A Note on Fuzzy Joint Points Clustering Methods for Large Datasets

Integrating clustering algorithms with fuzzy logic typically yields more robust methods, which require little to no supervision of user. The fuzzy joint points method is a density-based fuzzy clustering approach that can achieve quality clustering. However, early versions of the method hold high com...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 24; no. 6; pp. 1648 - 1653
Main Authors Nasibov, Efendi N., Atilgan, Can
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Integrating clustering algorithms with fuzzy logic typically yields more robust methods, which require little to no supervision of user. The fuzzy joint points method is a density-based fuzzy clustering approach that can achieve quality clustering. However, early versions of the method hold high computational complexity. In a recent work, the speed of the method was significantly improved without sacrificing clustering efficiency, and an even faster but parameter-dependent method was also suggested. Yet, the clustering performance of the latter was left as an open discussion and subject of study. In this study, we prove the existence of the appropriate parameter value and give an upper bound on it to discuss whether and how the parameter-dependent method can achieve the same clustering performance with the original method.
AbstractList Integrating clustering algorithms with fuzzy logic typically yields more robust methods, which require little to no supervision of user. The fuzzy joint points method is a density-based fuzzy clustering approach that can achieve quality clustering. However, early versions of the method hold high computational complexity. In a recent work, the speed of the method was significantly improved without sacrificing clustering efficiency, and an even faster but parameter-dependent method was also suggested. Yet, the clustering performance of the latter was left as an open discussion and subject of study. In this study, we prove the existence of the appropriate parameter value and give an upper bound on it to discuss whether and how the parameter-dependent method can achieve the same clustering performance with the original method.
Author Nasibov, Efendi N.
Atilgan, Can
Author_xml – sequence: 1
  givenname: Efendi N.
  surname: Nasibov
  fullname: Nasibov, Efendi N.
  email: efendi.nasibov@deu.edu.tr
  organization: Dept. of Comput. Sci., Dokuz Eylul Univ., Izmir, Turkey
– sequence: 2
  givenname: Can
  surname: Atilgan
  fullname: Atilgan, Can
  email: can.atilgan@deu.edu.tr
  organization: Dept. of Comput. Sci., Dokuz Eylul Univ., Izmir, Turkey
BookMark eNp9kD1vwjAQhq2KSgXaP9AuljqH3sWOk4yUln6IfgywsEROONMgGlPbDPDrCwV16NDl3hve5056OqzV2IYYu0ToIUJ-Mx5OptNeDKh6cZJgnMEJa2MuMQIQsrXbQYlIpaDOWMf7BQDKBLM2u-3zVxuI24YP19vthj_bugn8fT89HyzXPpCrmzl_ofBhZ54b6_hIuznxOx20p-DP2anRS08Xx-yyyfB-PHiMRm8PT4P-KKriPAmRrNLKYIaiTCBGSUbhjECnpEyJuTKCJJjYlJk2pUjSXIABVRmNMywJEEWXXR_urpz9WpMPxcKuXbN7WWCWKJHLVCS7VnZoVc5678gUVR10qG0TnK6XBUKxN1b8GCv2xoqjsR0a_0FXrv7UbvM_dHWAaiL6BVIpMxkL8Q1zBXiv
CODEN IEFSEV
CitedBy_id crossref_primary_10_1109_TFUZZ_2018_2879465
Cites_doi 10.1016/j.fss.2014.08.004
10.1155/2015/238237
10.1109/ICCIMA.2007.111
10.1016/j.fss.2015.05.001
10.1016/j.ins.2008.06.008
10.1109/SIU.2008.4632654
10.1016/j.asoc.2009.11.019
10.1155/2014/916371
10.1016/j.mcm.2011.07.010
10.1016/j.fss.2007.02.019
10.1016/j.tre.2009.07.005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2016.2551280
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 1653
ExternalDocumentID 10_1109_TFUZZ_2016_2551280
7448423
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-4c7cf1813b50214ef61de0a7e6fb196f3e40f2fb8afb357930f06cfa1d1be0113
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Mon Jun 30 03:39:22 EDT 2025
Tue Jul 01 01:55:25 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
Tue Aug 26 16:43:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-4c7cf1813b50214ef61de0a7e6fb196f3e40f2fb8afb357930f06cfa1d1be0113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1889-6410
PQID 1856394735
PQPubID 85428
PageCount 6
ParticipantIDs crossref_citationtrail_10_1109_TFUZZ_2016_2551280
crossref_primary_10_1109_TFUZZ_2016_2551280
ieee_primary_7448423
proquest_journals_1856394735
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Dec.
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ester (ref3) 0
ref11
ref10
ulutagay (ref14) 2013; 10
han (ref1) 2006
ref8
ref7
ref9
ref4
ref6
ref5
lichman (ref16) 2013
macqueen (ref2) 0; 1
References_xml – ident: ref15
  doi: 10.1016/j.fss.2014.08.004
– ident: ref6
  doi: 10.1155/2015/238237
– volume: 10
  start-page: 1
  year: 2013
  ident: ref14
  article-title: On fuzzy neighborhood based clustering algorithm with low complexity
  publication-title: Iranian J Fuzzy Syst
– ident: ref13
  doi: 10.1109/ICCIMA.2007.111
– ident: ref5
  doi: 10.1016/j.fss.2015.05.001
– ident: ref10
  doi: 10.1016/j.ins.2008.06.008
– ident: ref12
  doi: 10.1109/SIU.2008.4632654
– ident: ref8
  doi: 10.1016/j.asoc.2009.11.019
– ident: ref11
  doi: 10.1155/2014/916371
– ident: ref7
  doi: 10.1016/j.mcm.2011.07.010
– volume: 1
  start-page: 281
  year: 0
  ident: ref2
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proc 5th Berkeley Symp Math Statist Probab
– ident: ref4
  doi: 10.1016/j.fss.2007.02.019
– start-page: 398
  year: 2006
  ident: ref1
  article-title: A categorization of major clustering methods
  publication-title: Data Mining Concepts and Techniques
– year: 2013
  ident: ref16
  publication-title: UCI Machine Learning Repository
– ident: ref9
  doi: 10.1016/j.tre.2009.07.005
– start-page: 226
  year: 0
  ident: ref3
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proc Int'l Conf Knowledge Discovery and Data Mining
SSID ssj0014518
Score 2.2182493
Snippet Integrating clustering algorithms with fuzzy logic typically yields more robust methods, which require little to no supervision of user. The fuzzy joint points...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1648
SubjectTerms Algorithm design and analysis
Algorithms
Clustering
Clustering algorithms
Clustering methods
Computer science
fuzzy clustering
fuzzy joint points (FJP) method
Fuzzy logic
Fuzzy sets
Parameters
Partitioning algorithms
Shape
Upper bound
Upper bounds
Title A Note on Fuzzy Joint Points Clustering Methods for Large Datasets
URI https://ieeexplore.ieee.org/document/7448423
https://www.proquest.com/docview/1856394735
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD2yQ1mlsJxmhUCFEEQOVqi5R7NgSAiWIJgP99ZydpOIlxBJ5sC3rznf3XXwPgFMehWnIBPfiNEs9xk3gSWGoJ7nNy2SKBy6Lf3QvbsbsdsInS3C-yIXRWrvgM921Q_eWnxWqsr_KeiH6Emj-l2EZHbc6V2vxYsC4X6e9icATIRVtggyNe4_D8XRqo7hEFwE0KmT6xQi5rio_VLGzL8MNGLUnq8NKnrtVKbtq_q1o43-PvgnrDdAkF_XN2IIlnW_DRtvEgTQyvQ1rnyoS7sDlBbkvSk2KnAyr-fyd3BZPeUke7HdGBi-VrauAM8nIdZ6eEcS85M5Gk5OrtESLWM52YTy8fhzceE2bBU_1Y156TIXKoKEPJLcF1LQRfqZpGmphJMqnCTSjpm9klBoZcJRnaqhQJvUzX2pUD8EerORFrveBSGZitP-yH8QZ0yEOolgjaFQIk2QUZR3wW7onqqlBblthvCTOF6Fx4niVWF4lDa86cLZY81pX4Phz9o4l_mJmQ_cOHLXsTRohnSUIVRCf2d7LB7-vOoRVu3cdvXIEK-VbpY8Rg5TyxF2-D2XY1gA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOCwctjwWUZYFH_bGpjiN7SRHlqUqpa04tBLiEsWOLSGqBNHkQH89Yyep9qXVXiIfxrI145n5HM8D4CuPwjRkgntxmqUe4ybwpDDUk9zmZTLFA5fFP5mK4ZyNHvjDBnxb58JorV3wme7ZoXvLzwpV2V9llyHeJdD9b8I2-n3er7O11m8GjPt14psIPBFS0abI0PhyNpg_Pto4LtFDCI0mmf7ihlxflT-MsfMwgw5M2r3VgSXPvaqUPbX6rWzj_25-Dz42UJNc1WdjHzZ0fgCdto0DabT6AHZ_qkl4CN-vyLQoNSlyMqhWqzcyKp7yktzb75JcLypbWQEpycT1nl4SRL1kbOPJyY-0RJ9YLj_BfHAzux56TaMFT_VjXnpMhcqgqw8ktyXUtBF-pmkaamEkaqgJNKOmb2SUGhlw1GhqqFAm9TNfajQQwRFs5UWuj4FIZmJEALIfxBnTIQ6iWCNsVAiUZBRlXfBbvieqqUJum2EsEncboXHiZJVYWSWNrLpwsZ7zUtfg-Cf1oWX-mrLhexdOW_EmjZouEwQriNBs9-WTv886hw_D2WScjG-nd59hx65Tx7Kcwlb5WukviEhKeeYO4ju9ztlK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Note+on+Fuzzy+Joint+Points+Clustering+Methods+for+Large+Datasets&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Nasibov%2C+Efendi+N.&rft.au=Atilgan%2C+Can&rft.date=2016-12-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=24&rft.issue=6&rft.spage=1648&rft.epage=1653&rft_id=info:doi/10.1109%2FTFUZZ.2016.2551280&rft.externalDocID=7448423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon