary_10_1109_TCSVT_2022_3227172
crossref_primary_10_1007_s12559_023_10146_3
crossref_primary_10_1109_TCSVT_2023_3266283
crossref_primary_10_1016_j_imavis_2023_104796
crossref_primary_10_1109_TCSVT_2022_3229356
crossref_primary_10_1109_TCSVT_2024_3430041
crossref_primary_10_1016_j_patcog_2024_110598
crossref_primary_10_1109_TIP_2024_3388969
crossref_primary_10_1016_j_jvcir_2023_103961
crossref_primary_10_1109_TBDATA_2024_3433525
crossref_primary_10_1109_TCSVT_2023_3312979
crossref_primary_10_1007_s11042_024_18493_5
crossref_primary_10_1109_TCSVT_2023_3276362
crossref_primary_10_1109_TNSE_2024_3485646
crossref_primary_10_1007_s10489_023_04499_3
crossref_primary_10_1016_j_sigpro_2023_109014
crossref_primary_10_1007_s00521_023_08915_0
crossref_primary_10_1016_j_inffus_2022_12_012
crossref_primary_10_1007_s10489_023_04472_0
crossref_primary_10_1007_s10489_024_05616_6
crossref_primary_10_1016_j_knosys_2022_110244
crossref_primary_10_1109_TPAMI_2022_3179556
crossref_primary_10_1016_j_iot_2024_101203
crossref_primary_10_1016_j_ins_2024_120625
crossref_primary_10_1007_s11760_023_02815_5
crossref_primary_10_1007_s11704_024_40004_w
crossref_primary_10_1109_TKDE_2024_3399707
crossref_primary_10_1016_j_knosys_2024_112273
crossref_primary_10_1109_TCSVT_2023_3258926
crossref_primary_10_1007_s11042_023_16387_6
crossref_primary_10_1109_TCSVT_2022_3200451
Cites_doi 10.1109/ICDM.2019.00148
10.1109/TIP.2010.2044957
10.1109/TPAMI.2020.3037734
10.1145/3394171.3413807
10.1109/TPAMI.2012.88
10.1109/TNNLS.2020.3009953
10.1109/TCYB.2020.2987164
10.1109/TCSVT.2021.3101953
10.1109/TIP.2021.3068646
10.1109/TCSVT.2018.2889514
10.1109/TCSVT.2020.3017118
10.1609/aaai.v28i1.8950
10.1609/aaai.v34i04.6052
10.1109/TNNLS.2018.2851444
10.2316/P.2013.798-098
10.1109/TNNLS.2021.3059874
10.1109/TCSVT.2021.3055625
10.1109/TMM.2021.3112230
10.1109/TPAMI.2020.3011148
10.1016/j.knosys.2019.105102
10.1609/aaai.v32i1.11625
10.1109/TIP.2018.2877937
10.1109/CVPR.2015.7298657
10.1016/j.inffus.2020.08.017
10.1109/TCYB.2021.3088519
10.1109/TNNLS.2017.2777489
10.1016/j.patcog.2020.107673
10.1109/CVPR.2010.5540018
10.1109/ICCV.2015.482
10.1109/TCSVT.2021.3055039
10.1109/CVPR.2005.177
10.1109/TSMCB.2009.2039566
10.1007/s11263-018-1086-2
10.1609/aaai.v34i04.5756
10.1109/TIP.2018.2877335
10.24963/ijcai.2020/416
10.1145/3219819.3220049
10.1109/ICCV.2015.185
10.1007/s11222-007-9033-z
10.1109/TMI.2020.2992546
10.1609/aaai.v31i1.10909
10.1109/TCYB.2017.2751646
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3143848
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 5318
ExternalDocumentID 10_1109_TCSVT_2022_3143848
9684399
Genre orig-research
GrantInformation_xml – fundername: Foundation of Liaoning Key Research and Development Program
  funderid: 10.13039/501100019033
– fundername: Dalian Leading Talent Grant
– fundername: Dalian Science and Technology Innovation Fund
  grantid: 2021JJ12GX028
  funderid: 10.13039/501100017683
– fundername: Liaoning Doctoral Research Start-Up Fund Project
  grantid: 2021-BS-075
– fundername: National Natural Science Foundation of China
  grantid: 62002041; 62176037; 61272368; 61802043
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 3132021238
  funderid: 10.13039/501100012226
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-50870b496b47563531a145a1901bd6a00f9e2b14481ae9f33328f22f46c024e73
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 10:17:26 EDT 2025
Tue Jul 01 00:41:17 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Wed Aug 27 02:23:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-50870b496b47563531a145a1901bd6a00f9e2b14481ae9f33328f22f46c024e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6591-9304
0000-0001-9748-0407
PQID 2697571614
PQPubID 85433
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCSVT_2022_3143848
ieee_primary_9684399
crossref_citationtrail_10_1109_TCSVT_2022_3143848
proquest_journals_2697571614
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref52
wen (ref10) 2021; 35
ref17
ref19
ref18
guo (ref14) 2010; 19
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref8
lan (ref7) 2021
ref9
ref4
ref6
ref40
liu (ref11) 2021
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
tang (ref3) 2020
ref1
wu (ref5) 2020; 30
ref39
ref38
cheng (ref16) 2021; 35
yin (ref37) 2016
huang (ref47) 2012
kumar (ref24) 2011; 24
ref23
ref26
ref25
ref20
ref22
nie (ref27) 2016
ref21
ref28
ref29
References_xml – ident: ref33
  doi: 10.1109/ICDM.2019.00148
– volume: 19
  start-page: 1657
  year: 2010
  ident: ref14
  article-title: A completed modeling of local binary pattern operator for texture classification
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2044957
– ident: ref18
  doi: 10.1109/TPAMI.2020.3037734
– volume: 35
  start-page: 10273
  year: 2021
  ident: ref10
  article-title: Unified tensor framework for incomplete multi-view clustering and missing-view inferring
  publication-title: Proc AAAI Conf Artif Intell
– volume: 24
  start-page: 1413
  year: 2011
  ident: ref24
  article-title: Co-regularized multi-view spectral clustering
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref29
  doi: 10.1145/3394171.3413807
– ident: ref44
  doi: 10.1109/TPAMI.2012.88
– ident: ref41
  doi: 10.1109/TNNLS.2020.3009953
– ident: ref28
  doi: 10.1109/TCYB.2020.2987164
– ident: ref9
  doi: 10.1109/TCSVT.2021.3101953
– ident: ref21
  doi: 10.1109/TIP.2021.3068646
– year: 2021
  ident: ref7
  article-title: Generalized multi-view collaborative subspace clustering
  publication-title: IEEE Trans Circuits Syst Video Technol
– ident: ref8
  doi: 10.1109/TCSVT.2018.2889514
– year: 2016
  ident: ref37
  article-title: Low-rank multi-view clustering in third-order tensor space
  publication-title: arXiv 1608 08336
– ident: ref6
  doi: 10.1109/TCSVT.2020.3017118
– ident: ref45
  doi: 10.1609/aaai.v28i1.8950
– ident: ref34
  doi: 10.1609/aaai.v34i04.6052
– ident: ref39
  doi: 10.1109/TNNLS.2018.2851444
– start-page: 1881
  year: 2016
  ident: ref27
  article-title: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification
  publication-title: Proc IJCAI
– ident: ref42
  doi: 10.2316/P.2013.798-098
– ident: ref30
  doi: 10.1109/TNNLS.2021.3059874
– ident: ref4
  doi: 10.1109/TCSVT.2021.3055625
– ident: ref23
  doi: 10.1109/TMM.2021.3112230
– ident: ref17
  doi: 10.1109/TPAMI.2020.3011148
– ident: ref51
  doi: 10.1016/j.knosys.2019.105102
– ident: ref49
  doi: 10.1609/aaai.v32i1.11625
– start-page: 773
  year: 2012
  ident: ref47
  article-title: Affinity aggregation for spectral clustering
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref38
  doi: 10.1109/TIP.2018.2877937
– ident: ref26
  doi: 10.1109/CVPR.2015.7298657
– ident: ref19
  doi: 10.1016/j.inffus.2020.08.017
– ident: ref2
  doi: 10.1109/TCYB.2021.3088519
– volume: 30
  start-page: 2081
  year: 2020
  ident: ref5
  article-title: Cross-entropy adversarial view adaptation for person re-identification
  publication-title: IEEE Trans Circuits Syst Video Technol
– ident: ref1
  doi: 10.1109/TNNLS.2017.2777489
– ident: ref20
  doi: 10.1016/j.patcog.2020.107673
– volume: 35
  start-page: 7099
  year: 2021
  ident: ref16
  article-title: Neighborhood consensus networks for unsupervised multi-view outlier detection
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref15
  doi: 10.1109/CVPR.2010.5540018
– ident: ref52
  doi: 10.1109/ICCV.2015.482
– ident: ref31
  doi: 10.1109/TCSVT.2021.3055039
– ident: ref13
  doi: 10.1109/CVPR.2005.177
– ident: ref25
  doi: 10.1109/TSMCB.2009.2039566
– ident: ref36
  doi: 10.1007/s11263-018-1086-2
– ident: ref46
  doi: 10.1609/aaai.v34i04.5756
– start-page: 6850
  year: 2021
  ident: ref11
  article-title: One pass late fusion multi-view clustering
  publication-title: Proc Int Conf Mach Learn
– ident: ref50
  doi: 10.1109/TIP.2018.2877335
– ident: ref12
  doi: 10.24963/ijcai.2020/416
– ident: ref48
  doi: 10.1145/3219819.3220049
– ident: ref35
  doi: 10.1109/ICCV.2015.185
– ident: ref43
  doi: 10.1007/s11222-007-9033-z
– ident: ref22
  doi: 10.1109/TMI.2020.2992546
– ident: ref40
  doi: 10.1609/aaai.v31i1.10909
– ident: ref32
  doi: 10.1109/TCYB.2017.2751646
– year: 2020
  ident: ref3
  article-title: DeFusionNET: Defocus blur detection via recurrently fusing and refining discriminative multi-scale deep features
  publication-title: IEEE Trans Pattern Anal Mach Intell
SSID ssj0014847
Score 2.6295774
Snippet Multi-view clustering aims to partition multi-view data into different categories by optimally exploring the consistency and complementary information from...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5307
SubjectTerms Algorithms
Clustering
Clustering algorithms
Consistency
Constraints
Correlation
Graphs
High-order graph learning
Laplace equations
low-rank constraint
Mathematical analysis
multi-view clustering
Optimization
Redundancy
Similarity
Task analysis
Tensors
Title Tensorial Multi-View Clustering via Low-Rank Constrained High-Order Graph Learning
URI https://ieeexplore.ieee.org/document/9684399
https://www.proquest.com/docview/2697571614
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kx78LU6n5OBNs7VJ2iZHGc4h_gDdxFtJ20SGsoluDvzrfS_txlARbz0kIc1L876vee97hBw750wewukXS2uAoEQFU64QzGrh4CjUyuZ4o3t9E3f78vIxelwip_NcGGutDz6zTXz0d_nFKJ_gr7KWjhXC52WyDMStzNWa3xhI5YuJAVwImQI_NkuQCXSr175_6AEV5BwYqhQKa_0sOCFfVeXHUez9S2edXM9mVoaVPDcn46yZf34Tbfzv1DfIWgU06Vm5MzbJkh1ukdUF-cFtctcDDjvCHUh9Hi57GNgpbb9MUDwBWtCPgaFXoym7M8NniqU9fUEJW1CMDmG3qNpJL1DxmlYyrU87pN8577W7rKqxwHKuozEDfJYEmdRxJpMIwIcITSgjgzAhK2ITBE5bngHrUqGx2gkhuHKcOxnn4N1tInZJbTga2j3M_gYrZ1HCRaFkERoTCedUwp2Cl4dR6iScLXqaVwLkOO2X1BORQKfeUCkaKq0MVScn8z6vpfzGn623ceXnLatFr5PGzLZp9YW-pzzWSQRkMZT7v_c6ICs4dhns1yC18dvEHgIAGWdHfud9AWP21Yo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvArqQgEf4IS8TfxI7AMHtFC2dFukkla9BSexq6rVLqK7rOC39K_0vzHjZFcVIG6VuOVgO4nny8x88TwAXoYQXJ2i9suUd0hQdMNNaCT3VgZUhdb4mk50d_ey4YH6eKSPVuBimQvjvY_BZ75Pl_Esv5nUM_pVtmkzQ-5zF0K543_MkaCdv9l-h9J8JcTW-2Iw5F0PAV4Lq6cc_Y88qZTNKpVrNK4ydanSjsxg1WQuSYL1okJWYVLnbZBSChOECCqr0Xr5XOK6N-Am-hlatNlhyzMKZWL7MnRQUm7Qci5SchK7WQw-HxZIPoVATqykoe5CV8xe7OPyh_KPFm3rHlwu9qINZDntz6ZVv_75W5nI_3Wz7sPdzpVmb1vsP4AVP34Id64UWFyD_QJZ-oS-MRYzjfnhiZ-zwdmMykPgCPb9xLHRZM733fiUUfPS2DLDN4ziX_gnqkvKPlBNb9YVoj1-BAfX8lKPYXU8Gft1ym9HHFc6F7Ixqkmd0zIEk4tgcLNxlR6kCyGXdVdinR77rIxUK7FlBEZJwCg7YPTg9XLO17bAyD9Hr5GklyM7IfdgY4GlstNB56XIbK6RDqfqyd9nvYBbw2J3VI6293aewm26TxvauAGr028z_wzdrWn1PKKewZfrRs4vlt0upw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensorial+Multi-View+Clustering+via+Low-Rank+Constrained+High-Order+Graph+Learning&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Jiang%2C+Guangqi&rft.au=Peng%2C+Jinjia&rft.au=Wang%2C+Huibing&rft.au=Mi%2C+Zetian&rft.date=2022-08-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=8&rft.spage=5307&rft.epage=5318&rft_id=info:doi/10.1109%2FTCSVT.2022.3143848&rft.externalDocID=9684399
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon