Robust Voice Feature Selection Using Interval Type-2 Fuzzy AHP for Automated Diagnosis of Parkinson's Disease
Goal: Human voice is a promising noninvasive indicator for diagnosing Parkinson's Disease (PD). It is also unique since it can be collected remotely, increasing accessibility to a wide range of underprivileged patients. However, recognizing PD's signature in the human voice is nontrivial s...
Saved in:
Published in | IEEE/ACM transactions on audio, speech, and language processing Vol. 29; pp. 2792 - 2802 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Goal: Human voice is a promising noninvasive indicator for diagnosing Parkinson's Disease (PD). It is also unique since it can be collected remotely, increasing accessibility to a wide range of underprivileged patients. However, recognizing PD's signature in the human voice is nontrivial since the available features are many, and the signal may be noisy. Methods: A new mechanism based on Interval Type-2 Fuzzy Analytical Hierarchy Process is proposed here for choosing a reduced feature set from 339 dysphonia speech features, based on five criteria of 1) Robustness, 2) Relief, 3) Minimum Redundancy and Maximum Relevance, 4) Gaussian mixture model separation, and 5) Classifier separation ability. A Least Squares Support Vector Machine then categorizes the samples as belonging to either a healthy subject or a patient with PD. The database of 47 subjects with an average age of 67 is obtained from the elderly in nursing homes and Parkinson's specialized clinics. By reducing signal quality similar to a standard phone line, we study the teleoperation prospect of the proposed technique. Results: Ten-fold cross-validation shows an overall accuracy of 95.32%(93.11%) for noiseless(noisy) conditions, with separate analysis for male, female, and both genders populations. Furthermore, Leave-One-Speaker-Out analysis yields an overall accuracy of 93.11%(84.61%) for noiseless(noisy) conditions. Conclusion: The proposed strategy offers viable remote PD diagnosis with higher accuracy for the male population. Significance: The proposed method suggests reduced feature sets that meet differing objectives of simplicity, performance, and robustness. Results could be particularly significant in PD diagnosis in remote areas. |
---|---|
AbstractList | Goal: Human voice is a promising noninvasive indicator for diagnosing Parkinson's Disease (PD). It is also unique since it can be collected remotely, increasing accessibility to a wide range of underprivileged patients. However, recognizing PD's signature in the human voice is nontrivial since the available features are many, and the signal may be noisy. Methods: A new mechanism based on Interval Type-2 Fuzzy Analytical Hierarchy Process is proposed here for choosing a reduced feature set from 339 dysphonia speech features, based on five criteria of 1) Robustness, 2) Relief, 3) Minimum Redundancy and Maximum Relevance, 4) Gaussian mixture model separation, and 5) Classifier separation ability. A Least Squares Support Vector Machine then categorizes the samples as belonging to either a