A Note on Fuzzy Joint Points Clustering Methods for Large Datasets
Integrating clustering algorithms with fuzzy logic typically yields more robust methods, which require little to no supervision of user. The fuzzy joint points method is a density-based fuzzy clustering approach that can achieve quality clustering. However, early versions of the method hold high com...
Saved in:
Published in | IEEE transactions on fuzzy systems Vol. 24; no. 6; pp. 1648 - 1653 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Integrating clustering algorithms with fuzzy logic typically yields more robust methods, which require little to no supervision of user. The fuzzy joint points method is a density-based fuzzy clustering approach that can achieve quality clustering. However, early versions of the method hold high computational complexity. In a recent work, the speed of the method was significantly improved without sacrificing clustering efficiency, and an even faster but parameter-dependent method was also suggested. Yet, the clustering performance of the latter was left as an open discussion and subject of study. In this study, we prove the existence of the appropriate parameter value and give an upper bound on it to discuss whether and how the parameter-dependent method can achieve the same clustering performance with the original method. |
---|---|
AbstractList | Integrating clustering algorithms with fuzzy logic typically yields more robust methods, which require little to no supervision of user. The fuzzy joint points method is a density-based fuzzy clustering approach that can achieve quality clustering. However, early versions of the method hold high computational complexity. In a recent work, the speed of the method was significantly improved without sacrificing clustering efficiency, and an even faster but parameter-dependent method was also suggested. Yet, the clustering performance of the latter was left as an open discussion and subject of study. In this study, we prove the existence of the appropriate parameter value and give an upper bound on it to discuss whether and how the parameter-dependent method can achieve the same clustering performance with the original method. |
Author | Nasibov, Efendi N. Atilgan, Can |
Author_xml | – sequence: 1 givenname: Efendi N. surname: Nasibov fullname: Nasibov, Efendi N. email: efendi.nasibov@deu.edu.tr organization: Dept. of Comput. Sci., Dokuz Eylul Univ., Izmir, Turkey – sequence: 2 givenname: Can surname: Atilgan fullname: Atilgan, Can email: can.atilgan@deu.edu.tr organization: Dept. of Comput. Sci., Dokuz Eylul Univ., Izmir, Turkey |
BookMark | eNp9kD1vwjAQhq2KSgXaP9AuljqH3sWOk4yUln6IfgywsEROONMgGlPbDPDrCwV16NDl3hve5056OqzV2IYYu0ToIUJ-Mx5OptNeDKh6cZJgnMEJa2MuMQIQsrXbQYlIpaDOWMf7BQDKBLM2u-3zVxuI24YP19vthj_bugn8fT89HyzXPpCrmzl_ofBhZ54b6_hIuznxOx20p-DP2anRS08Xx-yyyfB-PHiMRm8PT4P-KKriPAmRrNLKYIaiTCBGSUbhjECnpEyJuTKCJJjYlJk2pUjSXIABVRmNMywJEEWXXR_urpz9WpMPxcKuXbN7WWCWKJHLVCS7VnZoVc5678gUVR10qG0TnK6XBUKxN1b8GCv2xoqjsR0a_0FXrv7UbvM_dHWAaiL6BVIpMxkL8Q1zBXiv |
CODEN | IEFSEV |
CitedBy_id | crossref_primary_10_1109_TFUZZ_2018_2879465 |
Cites_doi | 10.1016/j.fss.2014.08.004 10.1155/2015/238237 10.1109/ICCIMA.2007.111 10.1016/j.fss.2015.05.001 10.1016/j.ins.2008.06.008 10.1109/SIU.2008.4632654 10.1016/j.asoc.2009.11.019 10.1155/2014/916371 10.1016/j.mcm.2011.07.010 10.1016/j.fss.2007.02.019 10.1016/j.tre.2009.07.005 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TFUZZ.2016.2551280 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0034 |
EndPage | 1653 |
ExternalDocumentID | 10_1109_TFUZZ_2016_2551280 7448423 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-4c7cf1813b50214ef61de0a7e6fb196f3e40f2fb8afb357930f06cfa1d1be0113 |
IEDL.DBID | RIE |
ISSN | 1063-6706 |
IngestDate | Mon Jun 30 03:39:22 EDT 2025 Tue Jul 01 01:55:25 EDT 2025 Thu Apr 24 23:01:21 EDT 2025 Tue Aug 26 16:43:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-4c7cf1813b50214ef61de0a7e6fb196f3e40f2fb8afb357930f06cfa1d1be0113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1889-6410 |
PQID | 1856394735 |
PQPubID | 85428 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1109_TFUZZ_2016_2551280 crossref_primary_10_1109_TFUZZ_2016_2551280 ieee_primary_7448423 proquest_journals_1856394735 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Dec. 2016-12-00 20161201 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-Dec. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on fuzzy systems |
PublicationTitleAbbrev | TFUZZ |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ester (ref3) 0 ref11 ref10 ulutagay (ref14) 2013; 10 han (ref1) 2006 ref8 ref7 ref9 ref4 ref6 ref5 lichman (ref16) 2013 macqueen (ref2) 0; 1 |
References_xml | – ident: ref15 doi: 10.1016/j.fss.2014.08.004 – ident: ref6 doi: 10.1155/2015/238237 – volume: 10 start-page: 1 year: 2013 ident: ref14 article-title: On fuzzy neighborhood based clustering algorithm with low complexity publication-title: Iranian J Fuzzy Syst – ident: ref13 doi: 10.1109/ICCIMA.2007.111 – ident: ref5 doi: 10.1016/j.fss.2015.05.001 – ident: ref10 doi: 10.1016/j.ins.2008.06.008 – ident: ref12 doi: 10.1109/SIU.2008.4632654 – ident: ref8 doi: 10.1016/j.asoc.2009.11.019 – ident: ref11 doi: 10.1155/2014/916371 – ident: ref7 doi: 10.1016/j.mcm.2011.07.010 – volume: 1 start-page: 281 year: 0 ident: ref2 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proc 5th Berkeley Symp Math Statist Probab – ident: ref4 doi: 10.1016/j.fss.2007.02.019 – start-page: 398 year: 2006 ident: ref1 article-title: A categorization of major clustering methods publication-title: Data Mining Concepts and Techniques – year: 2013 ident: ref16 publication-title: UCI Machine Learning Repository – ident: ref9 doi: 10.1016/j.tre.2009.07.005 – start-page: 226 year: 0 ident: ref3 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proc Int'l Conf Knowledge Discovery and Data Mining |
SSID | ssj0014518 |
Score | 2.2182493 |
Snippet | Integrating clustering algorithms with fuzzy logic typically yields more robust methods, which require little to no supervision of user. The fuzzy joint points... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1648 |
SubjectTerms | Algorithm design and analysis Algorithms Clustering Clustering algorithms Clustering methods Computer science fuzzy clustering fuzzy joint points (FJP) method Fuzzy logic Fuzzy sets Parameters Partitioning algorithms Shape Upper bound Upper bounds |
Title | A Note on Fuzzy Joint Points Clustering Methods for Large Datasets |
URI | https://ieeexplore.ieee.org/document/7448423 https://www.proquest.com/docview/1856394735 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD2yQ1mlsJxmhUCFEEQOVqi5R7NgSAiWIJgP99ZydpOIlxBJ5sC3rznf3XXwPgFMehWnIBPfiNEs9xk3gSWGoJ7nNy2SKBy6Lf3QvbsbsdsInS3C-yIXRWrvgM921Q_eWnxWqsr_KeiH6Emj-l2EZHbc6V2vxYsC4X6e9icATIRVtggyNe4_D8XRqo7hEFwE0KmT6xQi5rio_VLGzL8MNGLUnq8NKnrtVKbtq_q1o43-PvgnrDdAkF_XN2IIlnW_DRtvEgTQyvQ1rnyoS7sDlBbkvSk2KnAyr-fyd3BZPeUke7HdGBi-VrauAM8nIdZ6eEcS85M5Gk5OrtESLWM52YTy8fhzceE2bBU_1Y156TIXKoKEPJLcF1LQRfqZpGmphJMqnCTSjpm9klBoZcJRnaqhQJvUzX2pUD8EerORFrveBSGZitP-yH8QZ0yEOolgjaFQIk2QUZR3wW7onqqlBblthvCTOF6Fx4niVWF4lDa86cLZY81pX4Phz9o4l_mJmQ_cOHLXsTRohnSUIVRCf2d7LB7-vOoRVu3cdvXIEK-VbpY8Rg5TyxF2-D2XY1gA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOCwctjwWUZYFH_bGpjiN7SRHlqUqpa04tBLiEsWOLSGqBNHkQH89Yyep9qXVXiIfxrI145n5HM8D4CuPwjRkgntxmqUe4ybwpDDUk9zmZTLFA5fFP5mK4ZyNHvjDBnxb58JorV3wme7ZoXvLzwpV2V9llyHeJdD9b8I2-n3er7O11m8GjPt14psIPBFS0abI0PhyNpg_Pto4LtFDCI0mmf7ihlxflT-MsfMwgw5M2r3VgSXPvaqUPbX6rWzj_25-Dz42UJNc1WdjHzZ0fgCdto0DabT6AHZ_qkl4CN-vyLQoNSlyMqhWqzcyKp7yktzb75JcLypbWQEpycT1nl4SRL1kbOPJyY-0RJ9YLj_BfHAzux56TaMFT_VjXnpMhcqgqw8ktyXUtBF-pmkaamEkaqgJNKOmb2SUGhlw1GhqqFAm9TNfajQQwRFs5UWuj4FIZmJEALIfxBnTIQ6iWCNsVAiUZBRlXfBbvieqqUJum2EsEncboXHiZJVYWSWNrLpwsZ7zUtfg-Cf1oWX-mrLhexdOW_EmjZouEwQriNBs9-WTv886hw_D2WScjG-nd59hx65Tx7Kcwlb5WukviEhKeeYO4ju9ztlK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Note+on+Fuzzy+Joint+Points+Clustering+Methods+for+Large+Datasets&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Nasibov%2C+Efendi+N.&rft.au=Atilgan%2C+Can&rft.date=2016-12-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=24&rft.issue=6&rft.spage=1648&rft.epage=1653&rft_id=info:doi/10.1109%2FTFUZZ.2016.2551280&rft.externalDocID=7448423 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |