Dead Zone Compensation and Adaptive Vibration Control of Uncertain Spatial Flexible Riser Systems
This article provides a framework of dead zone compensation and robust adaptive vibration control for uncertain spatial flexible riser systems. First, nonsymmetric dead zone nonlinearity is represented in the form of the desired control input with the addition of an extra nonlinear input error. Seco...
Saved in:
Published in | IEEE/ASME transactions on mechatronics Vol. 25; no. 3; pp. 1398 - 1408 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1083-4435 1941-014X |
DOI | 10.1109/TMECH.2020.2975567 |
Cover
Abstract | This article provides a framework of dead zone compensation and robust adaptive vibration control for uncertain spatial flexible riser systems. First, nonsymmetric dead zone nonlinearity is represented in the form of the desired control input with the addition of an extra nonlinear input error. Second, by visualizing those input errors and extrinsic disturbances as an unknown "disturbance-like" term, a new robust adaptive vibration control technology and online updating laws can be constructed for riser systems to guarantee the oscillation reduction and compensation of uncertainties and dead zone. Third, the constructed control ensures and achieves bounded Lyapunov stability in the controlled system. Ultimately, control performances are demonstrated with appropriate design parameters. |
---|---|
AbstractList | This article provides a framework of dead zone compensation and robust adaptive vibration control for uncertain spatial flexible riser systems. First, nonsymmetric dead zone nonlinearity is represented in the form of the desired control input with the addition of an extra nonlinear input error. Second, by visualizing those input errors and extrinsic disturbances as an unknown “disturbance-like” term, a new robust adaptive vibration control technology and online updating laws can be constructed for riser systems to guarantee the oscillation reduction and compensation of uncertainties and dead zone. Third, the constructed control ensures and achieves bounded Lyapunov stability in the controlled system. Ultimately, control performances are demonstrated with appropriate design parameters. |
Author | Zhao, Zhijia Ahn, Choon Ki Li, Han-Xiong |
Author_xml | – sequence: 1 givenname: Zhijia orcidid: 0000-0001-5893-0233 surname: Zhao fullname: Zhao, Zhijia email: zhjzhaoscut@163.com organization: School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, China – sequence: 2 givenname: Choon Ki orcidid: 0000-0003-0993-9658 surname: Ahn fullname: Ahn, Choon Ki email: hironaka@korea.ac.kr organization: School of Electrical Engineering, Korea University, Seoul, South Korea – sequence: 3 givenname: Han-Xiong orcidid: 0000-0002-0707-5940 surname: Li fullname: Li, Han-Xiong email: mehxli@cityu.edu.hk organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong |
BookMark | eNp9kElLBDEQhYMoOC5_QC8Bzz1Wll5ylHaFEcFRES9N0p1Ahp6kTaLov7dnwYMHT1XUe18V9Q7QrvNOI3RCYEoIiPOn-6v6dkqBwpSKMs-LcgdNiOAkA8Jfd8ceKpZxzvJ9dBDjAgA4ATJB8lLLDr-N23Dtl4N2USbrHZauwxedHJL91PjFqrAZ196l4HvsDX52rQ5JWofnwyjKHl_3-suqXuNHG3XA8--Y9DIeoT0j-6iPt_UQPV9fPdW32ezh5q6-mGUtFXnKuOnKtqiI4aqCkgklC1UqZQqmgIhq1GiuoKOqNWXVUkY1MVVRcqCdNFLm7BCdbfYOwb9_6Jiahf8IbjzZUE54zjgjK1e1cbXBxxi0aVqb1r-lIG3fEGhWgTbrQJtVoM020BGlf9Ah2KUM3_9DpxvIaq1_AQFQCBDsB_b0hC8 |
CODEN | IATEFW |
CitedBy_id | crossref_primary_10_1002_rnc_6505 crossref_primary_10_1007_s11071_024_10806_5 crossref_primary_10_1016_j_fss_2024_109119 crossref_primary_10_1108_AA_11_2021_0154 crossref_primary_10_1016_j_jfranklin_2021_02_020 crossref_primary_10_1016_j_tws_2021_108176 crossref_primary_10_1109_TSMC_2020_3034757 crossref_primary_10_1016_j_neucom_2024_127578 crossref_primary_10_1016_j_oceaneng_2024_120020 crossref_primary_10_1108_AA_01_2021_0007 crossref_primary_10_1109_TSMC_2022_3165586 crossref_primary_10_1109_TSMC_2022_3214571 crossref_primary_10_1108_AA_02_2021_0017 crossref_primary_10_1109_TFUZZ_2021_3098733 crossref_primary_10_1109_TNNLS_2022_3157950 crossref_primary_10_1002_asjc_2767 crossref_primary_10_1109_TCYB_2020_3041727 crossref_primary_10_1007_s12555_020_0074_9 crossref_primary_10_1016_j_oceaneng_2023_113694 crossref_primary_10_1016_j_neucom_2021_12_056 crossref_primary_10_1016_j_oceaneng_2024_118049 crossref_primary_10_1109_TSMC_2023_3285653 crossref_primary_10_3390_math10183332 crossref_primary_10_1109_TCSII_2021_3109280 crossref_primary_10_1016_j_ins_2023_01_060 crossref_primary_10_1016_j_automatica_2021_109637 crossref_primary_10_1109_ACCESS_2020_2994590 crossref_primary_10_1109_TCST_2021_3104648 crossref_primary_10_1109_TMECH_2021_3066211 crossref_primary_10_1016_j_jfranklin_2021_09_031 crossref_primary_10_1109_ACCESS_2020_2983054 crossref_primary_10_1109_TSMC_2022_3147384 crossref_primary_10_1109_TSMC_2023_3317406 crossref_primary_10_1109_TIE_2021_3114726 crossref_primary_10_1109_TMECH_2021_3126686 crossref_primary_10_1109_TSMC_2022_3149283 crossref_primary_10_1177_10775463211068905 crossref_primary_10_1016_j_jfranklin_2023_08_038 crossref_primary_10_1177_00202940221091244 crossref_primary_10_1002_oca_2779 crossref_primary_10_1109_TCYB_2021_3102160 crossref_primary_10_1007_s11071_023_08769_0 crossref_primary_10_1109_TSMC_2020_3020326 crossref_primary_10_1007_s42417_023_00861_4 crossref_primary_10_3390_electronics12092053 crossref_primary_10_1007_s00521_022_07463_3 crossref_primary_10_1016_j_amc_2022_127286 crossref_primary_10_1016_j_ins_2022_05_043 crossref_primary_10_1049_syb2_12032 crossref_primary_10_1109_TMECH_2021_3124013 crossref_primary_10_1002_zamm_202100524 crossref_primary_10_1007_s13344_024_0023_0 crossref_primary_10_1007_s12555_021_1107_8 crossref_primary_10_1109_TFUZZ_2022_3164512 crossref_primary_10_1016_j_jfranklin_2022_01_006 crossref_primary_10_1002_asjc_2699 crossref_primary_10_1016_j_oceaneng_2022_111867 crossref_primary_10_3390_s24082404 crossref_primary_10_1049_cth2_12347 crossref_primary_10_1109_TCYB_2020_3044144 crossref_primary_10_1109_TSMC_2022_3213477 crossref_primary_10_1007_s12555_021_1011_2 crossref_primary_10_3390_machines12100698 crossref_primary_10_1007_s11071_022_07713_y crossref_primary_10_1109_TCSI_2022_3149290 crossref_primary_10_1177_1045389X231198789 crossref_primary_10_1016_j_tws_2025_113056 crossref_primary_10_1109_TCYB_2022_3165389 crossref_primary_10_1016_j_ast_2023_108470 crossref_primary_10_1016_j_jfranklin_2020_07_033 crossref_primary_10_1007_s12555_020_0329_5 crossref_primary_10_1016_j_ijnonlinmec_2022_104267 crossref_primary_10_1109_TNNLS_2022_3212281 crossref_primary_10_1016_j_conengprac_2024_105987 crossref_primary_10_1108_AA_11_2020_0182 crossref_primary_10_1155_2020_2906546 crossref_primary_10_1177_10775463211056833 crossref_primary_10_1007_s11432_020_3109_x crossref_primary_10_1109_TCYB_2021_3112706 crossref_primary_10_1016_j_engstruct_2022_115323 crossref_primary_10_1016_j_apor_2021_102882 crossref_primary_10_1109_TCYB_2020_3021069 crossref_primary_10_1109_ACCESS_2021_3055547 crossref_primary_10_1002_rnc_5693 crossref_primary_10_1007_s10883_022_09632_y crossref_primary_10_1080_00207721_2021_1921308 crossref_primary_10_1002_asjc_3231 crossref_primary_10_3390_app132312549 crossref_primary_10_1177_1077546320986715 crossref_primary_10_1016_j_neucom_2021_05_054 crossref_primary_10_1002_rnc_6723 crossref_primary_10_1109_TNNLS_2020_3037795 crossref_primary_10_1177_10775463231156648 crossref_primary_10_1115_1_4049219 crossref_primary_10_1109_TIE_2024_3454429 crossref_primary_10_1109_TSMC_2021_3094668 crossref_primary_10_1109_TSMC_2023_3283268 crossref_primary_10_1109_TNNLS_2022_3151625 crossref_primary_10_1016_j_cnsns_2023_107456 crossref_primary_10_1115_1_4048367 crossref_primary_10_1109_TASE_2023_3327419 crossref_primary_10_1109_TASE_2021_3070140 crossref_primary_10_1109_TNNLS_2021_3117251 crossref_primary_10_1007_s11370_024_00539_0 crossref_primary_10_1109_ACCESS_2022_3154418 crossref_primary_10_1016_j_oceaneng_2021_109320 crossref_primary_10_1109_TNNLS_2021_3072907 crossref_primary_10_1016_j_cja_2023_07_015 crossref_primary_10_1007_s12555_020_0744_7 crossref_primary_10_1177_01423312211025956 crossref_primary_10_1109_TMECH_2024_3401242 crossref_primary_10_1016_j_apm_2023_01_046 crossref_primary_10_1109_TCYB_2021_3090417 crossref_primary_10_1177_10775463221124640 crossref_primary_10_1109_TIE_2021_3065835 |
Cites_doi | 10.1002/rnc.3880 10.1016/j.oceaneng.2019.01.020 10.1016/j.automatica.2018.10.030 10.1109/TCST.2016.2577001 10.1109/TSMC.2018.2882822 10.1016/j.neucom.2017.12.013 10.1049/iet-cta.2017.0076 10.1109/TSMC.2019.2944900 10.1109/TSMC.2017.2710638 10.1109/TIE.2019.2931230 10.1109/TCST.2018.2849072 10.1109/TSMC.2019.2912900 10.1109/TIE.2018.2803773 10.1016/j.oceaneng.2018.02.031 10.1007/s11071-015-2275-y 10.1016/j.automatica.2016.11.002 10.1109/TMECH.2014.2331713 10.1016/j.oceaneng.2018.01.086 10.1016/j.automatica.2015.12.026 10.1016/j.automatica.2007.11.025 10.1109/TSMC.2018.2882734 10.1109/TNNLS.2018.2828813 10.1109/TCYB.2015.2456028 10.1109/TCSII.2019.2914061 10.1109/TSMC.2016.2605159 10.1016/j.isatra.2018.05.021 10.1016/j.automatica.2014.10.123 10.1049/iet-cta.2016.1484 10.1109/TCSII.2019.2901283 10.1109/TAC.2016.2569432 10.1007/s11071-019-05139-7 10.1016/j.automatica.2011.01.025 10.1109/TSMC.2019.2944999 10.1109/TSMC.2018.2870999 10.1109/TMECH.2015.2431118 10.1016/j.automatica.2017.04.017 10.1016/j.automatica.2018.06.051 10.1016/j.jsv.2013.02.026 10.1109/TNNLS.2018.2844165 10.1109/9.341778 10.1002/rnc.4810 10.1002/acs.2487 10.1016/0005-1098(95)00147-6 10.1016/j.jsv.2016.10.011 10.1016/j.sysconle.2008.03.008 10.1016/j.isatra.2017.11.006 10.1109/TNNLS.2013.2257843 10.1007/978-3-662-04641-8 10.1016/j.automatica.2016.01.043 10.1016/j.jfranklin.2016.11.016 10.1016/j.automatica.2006.12.014 10.1016/j.automatica.2011.01.064 10.1016/j.automatica.2014.09.006 10.1109/TMECH.2017.2721553 10.1177/1077546309340994 10.1016/j.jfranklin.2017.10.004 10.1109/TCYB.2017.2667680 10.1016/j.ymssp.2018.03.058 10.1007/978-1-4612-1352-9 10.1109/TSMC.2018.2818761 10.1016/j.automatica.2016.11.032 10.1109/9.388689 10.1109/TSMC.2016.2562506 10.1016/j.neucom.2017.09.050 10.1109/TAC.2010.2089380 10.1109/9.273339 10.1109/TIE.2017.2674592 10.1109/TII.2016.2608739 10.1016/j.automatica.2018.09.021 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TMECH.2020.2975567 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-014X |
EndPage | 1408 |
ExternalDocumentID | 10_1109_TMECH_2020_2975567 9006909 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 10.13039/501100003725 – fundername: City University of Hong Kong grantid: 7005092 funderid: 10.13039/100007567 – fundername: Science and Technology Planning Project of Guangzhou City grantid: 201904010494; 201904010475 – fundername: Innovative School Project of Education Department of Guangdong grantid: 2017KQNCX153; 2018KQNCX192; 2017KZDXM060 – fundername: Ministry of Science, ICT and Future Planning grantid: NRF-2017R1A1A1A05001325 funderid: 10.13039/501100003621 – fundername: National Natural Science Foundation of China grantid: 61803109; 11832009; 61803111 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACKIV AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 OCL RIA RIE RNS TN5 VH1 AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-4fd7c681f4b80739ba6b7bbf63b01987c625b0d2bcf78c232e1f867402dafaa53 |
IEDL.DBID | RIE |
ISSN | 1083-4435 |
IngestDate | Mon Jun 30 06:40:26 EDT 2025 Thu Apr 24 23:09:08 EDT 2025 Tue Jul 01 04:23:18 EDT 2025 Wed Aug 27 02:38:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-4fd7c681f4b80739ba6b7bbf63b01987c625b0d2bcf78c232e1f867402dafaa53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5893-0233 0000-0002-0707-5940 0000-0003-0993-9658 |
PQID | 2414534315 |
PQPubID | 85420 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2414534315 crossref_primary_10_1109_TMECH_2020_2975567 crossref_citationtrail_10_1109_TMECH_2020_2975567 ieee_primary_9006909 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-June 2020-6-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-June |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE/ASME transactions on mechatronics |
PublicationTitleAbbrev | TMECH |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref41 zhou (ref42) 2008 ref44 ref43 ref49 ref8 ref7 ref9 ref4 dai (ref72) 2014; 25 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 do (ref38) 2017; 388 ref71 ref70 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref70 doi: 10.1002/rnc.3880 – ident: ref57 doi: 10.1016/j.oceaneng.2019.01.020 – ident: ref53 doi: 10.1016/j.automatica.2018.10.030 – ident: ref40 doi: 10.1109/TCST.2016.2577001 – ident: ref9 doi: 10.1109/TSMC.2018.2882822 – ident: ref43 doi: 10.1016/j.neucom.2017.12.013 – ident: ref58 doi: 10.1049/iet-cta.2017.0076 – ident: ref25 doi: 10.1109/TSMC.2019.2944900 – ident: ref7 doi: 10.1109/TSMC.2017.2710638 – ident: ref69 doi: 10.1109/TIE.2019.2931230 – ident: ref27 doi: 10.1109/TCST.2018.2849072 – ident: ref68 doi: 10.1109/TSMC.2019.2912900 – ident: ref71 doi: 10.1109/TIE.2018.2803773 – ident: ref4 doi: 10.1016/j.oceaneng.2018.02.031 – ident: ref63 doi: 10.1007/s11071-015-2275-y – ident: ref11 doi: 10.1016/j.automatica.2016.11.002 – ident: ref1 doi: 10.1109/TMECH.2014.2331713 – ident: ref2 doi: 10.1016/j.oceaneng.2018.01.086 – ident: ref24 doi: 10.1016/j.automatica.2015.12.026 – ident: ref55 doi: 10.1016/j.automatica.2007.11.025 – ident: ref62 doi: 10.1109/TSMC.2018.2882734 – ident: ref50 doi: 10.1109/TNNLS.2018.2828813 – year: 2008 ident: ref42 publication-title: Adaptive Backstepping Control of Uncertain Systems Nonsmooth Nonlinearities Interactions or Time-Variations – ident: ref51 doi: 10.1109/TCYB.2015.2456028 – ident: ref60 doi: 10.1109/TCSII.2019.2914061 – ident: ref16 doi: 10.1109/TSMC.2016.2605159 – ident: ref5 doi: 10.1016/j.isatra.2018.05.021 – ident: ref26 doi: 10.1016/j.automatica.2014.10.123 – ident: ref36 doi: 10.1049/iet-cta.2016.1484 – ident: ref15 doi: 10.1109/TCSII.2019.2901283 – ident: ref6 doi: 10.1109/TAC.2016.2569432 – ident: ref41 doi: 10.1007/s11071-019-05139-7 – ident: ref44 doi: 10.1016/j.automatica.2011.01.025 – ident: ref61 doi: 10.1109/TSMC.2019.2944999 – ident: ref3 doi: 10.1109/TSMC.2018.2870999 – ident: ref56 doi: 10.1109/TMECH.2015.2431118 – ident: ref19 doi: 10.1016/j.automatica.2017.04.017 – ident: ref8 doi: 10.1016/j.automatica.2018.06.051 – ident: ref34 doi: 10.1016/j.jsv.2013.02.026 – ident: ref52 doi: 10.1109/TNNLS.2018.2844165 – ident: ref47 doi: 10.1109/9.341778 – ident: ref23 doi: 10.1002/rnc.4810 – ident: ref31 doi: 10.1002/acs.2487 – ident: ref67 doi: 10.1016/0005-1098(95)00147-6 – volume: 388 start-page: 1 year: 2017 ident: ref38 article-title: Boundary control design for extensible marine risers in three dimensional space publication-title: J Sound Vib doi: 10.1016/j.jsv.2016.10.011 – ident: ref30 doi: 10.1016/j.sysconle.2008.03.008 – ident: ref39 doi: 10.1016/j.isatra.2017.11.006 – volume: 25 start-page: 111 year: 2014 ident: ref72 article-title: Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2257843 – ident: ref66 doi: 10.1007/978-3-662-04641-8 – ident: ref32 doi: 10.1016/j.automatica.2016.01.043 – ident: ref14 doi: 10.1016/j.jfranklin.2016.11.016 – ident: ref54 doi: 10.1016/j.automatica.2006.12.014 – ident: ref33 doi: 10.1016/j.automatica.2011.01.064 – ident: ref17 doi: 10.1016/j.automatica.2014.09.006 – ident: ref13 doi: 10.1109/TMECH.2017.2721553 – ident: ref10 doi: 10.1109/TMECH.2017.2721553 – ident: ref29 doi: 10.1177/1077546309340994 – ident: ref59 doi: 10.1016/j.jfranklin.2017.10.004 – ident: ref49 doi: 10.1109/TCYB.2017.2667680 – ident: ref12 doi: 10.1109/TMECH.2014.2331713 – ident: ref35 doi: 10.1016/j.ymssp.2018.03.058 – ident: ref65 doi: 10.1007/978-1-4612-1352-9 – ident: ref22 doi: 10.1109/TSMC.2018.2818761 – ident: ref37 doi: 10.1016/j.automatica.2016.11.032 – ident: ref46 doi: 10.1109/9.388689 – ident: ref21 doi: 10.1109/TSMC.2016.2562506 – ident: ref45 doi: 10.1016/j.neucom.2017.09.050 – ident: ref28 doi: 10.1109/TAC.2010.2089380 – ident: ref48 doi: 10.1109/9.273339 – ident: ref64 doi: 10.1109/TIE.2017.2674592 – ident: ref20 doi: 10.1109/TII.2016.2608739 – ident: ref18 doi: 10.1016/j.automatica.2018.09.021 |
SSID | ssj0004101 |
Score | 2.5956085 |
Snippet | This article provides a framework of dead zone compensation and robust adaptive vibration control for uncertain spatial flexible riser systems. First,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1398 |
SubjectTerms | Adaptive control Adaptive systems Boundary control Compensation Control stability Design parameters flexible risers IEEE transactions input dead zone Mechatronics Nonlinearity robust adaptive control Robust control Uncertainty Upgrading Vibration control Vibrations |
Title | Dead Zone Compensation and Adaptive Vibration Control of Uncertain Spatial Flexible Riser Systems |
URI | https://ieeexplore.ieee.org/document/9006909 https://www.proquest.com/docview/2414534315 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJz34QiOKZg_etNDS7WOPBCHEBA8GDPHS7KsXCRCFi7_emW0Bo8Z4a5ruZpNvOjvf7sx8ADdhbITlifRUZLjHhQk96SuBtkytS1IS36Zq5NFjPJzwh2k0rcDdthbGWuuSz2yLHt1dvlnoNR2VtYXrqyuqUEUzK2q1djWQgZM6DjCk8DjGAJsCGV-0x6N-b4hUsOO3qI40cpryu03Iqar8cMVufxkcwmizsiKt5LW1XqmW_vjWtPG_Sz-CgzLQZN3CMo6hYucnsP-l_WAd5D0CzF4Wc8vILSChdTAxOTesa-SSPCF7Jj7tXveKrHa2yNkETcWlEjCSNEYTZgNqrKlmlj2RuDMrG6GfwmTQH_eGXim54OmOiFYez02i4zTIuUrpDk_JWCVK5XGofDqe0EiXlG86SudJqjEas0GexgmSUCNzKaPwDGpzXPY5sA7XqY8z5AYZnzGhQuYVxFYoG6EHTnQDgg0GmS77kZMsxixzvMQXmcMtI9yyErcG3G7HLItuHH9-XScgtl-WGDSguYE6K3_Y9wwDGR6FGE1FF7-PuoQ9mrvIEmtCbfW2tlcYj6zUtTPET1Ee2y8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VGICBN6I8PbBBStLYSTyiQlUeZUAtQiyRX1lALYJ24ddz56QtAoTYoshOLH2X8118930Ax3FipeOpCrSwPODSxoEKtURbJuqSjMS3qRu5e5d0-vz6UTzW4HTaC-Oc88VnrkGX_izfDs2YfpWdSc-rK-dgAfd9LspurVkXZOTFjiMMKgKOUcCkRSaUZ73uZauDyWAzbFAnqfCq8rNtyOuq_HDGfodpr0J3sraysOS5MR7phvn4Rtv438WvwUoVarLz0jbWoeYGG7D8hYBwE9QFQsyehgPHyDFgSuuBYmpg2blVr-QL2QNl1P52q6xrZ8OC9dFYfDEBI1FjNGLWJmpN_eLYPck7s4oKfQv67cteqxNUoguBaUoxCnhhU5NkUcF1Rqd4WiU61bpIYh3SDwqDCZMObVObIs0MxmMuKrIkxTTUqkIpEW_D_ACXvQOsyU0W4hMKizmftbHG3CtKnNROoA9OTR2iCQa5qRjJSRjjJfeZSShzj1tOuOUVbnU4mc55Lfk4_hy9SUBMR1YY1GF_AnVefbLvOYYyXMQYT4nd32cdwWKn173Nb6_ubvZgid5T1oztw_zobewOMDoZ6UNvlJ_zud58 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dead+Zone+Compensation+and+Adaptive+Vibration+Control+of+Uncertain+Spatial+Flexible+Riser+Systems&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Zhao%2C+Zhijia&rft.au=Ahn%2C+Choon+Ki&rft.au=Li%2C+Han-Xiong&rft.date=2020-06-01&rft.issn=1083-4435&rft.eissn=1941-014X&rft.volume=25&rft.issue=3&rft.spage=1398&rft.epage=1408&rft_id=info:doi/10.1109%2FTMECH.2020.2975567&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMECH_2020_2975567 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon |