Tsallis Entropy-Regularized Fuzzy Classification Maximum Likelihood Clustering with a t-Distribution

This study proposes a fuzzy clustering algorithm based on fuzzy classification maximum likelihood, t-distribution, and Tsallis entropy regularization. The proposed algorithm is shown to be a generalization of the two conventional algorithms, not only in the use of their objective functions, but also...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Computational Intelligence and Intelligent Informatics Vol. 29; no. 2; pp. 365 - 378
Main Authors Suzuki, Yuta, Kanzawa, Yuchi
Format Journal Article
LanguageEnglish
Published Tokyo Fuji Technology Press Ltd 20.03.2025
富士技術出版株式会社
Fuji Technology Press Co. Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study proposes a fuzzy clustering algorithm based on fuzzy classification maximum likelihood, t-distribution, and Tsallis entropy regularization. The proposed algorithm is shown to be a generalization of the two conventional algorithms, not only in the use of their objective functions, but also at their algorithmic level. The robustness of the proposed algorithm to outliers was confirmed in numerical experiments using an artificial dataset. In addition, experiments using 11 real datasets demonstrated the superiority of proposed algorithm in terms of the clustering accuracy.
AbstractList This study proposes a fuzzy clustering algorithm based on fuzzy classification maximum likelihood, t -distribution, and Tsallis entropy regularization. The proposed algorithm is shown to be a generalization of the two conventional algorithms, not only in the use of their objective functions, but also at their algorithmic level. The robustness of the proposed algorithm to outliers was confirmed in numerical experiments using an artificial dataset. In addition, experiments using 11 real datasets demonstrated the superiority of proposed algorithm in terms of the clustering accuracy.
Author Kanzawa Yuchi
Suzuki Yuta
Author_xml – sequence: 1
  givenname: Yuta
  surname: Suzuki
  fullname: Suzuki, Yuta
  organization: Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
– sequence: 2
  givenname: Yuchi
  orcidid: 0000-0002-4421-3513
  surname: Kanzawa
  fullname: Kanzawa, Yuchi
  organization: Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
BackLink https://cir.nii.ac.jp/crid/1390022089764612224$$DView record in CiNii
BookMark eNotUE1PwkAQ3RhMROQPeGqi1-LsV9s9GgQ1wZgYPG-WdguDpa27bRR-vQt4mXkzeW_m5V2TQd3UlpBbChMGKpEPW5MjYhiYnLTAE3lBhjTLeJwBFYOAueAxUA5XZOz9FiBgloCgQ1Isvakq9NGs7lzT7uMPu-4r4_Bgi2jeHw77aFoZ77HE3HTY1NGb-cVdv4sW-GUr3DRNERi976zDeh39YLeJTNTFT-g7h6v-qLkhl6WpvB3_9xH5nM-W05d48f78On1cxDlTsouF5SrJbSmLwkKZgQweIU0oEyovJeVZkQoDaZlaZgoGJl0pKkWRrErLraCGj8jd-W7rmu_e-k5vm97V4aXmNM1SxhNFA4udWblrvHe21K3DnXF7TUGfAtXnQPUxUH0KNIjuz6I67HM8VsoVAGOQqTQRwSVjgv8BcW53ug
Cites_doi 10.1007/978-3-540-78737-2
10.1007/978-981-16-7182-1_25
10.1016/S0031-3203(02)00049-3
10.1007/978-1-4757-0450-1
10.1007/BF01016429
10.1111/j.2517-6161.1995.tb02031.x
10.4028/www.scientific.net/AMM.598.392
10.1007/BF01908075
10.1111/biom.12351
ContentType Journal Article
Copyright Copyright © 2025 Fuji Technology Press Ltd.
Copyright_xml – notice: Copyright © 2025 Fuji Technology Press Ltd.
DBID RYH
AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.20965/jaciii.2025.p0365
DatabaseName CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1883-8014
EndPage 378
ExternalDocumentID 10_20965_jaciii_2025_p0365
GroupedDBID AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
JSI
JSP
K7-
P2P
PHGZM
PHGZT
RJT
RYH
RZJ
TUS
AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c295t-4e396cef5dde0f8052600761249cf5138d74a07f7e2ad20a7b9154d6bfe3e41a3
IEDL.DBID BENPR
ISSN 1343-0130
IngestDate Fri Jul 25 21:10:41 EDT 2025
Tue Jul 01 05:19:31 EDT 2025
Thu Jun 26 22:03:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-4e396cef5dde0f8052600761249cf5138d74a07f7e2ad20a7b9154d6bfe3e41a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4421-3513
OpenAccessLink https://doi.org/10.20965/jaciii.2025.p0365
PQID 3178723691
PQPubID 4911628
PageCount 14
ParticipantIDs proquest_journals_3178723691
crossref_primary_10_20965_jaciii_2025_p0365
nii_cinii_1390022089764612224
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-20
PublicationDateYYYYMMDD 2025-03-20
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-20
  day: 20
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Advanced Computational Intelligence and Intelligent Informatics
PublicationTitleAlternate J. Adv. Comput. Intell. Intell. Inform
Journal of Advanced Computational Intelligence and Intelligent Informatics
PublicationTitle_FL J. Adv. Comput. Intell. Intell. Inform
Journal of Advanced Computational Intelligence and Intelligent Informatics
PublicationYear 2025
Publisher Fuji Technology Press Ltd
富士技術出版株式会社
Fuji Technology Press Co. Ltd
Publisher_xml – name: 富士技術出版株式会社
– name: Fuji Technology Press Ltd
– name: Fuji Technology Press Co. Ltd
References key-10.20965/jaciii.2025.p0365-5
key-10.20965/jaciii.2025.p0365-6
key-10.20965/jaciii.2025.p0365-7
key-10.20965/jaciii.2025.p0365-8
key-10.20965/jaciii.2025.p0365-9
key-10.20965/jaciii.2025.p0365-11
key-10.20965/jaciii.2025.p0365-10
key-10.20965/jaciii.2025.p0365-12
key-10.20965/jaciii.2025.p0365-1
key-10.20965/jaciii.2025.p0365-2
key-10.20965/jaciii.2025.p0365-3
key-10.20965/jaciii.2025.p0365-4
References_xml – ident: key-10.20965/jaciii.2025.p0365-7
  doi: 10.1007/978-3-540-78737-2
– ident: key-10.20965/jaciii.2025.p0365-5
  doi: 10.1007/978-981-16-7182-1_25
– ident: key-10.20965/jaciii.2025.p0365-2
  doi: 10.1016/S0031-3203(02)00049-3
– ident: key-10.20965/jaciii.2025.p0365-1
  doi: 10.1007/978-1-4757-0450-1
– ident: key-10.20965/jaciii.2025.p0365-6
  doi: 10.1007/BF01016429
– ident: key-10.20965/jaciii.2025.p0365-11
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: key-10.20965/jaciii.2025.p0365-3
– ident: key-10.20965/jaciii.2025.p0365-4
  doi: 10.4028/www.scientific.net/AMM.598.392
– ident: key-10.20965/jaciii.2025.p0365-9
– ident: key-10.20965/jaciii.2025.p0365-10
– ident: key-10.20965/jaciii.2025.p0365-8
  doi: 10.1007/BF01908075
– ident: key-10.20965/jaciii.2025.p0365-12
  doi: 10.1111/biom.12351
SSID ssj0001326041
ssib051641541
Score 2.3176246
Snippet This study proposes a fuzzy clustering algorithm based on fuzzy classification maximum likelihood, t-distribution, and Tsallis entropy regularization. The...
This study proposes a fuzzy clustering algorithm based on fuzzy classification maximum likelihood, t -distribution, and Tsallis entropy regularization. The...
SourceID proquest
crossref
nii
SourceType Aggregation Database
Index Database
Publisher
StartPage 365
SubjectTerms Accuracy
Algorithms
Classification
cluster-wise anisotropic data
Clustering
Datasets
Entropy
Experiments
fuzzy clustering
Informatics
Probability distribution
Regularization
t-distribution
Tsallis entropy-regularization
Title Tsallis Entropy-Regularized Fuzzy Classification Maximum Likelihood Clustering with a t-Distribution
URI https://cir.nii.ac.jp/crid/1390022089764612224
https://www.proquest.com/docview/3178723691
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La8JAEF6qXnrpu9RWZQ-9lW03yeZ1Kn1opVQpouAtrMkG0mq0RqH66zuTbJBS6CWXLCTMzs58M5l8HyHXUDTYoWH4TAByY0LEDvPAdVgsuQTE7HpOjH3IXt_pjsTr2B7rhlumxyrLmJgH6mgeYo_8DvKc55qW4xv3iy-GqlH4dVVLaFRIDUKwB8VX7bHdfx-UHmVDMQAYwdh1XQCtcFFUYQIHiSxe_EljIgvK3YcMkdLBBCBwu4DYbv_KVpU0Sf6E7DwPdY7IgQaQ9KHY8WOyp9ITcliKM1B9Vk9JNMzkdJpktI2z6IsNG-Sq88tkqyLaWW-3G5oLYuKoUL47tCe_k9l6Rt-STzVNkO4YVqyRSAHSG8WGLZV0xZ6RalerZJ2RUac9fOoyLanAQtO3V0woy3dCFdsQ1XiMcgbIT--gAnUY24blRa6Q3I1dZcrI5NKd-GC_yJnEylLCkNY5qabzVF0Qirz4rqEmHpTjOFvjI5edgnW26YdK8Dq5KU0XLArmjAAqjtzQQWHoAA0d5IaukyZYNwgTvAIqRWzBPcBKAl4OYEadNEq7B_qUZcHOJy7_v31F9vFRODtm8gaprpZr1QQwsZq0SMXrvLS037TykvwHttzGAA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6RcIBLaUsR4dHuoT1VS9br9euAqqqQJiXhgILEbbux15JpXuQhSH4Uv7EzfiiqKnHj4otXa-vz7M4349lvAD5j0ODFjhNxhcyNK5X6PETT4akRBhlzEPop5SF71377Vv268-624Lk6C0NlldWemG_UySSmHHkT_VwYSNePnG_TB05do-jvatVCozCLK7t6xJBtft65wO_7RcrWZf9Hm5ddBXgsI2_BlXUjP7aphwtbpKToTxLtPjVhjlPPccMkUEYEaWClSaQwwSBCmpH4g9S6VjnGxXlrsK1cnIZOprd-VvbrYeiBQ51Njge5kVBFzKeobMkVxbkdSZorzXsTk4CERNpxNkVP4v3jG2vjLPvPQeRer_UW3pR0lX0v7OsdbNnxe9irWkGwcmfYh6Q_N8NhNmeXVPk-XfGbvMf9LFvbhLWW6_WK5e03qTAptwXWM0_ZaDli3eyPHWYkrowjliTbgM6UUXqYGbbgFyTsW_bk-gC3rwL1AdTHk7E9BEYq_IFjByEG_1TJE5FynsVxnoxiq0QDvlbQ6Wmh06ExvsmB1gXQmoDWOdANOEV0dZzRFTkwMRkRIjNT-HJIahpwUuGuyzU91xsLPHr59ifYafd7Xd3tXF8dwy49lqrWpDiB-mK2tKdIYxaDj7ntMPj92sb6F7Xb_2s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tsallis+Entropy-Regularized+Fuzzy+Classification+Maximum+Likelihood+Clustering+with+a+t-Distribution&rft.jtitle=Journal+of+Advanced+Computational+Intelligence+and+Intelligent+Informatics&rft.au=Suzuki+Yuta&rft.au=Kanzawa+Yuchi&rft.date=2025-03-20&rft.pub=Fuji+Technology+Press+Ltd&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=2&rft.spage=365&rft.epage=378&rft_id=info:doi/10.20965%2Fjaciii.2025.p0365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon