Attention-Guided Global-Local Adversarial Learning for Detail-Preserving Multi-Exposure Image Fusion

Deep learning networks have recently demonstrated yielded impressive progress for multi-exposure image fusion. However, how to restore realistic texture details while correcting color distortion is still a challenging problem to be solved. To alleviate the aforementioned issues, in this paper, we pr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 8; pp. 5026 - 5040
Main Authors Liu, Jinyuan, Shang, Jingjie, Liu, Risheng, Fan, Xin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning networks have recently demonstrated yielded impressive progress for multi-exposure image fusion. However, how to restore realistic texture details while correcting color distortion is still a challenging problem to be solved. To alleviate the aforementioned issues, in this paper, we propose an attention-guided global-local adversarial learning network for fusing extreme exposure images in a coarse-to-fine manner. Firstly, the coarse fusion result is generated under the guidance of attention weight maps, which acquires the essential region of interest from both sides. Secondly, we formulate an edge loss function, along with a spatial feature transform layer, for refining the fusion process. So that it can take full use of the edge information to deal with blurry edges. Moreover, by incorporating global-local learning, our method can balance pixel intensity distribution and correct the color distortion on spatially varying source images from both image/patch perspectives. Such a global-local discriminator ensures all the local patches of the fused images align with realistic normal-exposure ones. Extensive experimental results on two publicly available datasets show that our method drastically outperforms state-of-the-art methods in visual inspection and objective analysis. Furthermore, sufficient ablation experiments prove that our method has significant advantages in generating high-quality fused results with appealing details, clear targets, and faithful color. Source code will be available at https://github.com/JinyuanLiu-CV/AGAL .
AbstractList Deep learning networks have recently demonstrated yielded impressive progress for multi-exposure image fusion. However, how to restore realistic texture details while correcting color distortion is still a challenging problem to be solved. To alleviate the aforementioned issues, in this paper, we propose an attention-guided global-local adversarial learning network for fusing extreme exposure images in a coarse-to-fine manner. Firstly, the coarse fusion result is generated under the guidance of attention weight maps, which acquires the essential region of interest from both sides. Secondly, we formulate an edge loss function, along with a spatial feature transform layer, for refining the fusion process. So that it can take full use of the edge information to deal with blurry edges. Moreover, by incorporating global-local learning, our method can balance pixel intensity distribution and correct the color distortion on spatially varying source images from both image/patch perspectives. Such a global-local discriminator ensures all the local patches of the fused images align with realistic normal-exposure ones. Extensive experimental results on two publicly available datasets show that our method drastically outperforms state-of-the-art methods in visual inspection and objective analysis. Furthermore, sufficient ablation experiments prove that our method has significant advantages in generating high-quality fused results with appealing details, clear targets, and faithful color. Source code will be available at https://github.com/JinyuanLiu-CV/AGAL .
Author Shang, Jingjie
Liu, Jinyuan
Fan, Xin
Liu, Risheng
Author_xml – sequence: 1
  givenname: Jinyuan
  orcidid: 0000-0003-2085-2676
  surname: Liu
  fullname: Liu, Jinyuan
  email: atlantis918@hotmail
  organization: School of Software Technology, Dalian University of Technology, Dalian, China
– sequence: 2
  givenname: Jingjie
  orcidid: 0000-0002-9276-2349
  surname: Shang
  fullname: Shang, Jingjie
  email: ishawnshang@foxmail.com
  organization: DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 3
  givenname: Risheng
  orcidid: 0000-0002-9554-0565
  surname: Liu
  fullname: Liu, Risheng
  email: rsliu@dlut.edu.cn
  organization: DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 4
  givenname: Xin
  orcidid: 0000-0002-8991-4188
  surname: Fan
  fullname: Fan, Xin
  email: xin.fan@dlut.edu.cn
  organization: DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian, China
BookMark eNp9kE9PwzAMxSMEEuPPF4BLJc4ZSRq3zXEaMJCGQGJwrbLGnYJKM5J0gm9PxhAHDpxsWX7v2b8jst-7Hgk542zMOVOXi-nTy2IsmBDjnEspAfbIiANUVAgG-6lnwGklOBySoxBeGeOykuWImEmM2EfrejobrEGTzTq31B2du0Z32cRs0AftbernqH1v-1XWOp9dYdS2o48eA_rNdno_dNHS64-1C4PH7O5NrzC7GUKyPiEHre4Cnv7UY_J8c72Y3tL5w-xuOpnTRiiIVLZMt9BISGc0y1K1ShUS84opyDkYk1dlrkQB5bIolwalZq0yDUpgTJkKVH5MLna-a-_eBwyxfnWD71NkLQpVQpmehrQldluNdyF4bOu1t2_af9ac1Vua9TfNekuz_qGZRNUfUWOj3nKLPoH4X3q-k1pE_M1SRSUVz_MvsPWFTA
CODEN ITCTEM
CitedBy_id crossref_primary_10_1007_s11263_024_02266_6
crossref_primary_10_1007_s00034_024_02867_z
crossref_primary_10_1007_s11263_024_01987_y
crossref_primary_10_1109_TCSVT_2024_3457816
crossref_primary_10_1002_ima_23144
crossref_primary_10_1109_TNNLS_2023_3293274
crossref_primary_10_1109_TIM_2023_3267525
crossref_primary_10_1109_TIP_2024_3430532
crossref_primary_10_1038_s41598_023_39863_3
crossref_primary_10_3390_jmse11071285
crossref_primary_10_1016_j_inffus_2023_102073
crossref_primary_10_1007_s00371_024_03736_1
crossref_primary_10_1109_JSEN_2023_3346642
crossref_primary_10_1109_TGRS_2024_3525411
crossref_primary_10_1016_j_neucom_2024_128146
crossref_primary_10_1109_TIM_2024_3472902
crossref_primary_10_1109_ACCESS_2023_3348789
crossref_primary_10_1007_s11263_023_01952_1
crossref_primary_10_1016_j_neunet_2023_11_008
crossref_primary_10_1109_TCSVT_2024_3439348
crossref_primary_10_1016_j_inffus_2025_102944
crossref_primary_10_1109_LSP_2023_3243767
crossref_primary_10_1016_j_eswa_2024_124188
crossref_primary_10_1016_j_engappai_2023_106457
crossref_primary_10_1109_TAI_2024_3418378
crossref_primary_10_1007_s11831_022_09833_5
crossref_primary_10_1016_j_infrared_2025_105804
crossref_primary_10_1007_s00530_024_01473_y
crossref_primary_10_1109_TMM_2024_3379883
crossref_primary_10_1117_1_JEI_33_1_013027
crossref_primary_10_1007_s00371_023_02880_4
crossref_primary_10_1155_2024_8442383
crossref_primary_10_1016_j_infrared_2023_104901
crossref_primary_10_1016_j_inffus_2024_102359
crossref_primary_10_1016_j_optlaseng_2024_108176
crossref_primary_10_1109_ACCESS_2023_3332121
crossref_primary_10_1109_TCSVT_2024_3366912
crossref_primary_10_1016_j_jvcir_2024_104051
crossref_primary_10_1016_j_eswa_2025_127147
crossref_primary_10_1109_TCSVT_2022_3202692
crossref_primary_10_3389_fnbot_2024_1521603
crossref_primary_10_1049_ipr2_12750
crossref_primary_10_1016_j_jvcir_2024_104059
crossref_primary_10_1016_j_inffus_2024_102534
crossref_primary_10_1016_j_jvcir_2025_104410
crossref_primary_10_1109_TIM_2024_3353285
crossref_primary_10_1016_j_asoc_2024_112240
crossref_primary_10_1109_TIM_2024_3386922
crossref_primary_10_1109_TGRS_2023_3293912
crossref_primary_10_1109_TMM_2023_3347099
crossref_primary_10_3390_e25050718
crossref_primary_10_1007_s00371_022_02681_1
crossref_primary_10_1016_j_patcog_2024_110558
crossref_primary_10_1109_TCSVT_2023_3311766
crossref_primary_10_1109_TIP_2023_3315123
crossref_primary_10_1109_LSP_2023_3266980
crossref_primary_10_1109_TCSVT_2024_3493254
crossref_primary_10_1016_j_infrared_2024_105202
crossref_primary_10_1109_TCSVT_2024_3351933
crossref_primary_10_1016_j_cviu_2024_104218
crossref_primary_10_1109_TCSVT_2023_3344222
crossref_primary_10_1109_TIP_2024_3378176
crossref_primary_10_1016_j_inffus_2023_102003
crossref_primary_10_1109_TMM_2023_3348333
crossref_primary_10_32604_cmc_2024_054685
crossref_primary_10_1007_s11263_024_02318_x
crossref_primary_10_1007_s11263_023_01853_3
crossref_primary_10_1007_s11263_024_02256_8
crossref_primary_10_1109_TIM_2023_3343823
crossref_primary_10_1016_j_neucom_2024_128132
crossref_primary_10_1016_j_inffus_2023_101828
Cites_doi 10.1364/JOSA.61.000001
10.1109/ICASSP40776.2020.9053765
10.1109/TIP.2016.2621674
10.1109/TPAMI.2007.1027
10.1191/1365782806li164oa
10.1109/TCYB.2013.2290435
10.1109/CVPR.2016.396
10.1109/TCSVT.2021.3056725
10.1109/ICME46284.2020.9102832
10.1109/TCE.2012.6227469
10.1609/aaai.v34i07.6975
10.1016/j.jvcir.2012.02.009
10.1007/978-3-030-32239-7_49
10.1109/TGRS.2016.2538295
10.1109/TNNLS.2019.2921597
10.1109/TIP.2013.2244222
10.1109/TIP.2017.2705426
10.1109/CVPR.2018.00644
10.1109/LGRS.2017.2668299
10.1109/ICASSP.2018.8461604
10.1016/j.neucom.2019.10.107
10.1109/TIP.2011.2150235
10.1109/TIP.2021.3058764
10.1109/TPAMI.2020.2984244
10.1109/TCSVT.2021.3053405
10.1016/j.infrared.2013.07.010
10.1109/CVPR.2018.00070
10.1109/ICME51207.2021.9428192
10.1109/TCI.2017.2786138
10.1109/TIP.2011.2157514
10.1142/S0218126616501231
10.1109/CVPR42600.2020.01229
10.1007/s11263-021-01466-8
10.1109/TIP.2021.3049959
10.1109/CVPR.2000.855857
10.1109/TIP.2017.2671921
10.1109/TIP.2018.2794218
10.1109/ICME.2017.8019319
10.1109/TCSVT.2019.2919310
10.1109/TIP.2020.2987133
10.1109/LSP.2021.3109818
10.1007/978-3-030-58536-5_24
10.1201/9781315119526
10.1109/TCSVT.2017.2740321
10.1109/TPAMI.2020.3012548
10.1109/TIP.2019.2957929
10.1016/j.inffus.2005.09.006
10.1109/ICME.2017.8019529
10.1109/CVPR42600.2020.01308
10.1109/JSTARS.2021.3098678
10.1109/TIP.2020.3011554
10.1109/ICME.2019.00083
10.1016/j.jvcir.2019.06.002
10.1038/scientificamerican1277-108
10.1016/j.jvcir.2018.03.020
10.1002/9781119951483
10.1109/ICME51207.2021.9428212
10.1109/CVPR.2018.00326
10.1016/j.neunet.2019.12.024
10.1109/TIP.2020.2999855
10.1109/CVPR.2019.00925
10.1111/j.1467-8659.2008.01171.x
10.1109/TIP.2020.3043125
10.1109/ICCV.2017.505
10.1109/ICCV.2017.304
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3144455
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 5040
ExternalDocumentID 10_1109_TCSVT_2022_3144455
9684913
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61922019; 61733002; 62027826; 61772105
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: National Key Research and Development Program of China
  grantid: 2020YFB1313503
  funderid: 10.13039/501100012166
– fundername: LiaoNing Revitalization Talents Program
  grantid: XLYC1807088
  funderid: 10.13039/501100018617
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-4f0af5c45dedcb79f9964e38095315dd387392657b67bde4a0f9dce45009d8593
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 06:32:12 EDT 2025
Tue Jul 01 00:41:17 EDT 2025
Thu Apr 24 22:59:05 EDT 2025
Wed Aug 27 02:23:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-4f0af5c45dedcb79f9964e38095315dd387392657b67bde4a0f9dce45009d8593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9554-0565
0000-0002-8991-4188
0000-0003-2085-2676
0000-0002-9276-2349
PQID 2697571485
PQPubID 85433
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2022_3144455
proquest_journals_2697571485
ieee_primary_9684913
crossref_primary_10_1109_TCSVT_2022_3144455
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
zhang (ref51) 2021
ref32
ref2
ref1
ref39
ref38
johnson (ref66) 2016
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref22
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref63
  doi: 10.1364/JOSA.61.000001
– ident: ref15
  doi: 10.1109/ICASSP40776.2020.9053765
– ident: ref40
  doi: 10.1109/TIP.2016.2621674
– ident: ref65
  doi: 10.1109/TPAMI.2007.1027
– ident: ref3
  doi: 10.1191/1365782806li164oa
– ident: ref30
  doi: 10.1109/TCYB.2013.2290435
– ident: ref55
  doi: 10.1109/CVPR.2016.396
– ident: ref43
  doi: 10.1109/TCSVT.2021.3056725
– ident: ref47
  doi: 10.1109/ICME46284.2020.9102832
– ident: ref10
  doi: 10.1109/TCE.2012.6227469
– start-page: 694
  year: 2016
  ident: ref66
  article-title: Perceptual losses for real-time style transfer and super-resolution
  publication-title: Proc ECCV
– ident: ref26
  doi: 10.1609/aaai.v34i07.6975
– ident: ref33
  doi: 10.1016/j.jvcir.2012.02.009
– ident: ref59
  doi: 10.1007/978-3-030-32239-7_49
– ident: ref5
  doi: 10.1109/TGRS.2016.2538295
– ident: ref22
  doi: 10.1109/TNNLS.2019.2921597
– year: 2021
  ident: ref51
  article-title: Hierarchical feature fusion with mixed convolution attention for single image dehazing
  publication-title: IEEE Trans Circuits Syst Video Technol
– ident: ref8
  doi: 10.1109/TIP.2013.2244222
– ident: ref16
  doi: 10.1109/ICME46284.2020.9102832
– ident: ref4
  doi: 10.1109/TIP.2017.2705426
– ident: ref21
  doi: 10.1109/CVPR.2018.00644
– ident: ref6
  doi: 10.1109/LGRS.2017.2668299
– ident: ref20
  doi: 10.1109/ICASSP.2018.8461604
– ident: ref24
  doi: 10.1016/j.neucom.2019.10.107
– ident: ref9
  doi: 10.1109/TIP.2011.2150235
– ident: ref49
  doi: 10.1109/TIP.2021.3058764
– ident: ref14
  doi: 10.1109/TPAMI.2020.2984244
– ident: ref41
  doi: 10.1109/TCSVT.2021.3053405
– ident: ref37
  doi: 10.1016/j.infrared.2013.07.010
– ident: ref62
  doi: 10.1109/CVPR.2018.00070
– ident: ref29
  doi: 10.1109/ICME51207.2021.9428192
– ident: ref61
  doi: 10.1364/JOSA.61.000001
– ident: ref19
  doi: 10.1109/TCI.2017.2786138
– ident: ref32
  doi: 10.1109/TIP.2011.2157514
– ident: ref34
  doi: 10.1142/S0218126616501231
– ident: ref56
  doi: 10.1109/CVPR42600.2020.01229
– ident: ref60
  doi: 10.1007/s11263-021-01466-8
– ident: ref54
  doi: 10.1109/TIP.2021.3049959
– ident: ref7
  doi: 10.1109/CVPR.2000.855857
– ident: ref31
  doi: 10.1109/TIP.2017.2671921
– ident: ref68
  doi: 10.1109/TIP.2018.2794218
– ident: ref18
  doi: 10.1109/ICME.2017.8019319
– ident: ref11
  doi: 10.1109/TCSVT.2019.2919310
– ident: ref13
  doi: 10.1109/TIP.2020.2987133
– ident: ref42
  doi: 10.1109/LSP.2021.3109818
– ident: ref69
  doi: 10.1007/978-3-030-58536-5_24
– ident: ref2
  doi: 10.1201/9781315119526
– ident: ref25
  doi: 10.1109/TCSVT.2017.2740321
– ident: ref27
  doi: 10.1109/TPAMI.2020.3012548
– ident: ref23
  doi: 10.1109/TIP.2019.2957929
– ident: ref36
  doi: 10.1016/j.inffus.2005.09.006
– ident: ref35
  doi: 10.1109/ICME.2017.8019529
– ident: ref57
  doi: 10.1109/CVPR42600.2020.01308
– ident: ref46
  doi: 10.1109/JSTARS.2021.3098678
– ident: ref53
  doi: 10.1109/TIP.2020.3011554
– ident: ref28
  doi: 10.1109/ICME.2019.00083
– ident: ref17
  doi: 10.1016/j.jvcir.2019.06.002
– ident: ref64
  doi: 10.1038/scientificamerican1277-108
– ident: ref39
  doi: 10.1016/j.jvcir.2018.03.020
– ident: ref1
  doi: 10.1002/9781119951483
– ident: ref44
  doi: 10.1109/ICME51207.2021.9428212
– ident: ref52
  doi: 10.1109/CVPR.2018.00326
– ident: ref58
  doi: 10.1016/j.neunet.2019.12.024
– ident: ref48
  doi: 10.1109/TIP.2020.2999855
– ident: ref50
  doi: 10.1109/CVPR.2019.00925
– ident: ref38
  doi: 10.1111/j.1467-8659.2008.01171.x
– ident: ref45
  doi: 10.1109/TIP.2020.3043125
– ident: ref12
  doi: 10.1109/ICCV.2017.505
– ident: ref67
  doi: 10.1109/ICCV.2017.304
SSID ssj0014847
Score 2.6351345
Snippet Deep learning networks have recently demonstrated yielded impressive progress for multi-exposure image fusion. However, how to restore realistic texture...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5026
SubjectTerms Ablation
adversarial learning
attention learning
Color
Computer vision
Deep learning
Distortion
Exposure
Feature extraction
illumination correction
Image color analysis
Image edge detection
Image fusion
Image processing
Image restoration
Inspection
multi-exposure image
Source code
Task analysis
Title Attention-Guided Global-Local Adversarial Learning for Detail-Preserving Multi-Exposure Image Fusion
URI https://ieeexplore.ieee.org/document/9684913
https://www.proquest.com/docview/2697571485
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF6lOZVDgQIiEKo99NZuiO1Zr_cYASGtChdCxc2y94GqQhIRW0L8embWToQoQr1Z9q690jee_WZ2Hox9tb7wiQMjnI0seau80KgpRSktFCU-UZJyhy8u08k1_LyRNx32fZ0L45wLwWduQJfhLN_OTU2usmOdZqCpRe0HNNyaXK31iQFkoZkY0oVIZLiPrRJkhvp4enL1e4qmYByjhQoAlNb3YhMKXVX-UcVhfxlvsovVypqwkr-DuioH5ulV0cb_XfoW-9QSTT5qJGObddzsM9t4UX5wh9lRVTXRjuK8_mOd5U0HAPGLNjgeejUvC5JQ3pZhveXIcflpCDsVFL1BmgbvhjRecfa4mJPDkf-4Ry3FxzV54nbZ9fhsejIRbdcFYWItKwF-WHhpQOJnTam0R4sIXJJRYbpIWptkCjlVKlWZqtI6KIZeW-NAIluzVD1tj3Vn85nbZ1zHXkaFSkoHGmJIigKhd0hIQPksk6bHohUMuWlLklNnjLs8mCZDnQfocoIub6HrsW_rOYumIMe7o3cIi_XIFoYe66_Qztt_dpnHqVZSoSDJg7dnHbKP9O4m_K_PutVD7Y6QklTllyCLzwEQ3W0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOvErFQgEf4IS83Th2HB84VG2XXbrthS3qLSR-IATsVmwiHr-Fv8J_Y8ZJVhUgbpW4RYmdKJ7xzDfjeQA8daEMqZeWe5c48lYFblBS8ko5WVb4RCvKHT4-ySan8tWZOtuAH-tcGO99DD7zQ7qMZ_luaRtyle2aLJcm6VtVH_lvX9BAW72YHiA1nwkxPpzvT3jXQ4BbYVTNZRiVQVmpnHe20iYgvpc-zanMWqKcS3ONCCFTusp05bwsR8E466VC7OGoFhi-9wpcRZyhRJsdtj6jkHlsX4YAJeE5as4-JWdkduf7r9_M0fgUAm1iKSUlEl5Qe7GPyx_CP2q08S342a9FG8jyYdjU1dB-_61M5P-6WLfhZgel2V7L-3dgwy_uwo0LBRa3wO3VdRvPyV827_F7rO1xwGekwlnsRr0qaQ-yrtDsO4Yonh3EwFpO8SkkS_FuTFTmh1_Pl-RSZdNPKIfZuCFf4z04vZTf3IbNxXLh7wMzIqik1GnlpZFCpmWJzO0Rckkd8lzZASQ92QvbFV2n3h8fi2h8jUwRWaUgVik6VhnA8_Wc87bkyD9HbxHt1yM7sg9gp-euopNKq0JkRiuNjKse_H3WE7g2mR_Pitn05OghXKfvtMGOO7BZf278IwRgdfU47gMGby-bl34B1ro6mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-Guided+Global-Local+Adversarial+Learning+for+Detail-Preserving+Multi-Exposure+Image+Fusion&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Liu%2C+Jinyuan&rft.au=Shang%2C+Jingjie&rft.au=Liu%2C+Risheng&rft.au=Fan%2C+Xin&rft.date=2022-08-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=8&rft.spage=5026&rft.epage=5040&rft_id=info:doi/10.1109%2FTCSVT.2022.3144455&rft.externalDocID=9684913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon