Robust Voice Feature Selection Using Interval Type-2 Fuzzy AHP for Automated Diagnosis of Parkinson's Disease

Goal: Human voice is a promising noninvasive indicator for diagnosing Parkinson's Disease (PD). It is also unique since it can be collected remotely, increasing accessibility to a wide range of underprivileged patients. However, recognizing PD's signature in the human voice is nontrivial s...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on audio, speech, and language processing Vol. 29; pp. 2792 - 2802
Main Authors Azadi, Hamid, Akbarzadeh-T, Mohammad-R., Kobravi, Hamid-R., Shoeibi, Ali
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Goal: Human voice is a promising noninvasive indicator for diagnosing Parkinson's Disease (PD). It is also unique since it can be collected remotely, increasing accessibility to a wide range of underprivileged patients. However, recognizing PD's signature in the human voice is nontrivial since the available features are many, and the signal may be noisy. Methods: A new mechanism based on Interval Type-2 Fuzzy Analytical Hierarchy Process is proposed here for choosing a reduced feature set from 339 dysphonia speech features, based on five criteria of 1) Robustness, 2) Relief, 3) Minimum Redundancy and Maximum Relevance, 4) Gaussian mixture model separation, and 5) Classifier separation ability. A Least Squares Support Vector Machine then categorizes the samples as belonging to either a healthy subject or a patient with PD. The database of 47 subjects with an average age of 67 is obtained from the elderly in nursing homes and Parkinson's specialized clinics. By reducing signal quality similar to a standard phone line, we study the teleoperation prospect of the proposed technique. Results: Ten-fold cross-validation shows an overall accuracy of 95.32%(93.11%) for noiseless(noisy) conditions, with separate analysis for male, female, and both genders populations. Furthermore, Leave-One-Speaker-Out analysis yields an overall accuracy of 93.11%(84.61%) for noiseless(noisy) conditions. Conclusion: The proposed strategy offers viable remote PD diagnosis with higher accuracy for the male population. Significance: The proposed method suggests reduced feature sets that meet differing objectives of simplicity, performance, and robustness. Results could be particularly significant in PD diagnosis in remote areas.
AbstractList Goal: Human voice is a promising noninvasive indicator for diagnosing Parkinson's Disease (PD). It is also unique since it can be collected remotely, increasing accessibility to a wide range of underprivileged patients. However, recognizing PD's signature in the human voice is nontrivial since the available features are many, and the signal may be noisy. Methods: A new mechanism based on Interval Type-2 Fuzzy Analytical Hierarchy Process is proposed here for choosing a reduced feature set from 339 dysphonia speech features, based on five criteria of 1) Robustness, 2) Relief, 3) Minimum Redundancy and Maximum Relevance, 4) Gaussian mixture model separation, and 5) Classifier separation ability. A Least Squares Support Vector Machine then categorizes the samples as belonging to either a healthy subject or a patient with PD. The database of 47 subjects with an average age of 67 is obtained from the elderly in nursing homes and Parkinson's specialized clinics. By reducing signal quality similar to a standard phone line, we study the teleoperation prospect of the proposed technique. Results: Ten-fold cross-validation shows an overall accuracy of 95.32%(93.11%) for noiseless(noisy) conditions, with separate analysis for male, female, and both genders populations. Furthermore, Leave-One-Speaker-Out analysis yields an overall accuracy of 93.11%(84.61%) for noiseless(noisy) conditions. Conclusion: The proposed strategy offers viable remote PD diagnosis with higher accuracy for the male population. Significance: The proposed method suggests reduced feature sets that meet differing objectives of simplicity, performance, and robustness. Results could be particularly significant in PD diagnosis in remote areas.
Author Akbarzadeh-T, Mohammad-R.
Kobravi, Hamid-R.
Azadi, Hamid
Shoeibi, Ali
Author_xml – sequence: 1
  givenname: Hamid
  orcidid: 0000-0002-1955-4287
  surname: Azadi
  fullname: Azadi, Hamid
  email: azadi@mail.um.ac.ir
  organization: Biomedical Engineering Group, Department of Electrical Engineering, Center of Excellence on Soft Computing and Intelligent Information processing, Ferdowsi University of Mashhad, 9189683886, Iran
– sequence: 2
  givenname: Mohammad-R.
  orcidid: 0000-0001-5626-5559
  surname: Akbarzadeh-T
  fullname: Akbarzadeh-T, Mohammad-R.
  email: akbazar@um.ac.ir
  organization: Biomedical Engineering Group, Department of Electrical Engineering, Center of Excellence on Soft Computing and Intelligent Information processing, Ferdowsi University of Mashhad, Iran, Iran
– sequence: 3
  givenname: Hamid-R.
  orcidid: 0000-0002-7365-5214
  surname: Kobravi
  fullname: Kobravi, Hamid-R.
  email: hkobravi@mshdiau.ac.ir
  organization: Department of Biomedical Engineering, Islamic Azad University of Mashhad, 9187147178, Iran
– sequence: 4
  givenname: Ali
  orcidid: 0000-0002-5987-3290
  surname: Shoeibi
  fullname: Shoeibi, Ali
  email: shoeibia@mums.ac.ir
  organization: Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, 9197969764, Iran
BookMark eNp9kU1LAzEQhoMo-NU_oJeAB09b87UfORa1KhQstnpdkuysRNukJlmh_nq3Vj148DQD8z4z8Mwh2nXeAUInlAwpJfJiPppNpkNGGB1yIktG8x10wDiTmeRE7P70TJJ9NIjxhRBCSSllKQ7Q8sHrLib85K0BPAaVugB4BgswyXqHH6N1z_jOJQjvaoHn6xVkDI-7j481Ht1OcesDHnXJL1WCBl9Z9ex8tBH7Fk9VeLUuence-0EEFeEY7bVqEWHwXY_Q4_h6fnmbTe5v7i5Hk8wwmadMGJ2bpm2qQuWyNJxRpnWlCtZUoATRuuGqMZSA6nO5KNtca6JL4K0yQlaUH6Gz7d5V8G8dxFS_-C64_mTN8qIiBc8L0afYNmWCjzFAW6-CXaqwrimpN2brL7P1xmz9bbaHqj-QsUltXKWg7OJ_9HSLWgD4vSVFJfpn8E88rYmX
CODEN ITASD8
CitedBy_id crossref_primary_10_1016_j_asoc_2022_109770
crossref_primary_10_1016_j_bspc_2023_105493
crossref_primary_10_1016_j_bspc_2023_105087
crossref_primary_10_1016_j_eswa_2024_125401
crossref_primary_10_1016_j_jksuci_2023_101659
crossref_primary_10_1109_TASLPRO_2025_3543975
crossref_primary_10_2147_PRBM_S460283
crossref_primary_10_1016_j_engappai_2023_106097
crossref_primary_10_2196_46105
crossref_primary_10_1007_s13042_024_02472_1
crossref_primary_10_1016_j_asoc_2023_110240
crossref_primary_10_1016_j_engappai_2022_105812
Cites_doi 10.1007/s10772-017-9401-9
10.1098/rsif.2010.0456
10.1049/iet-spr.2011.0186
10.1109/ICASSP.1995.479540
10.1007/978-3-642-38847-7_15
10.1016/j.patrec.2008.04.010
10.1080/00207540903175095
10.1016/j.specom.2009.08.009
10.1109/TBME.2012.2183367
10.1109/TPAMI.2005.159
10.1007/978-3-642-12052-7_17
10.1109/JBHI.2015.2467375
10.1007/978-1-4615-1665-1
10.1016/S0020-7373(81)80051-X
10.1016/j.cmpb.2014.01.004
10.1007/s004050000299
10.1109/TBME.2008.2005954
10.1016/j.jvoice.2005.08.011
10.1016/S0895-4356(01)00425-5
10.1016/j.eswa.2011.11.067
10.1016/j.eswa.2013.11.028
10.1016/j.eswa.2007.09.035
10.1109/MCI.2007.357235
10.1016/j.knosys.2014.02.001
10.1016/j.specom.2007.10.003
10.1109/TBME.2009.2036000
10.1016/0165-0114(85)90090-9
10.1109/TASLP.2014.2329734
10.1109/TBME.2005.869776
10.1186/s12938-016-0242-6
10.1155/1999/327643
10.1016/j.apm.2011.09.080
10.1023/A:1018628609742
10.1109/10.661155
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TASLP.2021.3097215
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 2329-9304
EndPage 2802
ExternalDocumentID 10_1109_TASLP_2021_3097215
9484799
Genre orig-research
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACIWK
ACM
ADBCU
AEBYY
AEFXT
AEJOY
AENSD
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
EBS
EJD
GUFHI
HGAVV
IFIPE
IPLJI
JAVBF
LHSKQ
M43
OCL
PQQKQ
RIA
RIE
RNS
ROL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-4cb5cdfd86a597c3212bb8a62d8ea40bbd3adc10eab5c547f5bb0b7e3fac49813
IEDL.DBID RIE
ISSN 2329-9290
IngestDate Mon Jun 30 05:10:49 EDT 2025
Tue Jul 01 01:28:02 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Wed Aug 27 02:27:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-4cb5cdfd86a597c3212bb8a62d8ea40bbd3adc10eab5c547f5bb0b7e3fac49813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1955-4287
0000-0001-5626-5559
0000-0002-5987-3290
0000-0002-7365-5214
PQID 2568063564
PQPubID 85426
PageCount 11
ParticipantIDs crossref_primary_10_1109_TASLP_2021_3097215
ieee_primary_9484799
proquest_journals_2568063564
crossref_citationtrail_10_1109_TASLP_2021_3097215
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/ACM transactions on audio, speech, and language processing
PublicationTitleAbbrev TASLP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref15
ref14
ref31
ref30
karnik (ref37) 1999; 7
ref11
ref32
ref10
ref1
ref39
ref17
valyon (ref46) 2005; 500
ref38
ref16
ref19
ref18
kira (ref28) 1992
hastie (ref47) 2001
mutnick (ref23) 2012
(ref26) 2013
chao (ref48) 2008; 29
mendel (ref36) 2003; 1
(ref24) 0
ref45
ref25
ref20
ref42
ref41
baken (ref13) 2000
ref44
saaty (ref33) 1980
ref21
ref43
tsanas (ref27) 0
rajput (ref2) 2007
(ref6) 2017
ref29
ref8
ref7
ref9
ref4
ref3
ref5
zadeh (ref22) 1965; 8
ref40
References_xml – volume: 7
  start-page: 643
  year: 1999
  ident: ref37
  article-title: Type-2 fuzzy logic systems," fuzzy syst
  publication-title: IEEE Trans
– ident: ref20
  doi: 10.1007/s10772-017-9401-9
– ident: ref25
  doi: 10.1098/rsif.2010.0456
– ident: ref19
  doi: 10.1049/iet-spr.2011.0186
– ident: ref30
  doi: 10.1109/ICASSP.1995.479540
– ident: ref7
  doi: 10.1007/978-3-642-38847-7_15
– volume: 29
  start-page: 1667
  year: 2008
  ident: ref48
  article-title: The peaking phenomenon in the presence of feature-selection
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2008.04.010
– year: 1980
  ident: ref33
  publication-title: Analytic hierarchy process
– start-page: 129
  year: 1992
  ident: ref28
  article-title: The feature selection problem: Traditional methods and a new algorithm
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref43
  doi: 10.1080/00207540903175095
– ident: ref32
  doi: 10.1016/j.specom.2009.08.009
– ident: ref18
  doi: 10.1109/TBME.2012.2183367
– ident: ref29
  doi: 10.1109/TPAMI.2005.159
– start-page: 37
  year: 2013
  ident: ref26
  article-title: Automatic objective biomarkers of neurodegenerative disorders using nonlinear speech signal processing tools
  publication-title: Proc 8th Int Workshop Models Anal Vocal Emissions Biomed Appl
– ident: ref42
  doi: 10.1007/978-3-642-12052-7_17
– year: 0
  ident: ref24
  article-title: Accurate telemonitoring of Parkinson's disease symptom severity using nonlinear speech signal processing and statistical machine learning
– ident: ref11
  doi: 10.1109/JBHI.2015.2467375
– year: 0
  ident: ref27
  article-title: Accurate telemonitoring of parkinson's disease symptom severity using nonlinear speech signal processing and statistical machine learning
– volume: 500
  year: 2005
  ident: ref46
  article-title: A robust LS-SVM regression
  publication-title: Training
– year: 2001
  ident: ref47
  article-title: The elements of statistical learning: Data mining, inference, and prediction
– ident: ref41
  doi: 10.1007/978-1-4615-1665-1
– ident: ref34
  doi: 10.1016/S0020-7373(81)80051-X
– ident: ref8
  doi: 10.1016/j.cmpb.2014.01.004
– ident: ref12
  doi: 10.1007/s004050000299
– ident: ref17
  doi: 10.1109/TBME.2008.2005954
– ident: ref15
  doi: 10.1016/j.jvoice.2005.08.011
– year: 2000
  ident: ref13
  publication-title: Clinical Measurement of Speech and Voice
– ident: ref3
  doi: 10.1016/S0895-4356(01)00425-5
– ident: ref1
  doi: 10.1016/j.eswa.2011.11.067
– year: 2012
  ident: ref23
  publication-title: Comprehensive Pharmacy Review For NAPLEX Practice Exams Cases and Test Prep
– year: 2007
  ident: ref2
  article-title: Epidemiology
  publication-title: Handbook of Parkinson's Disease
– ident: ref38
  doi: 10.1016/j.eswa.2013.11.028
– ident: ref45
  doi: 10.1016/j.eswa.2007.09.035
– ident: ref35
  doi: 10.1109/MCI.2007.357235
– ident: ref39
  doi: 10.1016/j.knosys.2014.02.001
– ident: ref14
  doi: 10.1016/j.specom.2007.10.003
– ident: ref4
  doi: 10.1109/TBME.2009.2036000
– ident: ref40
  doi: 10.1016/0165-0114(85)90090-9
– volume: 1
  start-page: 10
  year: 2003
  ident: ref36
  article-title: Type-2 fuzzy sets: Some questions and answers
  publication-title: IEEE Connect Newsletter IEEE Neural Networks Soc
– volume: 8
  start-page: 338
  year: 1965
  ident: ref22
  article-title: Information and control
  publication-title: Fuzzy Sets
– ident: ref5
  doi: 10.1109/TASLP.2014.2329734
– ident: ref31
  doi: 10.1109/TBME.2005.869776
– ident: ref9
  doi: 10.1186/s12938-016-0242-6
– ident: ref10
  doi: 10.1155/1999/327643
– ident: ref21
  doi: 10.1016/j.apm.2011.09.080
– ident: ref44
  doi: 10.1023/A:1018628609742
– ident: ref16
  doi: 10.1109/10.661155
– year: 2017
  ident: ref6
  article-title: Statistics on parkinson's | parkinson's disease foundation (PDF)
SSID ssj0001079974
Score 2.251691
Snippet Goal: Human voice is a promising noninvasive indicator for diagnosing Parkinson's Disease (PD). It is also unique since it can be collected remotely,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2792
SubjectTerms Accuracy
Analytic hierarchy process
Analytical hierarchy process
Diagnosis
Feature extraction
feature selection
Fuzzy sets
Human voice
interval type-2 fuzzy sets
Males
Medical diagnosis
Nursing homes
Parkinson's disease
Probabilistic models
Redundancy
Separation
Signal quality
Sociology
speech signal processing
Statistics
Support vector machines
Uncertainty
Voice recognition
Title Robust Voice Feature Selection Using Interval Type-2 Fuzzy AHP for Automated Diagnosis of Parkinson's Disease
URI https://ieeexplore.ieee.org/document/9484799
https://www.proquest.com/docview/2568063564
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PZUDhbaILQX5gMShzdZO7CQ-roDVqmqrij7UW-THRKqADeomB_bXM3ayS3kIcbNkO7L0Texv7JlvAN5qI12WKptILzGRdcYTg9TCvHRlXTihXMgdPr_IZzfy9E7dbcDxOhcGEWPwGY5DM77l-8Z14arsREvaS7XehE1y3PpcrZ_3KZx6ougycQSd0KnPVzkyXJ9cT67OLskbTMU4i4I16pdzKBZW-WM3jkfMdAfOV4vrI0s-j7vWjt3yN93G_139M3g6cE026Y3jOWzgfBeePFIg3IXtQDZ7reY9-Pqpsd2iZbcN7R4skMPuAdlVrJRD8LEYXsDiHSLZJwsubJKyabdcfmeT2SUj_ssmXdsQCUbPPvRBfPcL1tQsJFfHPLN3C-qIb0L7cDP9eP1-lgzlGBKXatUm0lnlfO3L3JAXQgiL1NrS5Kkv0Uhurc-Md4KjoXFKFrWyltsCs9o4qUuRvYCteTPHl8A4olGYe-sLL3lmbFEI63OB3ubC534EYgVO5Qat8lAy40sVfRauqwhoFQCtBkBHcLSe861X6vjn6L2A0HrkAM4IDlc2UA0_86IiVljyoOMnD_4-6xVsh2_3NzOHsNU-dPiauEpr30Qj_QH2F-dT
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcqAcKLRUXWjBByQOkK2d2HkcVy2rBXarim5Rb5EfEwlRNqibHNhfz9jJLk8hbpZsK5a-iefhmW8AXhRa2iRWJpJOYiSrhEcaaYRpbvMqs0JZXzs8O08nV_LdtbregtebWhhEDMlnOPTD8Jbvatv6UNlJIekuLYo7cJf0vhJdtdaPiAqnuUC7TFZCEZHe5-sqGV6czEeX0wvyB2MxTAJljfpFE4XWKn_cx0HJjHdhtj5el1vyedg2ZmhXvzE3_u_5H8KD3tpko048HsEWLvbg_k8chHuw483Njq15H758qE27bNjHmu4P5s3D9hbZZeiVQwCykGDAQhSRJJR5JzaK2bhdrb6x0eSCkQXMRm1TkxmMjp11aXyflqyumC-vDpVmL5c0EV6FHsPV-M38dBL1DRkiGxeqiaQ1yrrK5akmP4QwFrExuU5jl6OW3BiXaGcFR03rlMwqZQw3GSaVtrLIRXIA24t6gYfAOKJWmDrjMid5ok2WCeNSgc6kwqVuAGINTml7tnLfNOOmDF4LL8oAaOkBLXtAB_Bqs-drx9Xxz9X7HqHNyh6cARytZaDsf-dlSXZhzj2Tn3zy913P4d5kPpuW07fn75_Cjv9OF6c5gu3mtsVjslwa8ywI7Hcs7eqc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Voice+Feature+Selection+Using+Interval+Type-2+Fuzzy+AHP+for+Automated+Diagnosis+of+Parkinson%27s+Disease&rft.jtitle=IEEE%2FACM+transactions+on+audio%2C+speech%2C+and+language+processing&rft.au=Azadi%2C+Hamid&rft.au=Akbarzadeh-T%2C+Mohammad-R.&rft.au=Kobravi%2C+Hamid-R.&rft.au=Shoeibi%2C+Ali&rft.date=2021&rft.issn=2329-9290&rft.eissn=2329-9304&rft.volume=29&rft.spage=2792&rft.epage=2802&rft_id=info:doi/10.1109%2FTASLP.2021.3097215&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASLP_2021_3097215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9290&client=summon