healthy subject or a patient with PD. The database of 47 subjects with an average age of 67 is obtained from the elderly in nursing homes and Parkinson's specialized clinics. By reducing signal quality similar to a standard phone line, we study the teleoperation prospect of the proposed technique. Results: Ten-fold cross-validation shows an overall accuracy of 95.32%(93.11%) for noiseless(noisy) conditions, with separate analysis for male, female, and both genders populations. Furthermore, Leave-One-Speaker-Out analysis yields an overall accuracy of 93.11%(84.61%) for noiseless(noisy) conditions. Conclusion: The proposed strategy offers viable remote PD diagnosis with higher accuracy for the male population. Significance: The proposed method suggests reduced feature sets that meet differing objectives of simplicity, performance, and robustness. Results could be particularly significant in PD diagnosis in remote areas. |
Author | Akbarzadeh-T, Mohammad-R. Kobravi, Hamid-R. Azadi, Hamid Shoeibi, Ali |
Author_xml | – sequence: 1 givenname: Hamid orcidid: 0000-0002-1955-4287 surname: Azadi fullname: Azadi, Hamid email: azadi@mail.um.ac.ir organization: Biomedical Engineering Group, Department of Electrical Engineering, Center of Excellence on Soft Computing and Intelligent Information processing, Ferdowsi University of Mashhad, 9189683886, Iran – sequence: 2 givenname: Mohammad-R. orcidid: 0000-0001-5626-5559 surname: Akbarzadeh-T fullname: Akbarzadeh-T, Mohammad-R. email: akbazar@um.ac.ir organization: Biomedical Engineering Group, Department of Electrical Engineering, Center of Excellence on Soft Computing and Intelligent Information processing, Ferdowsi University of Mashhad, Iran, Iran – sequence: 3 givenname: Hamid-R. orcidid: 0000-0002-7365-5214 surname: Kobravi fullname: Kobravi, Hamid-R. email: hkobravi@mshdiau.ac.ir organization: Department of Biomedical Engineering, Islamic Azad University of Mashhad, 9187147178, Iran – sequence: 4 givenname: Ali orcidid: 0000-0002-5987-3290 surname: Shoeibi fullname: Shoeibi, Ali email: shoeibia@mums.ac.ir organization: Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, 9197969764, Iran |
BookMark | eNp9kU1LAzEQhoMo-NU_oJeAB09b87UfORa1KhQstnpdkuysRNukJlmh_nq3Vj148DQD8z4z8Mwh2nXeAUInlAwpJfJiPppNpkNGGB1yIktG8x10wDiTmeRE7P70TJJ9NIjxhRBCSSllKQ7Q8sHrLib85K0BPAaVugB4BgswyXqHH6N1z_jOJQjvaoHn6xVkDI-7j481Ht1OcesDHnXJL1WCBl9Z9ex8tBH7Fk9VeLUuence-0EEFeEY7bVqEWHwXY_Q4_h6fnmbTe5v7i5Hk8wwmadMGJ2bpm2qQuWyNJxRpnWlCtZUoATRuuGqMZSA6nO5KNtca6JL4K0yQlaUH6Gz7d5V8G8dxFS_-C64_mTN8qIiBc8L0afYNmWCjzFAW6-CXaqwrimpN2brL7P1xmz9bbaHqj-QsUltXKWg7OJ_9HSLWgD4vSVFJfpn8E88rYmX |
CODEN | ITASD8 |
CitedBy_id | crossref_primary_10_1016_j_asoc_2022_109770 crossref_primary_10_1016_j_bspc_2023_105493 crossref_primary_10_1016_j_bspc_2023_105087 crossref_primary_10_1016_j_eswa_2024_125401 crossref_primary_10_1016_j_jksuci_2023_101659 crossref_primary_10_1109_TASLPRO_2025_3543975 crossref_primary_10_2147_PRBM_S460283 crossref_primary_10_1016_j_engappai_2023_106097 crossref_primary_10_2196_46105 crossref_primary_10_1007_s13042_024_02472_1 crossref_primary_10_1016_j_asoc_2023_110240 crossref_primary_10_1016_j_engappai_2022_105812 |
Cites_doi | 10.1007/s10772-017-9401-9 10.1098/rsif.2010.0456 10.1049/iet-spr.2011.0186 10.1109/ICASSP.1995.479540 10.1007/978-3-642-38847-7_15 10.1016/j.patrec.2008.04.010 10.1080/00207540903175095 10.1016/j.specom.2009.08.009 10.1109/TBME.2012.2183367 10.1109/TPAMI.2005.159 10.1007/978-3-642-12052-7_17 10.1109/JBHI.2015.2467375 10.1007/978-1-4615-1665-1 10.1016/S0020-7373(81)80051-X 10.1016/j.cmpb.2014.01.004 10.1007/s004050000299 10.1109/TBME.2008.2005954 10.1016/j.jvoice.2005.08.011 10.1016/S0895-4356(01)00425-5 10.1016/j.eswa.2011.11.067 10.1016/j.eswa.2013.11.028 10.1016/j.eswa.2007.09.035 10.1109/MCI.2007.357235 10.1016/j.knosys.2014.02.001 10.1016/j.specom.2007.10.003 10.1109/TBME.2009.2036000 10.1016/0165-0114(85)90090-9 10.1109/TASLP.2014.2329734 10.1109/TBME.2005.869776 10.1186/s12938-016-0242-6 10.1155/1999/327643 10.1016/j.apm.2011.09.080 10.1023/A:1018628609742 10.1109/10.661155 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TASLP.2021.3097215 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics |
EISSN | 2329-9304 |
EndPage | 2802 |
ExternalDocumentID | 10_1109_TASLP_2021_3097215 9484799 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACIWK ACM ADBCU AEBYY AEFXT AEJOY AENSD AFWIH AFWXC AGQYO AGSQL AHBIQ AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF EBS EJD GUFHI HGAVV IFIPE IPLJI JAVBF LHSKQ M43 OCL PQQKQ RIA RIE RNS ROL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-4cb5cdfd86a597c3212bb8a62d8ea40bbd3adc10eab5c547f5bb0b7e3fac49813 |
IEDL.DBID | RIE |
ISSN | 2329-9290 |
IngestDate | Mon Jun 30 05:10:49 EDT 2025 Tue Jul 01 01:28:02 EDT 2025 Thu Apr 24 22:55:33 EDT 2025 Wed Aug 27 02:27:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-4cb5cdfd86a597c3212bb8a62d8ea40bbd3adc10eab5c547f5bb0b7e3fac49813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1955-4287 0000-0001-5626-5559 0000-0002-5987-3290 0000-0002-7365-5214 |
PQID | 2568063564 |
PQPubID | 85426 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TASLP_2021_3097215 ieee_primary_9484799 proquest_journals_2568063564 crossref_citationtrail_10_1109_TASLP_2021_3097215 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE/ACM transactions on audio, speech, and language processing |
PublicationTitleAbbrev | TASLP |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref12 ref15 ref14 ref31 ref30 karnik (ref37) 1999; 7 ref11 ref32 ref10 ref1 ref39 ref17 valyon (ref46) 2005; 500 ref38 ref16 ref19 ref18 kira (ref28) 1992 hastie (ref47) 2001 mutnick (ref23) 2012 (ref26) 2013 chao (ref48) 2008; 29 mendel (ref36) 2003; 1 (ref24) 0 ref45 ref25 ref20 ref42 ref41 baken (ref13) 2000 ref44 saaty (ref33) 1980 ref21 ref43 tsanas (ref27) 0 rajput (ref2) 2007 (ref6) 2017 ref29 ref8 ref7 ref9 ref4 ref3 ref5 zadeh (ref22) 1965; 8 ref40 |
References_xml | – volume: 7 start-page: 643 year: 1999 ident: ref37 article-title: Type-2 fuzzy logic systems," fuzzy syst publication-title: IEEE Trans – ident: ref20 doi: 10.1007/s10772-017-9401-9 – ident: ref25 doi: 10.1098/rsif.2010.0456 – ident: ref19 doi: 10.1049/iet-spr.2011.0186 – ident: ref30 doi: 10.1109/ICASSP.1995.479540 – ident: ref7 doi: 10.1007/978-3-642-38847-7_15 – volume: 29 start-page: 1667 year: 2008 ident: ref48 article-title: The peaking phenomenon in the presence of feature-selection publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2008.04.010 – year: 1980 ident: ref33 publication-title: Analytic hierarchy process – start-page: 129 year: 1992 ident: ref28 article-title: The feature selection problem: Traditional methods and a new algorithm publication-title: Proc AAAI Conf Artif Intell – ident: ref43 doi: 10.1080/00207540903175095 – ident: ref32 doi: 10.1016/j.specom.2009.08.009 – ident: ref18 doi: 10.1109/TBME.2012.2183367 – ident: ref29 doi: 10.1109/TPAMI.2005.159 – start-page: 37 year: 2013 ident: ref26 article-title: Automatic objective biomarkers of neurodegenerative disorders using nonlinear speech signal processing tools publication-title: Proc 8th Int Workshop Models Anal Vocal Emissions Biomed Appl – ident: ref42 doi: 10.1007/978-3-642-12052-7_17 – year: 0 ident: ref24 article-title: Accurate telemonitoring of Parkinson's disease symptom severity using nonlinear speech signal processing and statistical machine learning – ident: ref11 doi: 10.1109/JBHI.2015.2467375 – year: 0 ident: ref27 article-title: Accurate telemonitoring of parkinson's disease symptom severity using nonlinear speech signal processing and statistical machine learning – volume: 500 year: 2005 ident: ref46 article-title: A robust LS-SVM regression publication-title: Training – year: 2001 ident: ref47 article-title: The elements of statistical learning: Data mining, inference, and prediction – ident: ref41 doi: 10.1007/978-1-4615-1665-1 – ident: ref34 doi: 10.1016/S0020-7373(81)80051-X – ident: ref8 doi: 10.1016/j.cmpb.2014.01.004 – ident: ref12 doi: 10.1007/s004050000299 – ident: ref17 doi: 10.1109/TBME.2008.2005954 – ident: ref15 doi: 10.1016/j.jvoice.2005.08.011 – year: 2000 ident: ref13 publication-title: Clinical Measurement of Speech and Voice – ident: ref3 doi: 10.1016/S0895-4356(01)00425-5 – ident: ref1 doi: 10.1016/j.eswa.2011.11.067 – year: 2012 ident: ref23 publication-title: Comprehensive Pharmacy Review For NAPLEX Practice Exams Cases and Test Prep – year: 2007 ident: ref2 article-title: Epidemiology publication-title: Handbook of Parkinson's Disease – ident: ref38 doi: 10.1016/j.eswa.2013.11.028 – ident: ref45 doi: 10.1016/j.eswa.2007.09.035 – ident: ref35 doi: 10.1109/MCI.2007.357235 – ident: ref39 doi: 10.1016/j.knosys.2014.02.001 – ident: ref14 doi: 10.1016/j.specom.2007.10.003 – ident: ref4 doi: 10.1109/TBME.2009.2036000 – ident: ref40 doi: 10.1016/0165-0114(85)90090-9 – volume: 1 start-page: 10 year: 2003 ident: ref36 article-title: Type-2 fuzzy sets: Some questions and answers publication-title: IEEE Connect Newsletter IEEE Neural Networks Soc – volume: 8 start-page: 338 year: 1965 ident: ref22 article-title: Information and control publication-title: Fuzzy Sets – ident: ref5 doi: 10.1109/TASLP.2014.2329734 – ident: ref31 doi: 10.1109/TBME.2005.869776 – ident: ref9 doi: 10.1186/s12938-016-0242-6 – ident: ref10 doi: 10.1155/1999/327643 – ident: ref21 doi: 10.1016/j.apm.2011.09.080 – ident: ref44 doi: 10.1023/A:1018628609742 – ident: ref16 doi: 10.1109/10.661155 – year: 2017 ident: ref6 article-title: Statistics on parkinson's | parkinson's disease foundation (PDF) |
SSID | ssj0001079974 |
Score | 2.251691 |
Snippet | Goal: Human voice is a promising noninvasive indicator for diagnosing Parkinson's Disease (PD). It is also unique since it can be collected remotely,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2792 |
SubjectTerms | Accuracy Analytic hierarchy process Analytical hierarchy process Diagnosis Feature extraction feature selection Fuzzy sets Human voice interval type-2 fuzzy sets Males Medical diagnosis Nursing homes Parkinson's disease Probabilistic models Redundancy Separation Signal quality Sociology speech signal processing Statistics Support vector machines Uncertainty Voice recognition |
Title | Robust Voice Feature Selection Using Interval Type-2 Fuzzy AHP for Automated Diagnosis of Parkinson's Disease |
URI | https://ieeexplore.ieee.org/document/9484799 https://www.proquest.com/docview/2568063564 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PZUDhbaILQX5gMShzdZO7CQ-roDVqmqrij7UW-THRKqADeomB_bXM3ayS3kIcbNkO7L0Texv7JlvAN5qI12WKptILzGRdcYTg9TCvHRlXTihXMgdPr_IZzfy9E7dbcDxOhcGEWPwGY5DM77l-8Z14arsREvaS7XehE1y3PpcrZ_3KZx6ougycQSd0KnPVzkyXJ9cT67OLskbTMU4i4I16pdzKBZW-WM3jkfMdAfOV4vrI0s-j7vWjt3yN93G_139M3g6cE026Y3jOWzgfBeePFIg3IXtQDZ7reY9-Pqpsd2iZbcN7R4skMPuAdlVrJRD8LEYXsDiHSLZJwsubJKyabdcfmeT2SUj_ssmXdsQCUbPPvRBfPcL1tQsJFfHPLN3C-qIb0L7cDP9eP1-lgzlGBKXatUm0lnlfO3L3JAXQgiL1NrS5Kkv0Uhurc-Md4KjoXFKFrWyltsCs9o4qUuRvYCteTPHl8A4olGYe-sLL3lmbFEI63OB3ubC534EYgVO5Qat8lAy40sVfRauqwhoFQCtBkBHcLSe861X6vjn6L2A0HrkAM4IDlc2UA0_86IiVljyoOMnD_4-6xVsh2_3NzOHsNU-dPiauEpr30Qj_QH2F-dT |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcqAcKLRUXWjBByQOkK2d2HkcVy2rBXarim5Rb5EfEwlRNqibHNhfz9jJLk8hbpZsK5a-iefhmW8AXhRa2iRWJpJOYiSrhEcaaYRpbvMqs0JZXzs8O08nV_LdtbregtebWhhEDMlnOPTD8Jbvatv6UNlJIekuLYo7cJf0vhJdtdaPiAqnuUC7TFZCEZHe5-sqGV6czEeX0wvyB2MxTAJljfpFE4XWKn_cx0HJjHdhtj5el1vyedg2ZmhXvzE3_u_5H8KD3tpko048HsEWLvbg_k8chHuw483Njq15H758qE27bNjHmu4P5s3D9hbZZeiVQwCykGDAQhSRJJR5JzaK2bhdrb6x0eSCkQXMRm1TkxmMjp11aXyflqyumC-vDpVmL5c0EV6FHsPV-M38dBL1DRkiGxeqiaQ1yrrK5akmP4QwFrExuU5jl6OW3BiXaGcFR03rlMwqZQw3GSaVtrLIRXIA24t6gYfAOKJWmDrjMid5ok2WCeNSgc6kwqVuAGINTml7tnLfNOOmDF4LL8oAaOkBLXtAB_Bqs-drx9Xxz9X7HqHNyh6cARytZaDsf-dlSXZhzj2Tn3zy913P4d5kPpuW07fn75_Cjv9OF6c5gu3mtsVjslwa8ywI7Hcs7eqc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Voice+Feature+Selection+Using+Interval+Type-2+Fuzzy+AHP+for+Automated+Diagnosis+of+Parkinson%27s+Disease&rft.jtitle=IEEE%2FACM+transactions+on+audio%2C+speech%2C+and+language+processing&rft.au=Azadi%2C+Hamid&rft.au=Akbarzadeh-T%2C+Mohammad-R.&rft.au=Kobravi%2C+Hamid-R.&rft.au=Shoeibi%2C+Ali&rft.date=2021&rft.issn=2329-9290&rft.eissn=2329-9304&rft.volume=29&rft.spage=2792&rft.epage=2802&rft_id=info:doi/10.1109%2FTASLP.2021.3097215&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASLP_2021_3097215 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9290&client=summon |