AM³Net: Adaptive Mutual-Learning-Based Multimodal Data Fusion Network
Multimodal data fusion, e.g., hyperspectral image (HSI) and light detection and ranging (LiDAR) data fusion, plays an important role in object recognition and classification tasks. However, existing methods pay little attention to the specificity of HSI spectral channels and the complementarity of H...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 8; pp. 5411 - 5426 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multimodal data fusion, e.g., hyperspectral image (HSI) and light detection and ranging (LiDAR) data fusion, plays an important role in object recognition and classification tasks. However, existing methods pay little attention to the specificity of HSI spectral channels and the complementarity of HSI and LiDAR spatial information. In addition, the utilized feature extraction modules tend to consider the feature transmission processes among different modalities independently. Therefore, a new data fusion network named AM 3 Net is proposed for multimodal data classification; it includes three parts. First, an involution operator slides over the input HSI's spectral channels, which can independently measure the contribution rate of the spectral channel of each pixel to the spectral feature tensor construction. Furthermore, the spatial information of HSI and LiDAR data is integrated and excavated in an adaptively fused, modality-oriented manner. Second, a spectral-spatial mutual-guided module is designed for the feature collaborative transmission among spectral features and spatial information, which can increase the semantic relatedness connection through adaptive, multiscale, and mutual-learning transmission. Finally, the fused spatial-spectral features are embedded into a classification module to obtain the final results, which determines whether to continue updating the network weights. Experimental evaluations on HSI-LiDAR datasets indicate that AM 3 Net possesses a better feature representation ability than the state-of-the-art methods. Additionally, AM 3 Net still maintains considerable performance when its input is replaced with multispectral and synthetic aperture radar data. The result indicates that the proposed data fusion framework is compatible with diversified data types. |
---|---|
AbstractList | Multimodal data fusion, e.g., hyperspectral image (HSI) and light detection and ranging (LiDAR) data fusion, plays an important role in object recognition and classification tasks. However, existing methods pay little attention to the specificity of HSI spectral channels and the complementarity of HSI and LiDAR spatial information. In addition, the utilized feature extraction modules tend to consider the feature transmission processes among different modalities independently. Therefore, a new data fusion network named AM3Net is proposed for multimodal data classification; it includes three parts. First, an involution operator slides over the input HSI’s spectral channels, which can independently measure the contribution rate of the spectral channel of each pixel to the spectral feature tensor construction. Furthermore, the spatial information of HSI and LiDAR data is integrated and excavated in an adaptively fused, modality-oriented manner. Second, a spectral-spatial mutual-guided module is designed for the feature collaborative transmission among spectral features and spatial information, which can increase the semantic relatedness connection through adaptive, multiscale, and mutual-learning transmission. Finally, the fused spatial-spectral features are embedded into a classification module to obtain the final results, which determines whether to continue updating the network weights. Experimental evaluations on HSI-LiDAR datasets indicate that AM3Net possesses a better feature representation ability than the state-of-the-art methods. Additionally, AM3Net still maintains considerable performance when its input is replaced with multispectral and synthetic aperture radar data. The result indicates that the proposed data fusion framework is compatible with diversified data types. Multimodal data fusion, e.g., hyperspectral image (HSI) and light detection and ranging (LiDAR) data fusion, plays an important role in object recognition and classification tasks. However, existing methods pay little attention to the specificity of HSI spectral channels and the complementarity of HSI and LiDAR spatial information. In addition, the utilized feature extraction modules tend to consider the feature transmission processes among different modalities independently. Therefore, a new data fusion network named AM 3 Net is proposed for multimodal data classification; it includes three parts. First, an involution operator slides over the input HSI's spectral channels, which can independently measure the contribution rate of the spectral channel of each pixel to the spectral feature tensor construction. Furthermore, the spatial information of HSI and LiDAR data is integrated and excavated in an adaptively fused, modality-oriented manner. Second, a spectral-spatial mutual-guided module is designed for the feature collaborative transmission among spectral features and spatial information, which can increase the semantic relatedness connection through adaptive, multiscale, and mutual-learning transmission. Finally, the fused spatial-spectral features are embedded into a classification module to obtain the final results, which determines whether to continue updating the network weights. Experimental evaluations on HSI-LiDAR datasets indicate that AM 3 Net possesses a better feature representation ability than the state-of-the-art methods. Additionally, AM 3 Net still maintains considerable performance when its input is replaced with multispectral and synthetic aperture radar data. The result indicates that the proposed data fusion framework is compatible with diversified data types. |
Author | Li, Jun Shi, Yanli Tan, Xiaojun Lai, Jianhuang Wang, Jinping |
Author_xml | – sequence: 1 givenname: Jinping orcidid: 0000-0002-4157-8605 surname: Wang fullname: Wang, Jinping email: wangjp29@mail2.sysu.edu.cn organization: School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, China – sequence: 2 givenname: Jun surname: Li fullname: Li, Jun email: stslijun@mail.sysu.edu.cn organization: School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, China – sequence: 3 givenname: Yanli surname: Shi fullname: Shi, Yanli email: shiyli3@mail2.sysu.edu.cn organization: School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, China – sequence: 4 givenname: Jianhuang orcidid: 0000-0003-3883-2024 surname: Lai fullname: Lai, Jianhuang email: stsljh@mail.sysu.edu.cn organization: School of Computer Science and Engineering, and the Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-sen University, Guangzhou, China – sequence: 5 givenname: Xiaojun orcidid: 0000-0003-0137-9270 surname: Tan fullname: Tan, Xiaojun email: tanxj@mail.sysu.edu.cn organization: School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, China |
BookMark | eNp9kLFOwzAQhi0EEm3hBWCJxJxiO3Zss5VCAamFgcIaGeeCXNKk2A6I5-INeDJcWjEwMN3p9H93p6-Pdpu2AYSOCB4SgtXpfHz_OB9STOkwI0xSLnZQj3AuU0ox34095iSVlPB91Pd-gXFMMdFDk9Hs6_MWwlkyKvUq2DdIZl3odJ1OQbvGNs_pufZQxmkd7LItdZ1c6KCTSedt2yQRfW_dywHaq3Tt4XBbB-hhcjkfX6fTu6ub8WiaGqp4SNkTNwJnApRgTGJeVaWRJfBKVkBZKZgCIMbwnJHcQA5MGImFopRlWFYUsgE62exdufa1Ax-KRdu5Jp4saK4EF4QJElNykzKu9d5BVRgbdIj_BqdtXRBcrK0VP9aKtbViay2i9A-6cnap3cf_0PEGsgDwC6hcSaLy7Bs0LHpK |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3361556 crossref_primary_10_3390_rs16061055 crossref_primary_10_1016_j_inffus_2023_102192 crossref_primary_10_1109_TCSVT_2024_3375511 crossref_primary_10_1109_TGRS_2024_3401231 crossref_primary_10_3390_rs16203825 crossref_primary_10_1109_TGRS_2025_3529749 crossref_primary_10_1088_1361_6501_ad52b9 crossref_primary_10_3390_rs16162942 crossref_primary_10_1109_TCSVT_2023_3306870 crossref_primary_10_1016_j_neucom_2024_128663 crossref_primary_10_1016_j_knosys_2023_111190 crossref_primary_10_1016_j_inffus_2024_102745 crossref_primary_10_1109_TGRS_2024_3374372 crossref_primary_10_1080_01431161_2024_2408037 crossref_primary_10_3390_s22062191 crossref_primary_10_1109_TCSVT_2023_3322470 crossref_primary_10_1109_TGRS_2023_3331486 crossref_primary_10_1016_j_eswa_2024_125903 crossref_primary_10_1109_TCSVT_2022_3215513 crossref_primary_10_1109_TGRS_2024_3367960 crossref_primary_10_1002_cpe_8023 crossref_primary_10_3934_era_2024190 crossref_primary_10_1109_JSEN_2024_3364150 crossref_primary_10_1016_j_imavis_2025_105445 crossref_primary_10_1109_TCSVT_2022_3227172 crossref_primary_10_1109_JSTARS_2024_3415729 crossref_primary_10_1016_j_sigpro_2023_109165 crossref_primary_10_3390_rs16173120 crossref_primary_10_1007_s10489_024_06217_z crossref_primary_10_1016_j_neucom_2022_02_058 crossref_primary_10_1109_TGRS_2024_3430373 crossref_primary_10_1016_j_inffus_2024_102897 crossref_primary_10_1109_TGRS_2024_3519900 crossref_primary_10_1109_TGRS_2024_3356510 crossref_primary_10_1109_TNNLS_2022_3227167 crossref_primary_10_3390_rs15102692 crossref_primary_10_1109_TGRS_2023_3331717 crossref_primary_10_1109_TGRS_2023_3283508 crossref_primary_10_1016_j_knosys_2023_110442 crossref_primary_10_1109_TIM_2024_3394468 crossref_primary_10_3390_rs16214029 crossref_primary_10_1109_TBDATA_2024_3433494 crossref_primary_10_3390_rs14071741 crossref_primary_10_1016_j_eswa_2024_124158 crossref_primary_10_1109_TGRS_2024_3353775 crossref_primary_10_1109_TCSVT_2023_3272984 crossref_primary_10_3390_rs16214073 crossref_primary_10_1109_TGRS_2023_3344698 crossref_primary_10_1109_TGRS_2024_3442470 crossref_primary_10_1109_TGRS_2024_3452700 crossref_primary_10_1109_TNNLS_2023_3303273 crossref_primary_10_3788_LOP230540 crossref_primary_10_1109_TGRS_2025_3526190 |
Cites_doi | 10.1016/j.scitotenv.2021.146469 10.1109/TGRS.2007.905311 10.1109/TGRS.2019.2907932 10.1109/IGARSS.2017.8127079 10.1109/TCSVT.2017.2746684 10.1109/CVPR46437.2021.01214 10.1109/CVPRW50498.2020.00054 10.1109/TGRS.2020.2969024 10.1109/CVPR.2017.195 10.1109/TCYB.2018.2864670 10.1109/TIP.2018.2867198 10.1016/j.neucom.2005.12.126 10.1109/JSTARS.2015.2432037 10.1109/JSTARS.2021.3054392 10.1109/LGRS.2018.2816958 10.1109/TCSVT.2020.2975566 10.1109/TGRS.2017.2686450 10.1109/LGRS.2017.2704625 10.1080/15481603.2017.1364837 10.1109/TIT.1968.1054102 10.1109/TGRS.2018.2794326 10.1109/TGRS.2017.2726901 10.1109/TIP.2021.3055613 10.1109/CVPR.2017.75 10.1016/j.rse.2021.112322 10.1109/TCSVT.2021.3056725 10.3390/rs9080868 10.1109/CVPR46437.2021.01132 10.1109/ICCV.2017.89 10.1109/TGRS.2017.2756851 10.3390/f11030303 10.1109/LGRS.2018.2869888 10.1109/TGRS.2015.2421051 10.1109/TCSVT.2020.3027616 10.1109/JSTARS.2019.2913206 10.1016/j.rse.2019.111323 10.1109/TCSVT.2021.3054584 10.1109/LGRS.2022.3156622 10.1109/TGRS.2018.2860125 10.1109/LGRS.2008.2001282 10.1109/CVPR.2019.00953 10.1109/TGRS.2020.2982064 10.1109/JSTSP.2012.2208177 10.1016/j.inffus.2016.05.004 10.1109/LGRS.2017.2687519 10.1109/IGARSS.2017.8127330 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2022.3148257 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 5426 |
ExternalDocumentID | 10_1109_TCSVT_2022_3148257 9698196 |
Genre | orig-research |
GrantInformation_xml | – fundername: Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) grantid: SML2020SP011 – fundername: Key-Area Research and Development Program of Guangdong Province grantid: 2020B090921003 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-4b5c7037e9744805ffdc8de5f8fe24d749ee1cc56416ce6e47c8079224308f2e3 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 06:00:13 EDT 2025 Tue Jul 01 00:41:17 EDT 2025 Thu Apr 24 23:08:00 EDT 2025 Wed Aug 27 02:23:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-4b5c7037e9744805ffdc8de5f8fe24d749ee1cc56416ce6e47c8079224308f2e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3883-2024 0000-0003-0137-9270 0000-0002-4157-8605 |
PQID | 2697571471 |
PQPubID | 85433 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2697571471 crossref_primary_10_1109_TCSVT_2022_3148257 crossref_citationtrail_10_1109_TCSVT_2022_3148257 ieee_primary_9698196 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 ref52 ref11 ref10 ref17 ref16 ref19 ref18 krizhevsky (ref34) 2012; 25 liu (ref12) 2021 ref51 ref50 wang (ref38) 2021 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref9 ref4 ref6 ref5 ref40 ref35 ref37 ref36 ref31 gu (ref7) 2015; 53 ref33 ref32 ref2 ref1 ref39 mäyrä (ref3) 2021; 256 li (ref24) 2020 sabour (ref43) 2017; 30 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 chen (ref30) 2017 |
References_xml | – ident: ref5 doi: 10.1016/j.scitotenv.2021.146469 – ident: ref41 doi: 10.1109/TGRS.2007.905311 – year: 2020 ident: ref24 article-title: A³CLNN: Spatial, spectral and multiscale attention ConvLSTM neural network for multisource remote sensing data classification publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref19 doi: 10.1109/TGRS.2019.2907932 – ident: ref46 doi: 10.1109/IGARSS.2017.8127079 – ident: ref16 doi: 10.1109/TCSVT.2017.2746684 – ident: ref36 doi: 10.1109/CVPR46437.2021.01214 – ident: ref26 doi: 10.1109/CVPRW50498.2020.00054 – volume: 25 start-page: 1097 year: 2012 ident: ref34 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref25 doi: 10.1109/TGRS.2020.2969024 – ident: ref35 doi: 10.1109/CVPR.2017.195 – ident: ref22 doi: 10.1109/TCYB.2018.2864670 – year: 2021 ident: ref12 article-title: Global-local balanced low-rank approximation of hyperspectral images for classification publication-title: IEEE Trans Circuits Syst Video Technol – ident: ref18 doi: 10.1109/TIP.2018.2867198 – ident: ref47 doi: 10.1016/j.neucom.2005.12.126 – ident: ref44 doi: 10.1109/JSTARS.2015.2432037 – ident: ref21 doi: 10.1109/JSTARS.2021.3054392 – ident: ref11 doi: 10.1109/LGRS.2018.2816958 – ident: ref17 doi: 10.1109/TCSVT.2020.2975566 – ident: ref45 doi: 10.1109/TGRS.2017.2686450 – ident: ref52 doi: 10.1109/LGRS.2017.2704625 – ident: ref13 doi: 10.1080/15481603.2017.1364837 – ident: ref8 doi: 10.1109/TIT.1968.1054102 – ident: ref42 doi: 10.1109/TGRS.2018.2794326 – ident: ref50 doi: 10.1109/TGRS.2017.2726901 – ident: ref20 doi: 10.1109/TIP.2021.3055613 – ident: ref29 doi: 10.1109/CVPR.2017.75 – volume: 256 year: 2021 ident: ref3 article-title: Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks publication-title: Remote Sens Environ doi: 10.1016/j.rse.2021.112322 – ident: ref1 doi: 10.1109/TCSVT.2021.3056725 – ident: ref14 doi: 10.3390/rs9080868 – ident: ref31 doi: 10.1109/CVPR46437.2021.01132 – ident: ref32 doi: 10.1109/ICCV.2017.89 – ident: ref23 doi: 10.1109/TGRS.2017.2756851 – ident: ref49 doi: 10.3390/f11030303 – year: 2017 ident: ref30 article-title: Rethinking atrous convolution for semantic image segmentation publication-title: arXiv 1706 05587 – ident: ref51 doi: 10.1109/LGRS.2018.2869888 – volume: 53 start-page: 5312 year: 2015 ident: ref7 article-title: A novel MKL model of integrating LiDAR data and MSI for urban area classification publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2015.2421051 – ident: ref10 doi: 10.1109/TCSVT.2020.3027616 – ident: ref15 doi: 10.1109/JSTARS.2019.2913206 – ident: ref4 doi: 10.1016/j.rse.2019.111323 – ident: ref39 doi: 10.1109/TCSVT.2021.3054584 – ident: ref37 doi: 10.1109/LGRS.2022.3156622 – volume: 30 start-page: 1 year: 2017 ident: ref43 article-title: Dynamic routing between capsules publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref28 doi: 10.1109/TGRS.2018.2860125 – ident: ref40 doi: 10.1109/LGRS.2008.2001282 – ident: ref33 doi: 10.1109/CVPR.2019.00953 – ident: ref48 doi: 10.1109/TGRS.2020.2982064 – ident: ref6 doi: 10.1109/JSTSP.2012.2208177 – ident: ref2 doi: 10.1016/j.inffus.2016.05.004 – year: 2021 ident: ref38 article-title: UNFusion: A unified multi-scale densely connected network for infrared and visible image fusion publication-title: IEEE Trans Circuits Syst Video Technol – ident: ref9 doi: 10.1109/LGRS.2017.2687519 – ident: ref27 doi: 10.1109/IGARSS.2017.8127330 |
SSID | ssj0014847 |
Score | 2.6376326 |
Snippet | Multimodal data fusion, e.g., hyperspectral image (HSI) and light detection and ranging (LiDAR) data fusion, plays an important role in object recognition and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5411 |
SubjectTerms | adaptive mutual-learning Adaptive systems and multimodal data classification Channels Classification Convolution Convolutional neural networks data fusion Data integration Feature extraction Hyperspectral imaging Involution networks Kernel Laser radar Learning Lidar Modules Object recognition Radar data Spatial data Synthetic aperture radar Tensors |
Title | AM³Net: Adaptive Mutual-Learning-Based Multimodal Data Fusion Network |
URI | https://ieeexplore.ieee.org/document/9698196 https://www.proquest.com/docview/2697571471 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NThsxEB4FTu2BQgERCGgP3IqT_fGubW4hbRQhJZcGlNtq1x5zgCao7F76Wn2DPhlj7yaiBaHefLAta8b2N2PPfANwLpKk0FGELEWFjBdcMWnCkIlCliLRScJ9-bbpLJvc8OtFuujAxSYXBhF98Bn2XdP_5ZuVrt1T2UBligAs24ItctyaXK3NjwGXvpgYmQsRk4Rj6wSZUA3mo--3c3IF45g8VE4ukfgLhHxVlVdXsceX8SeYrlfWhJXc9-uq7Otf_5A2_u_Sd2GnNTSDYbMz9qCDy8_w8QX94D6Mh9M_v2dYXQZDUzy6ey-Y1i6fhLWsq3fsikDOBD5L98fK0Hxfi6oIxrV7YwtmTQj5AdyMv81HE9bWVWA6VmnFeJlqOugCyZfgMkytNVoaTK20GHMjuEKMtE4zMtY0ZsiFlqFQBPZJKG2MySFsL1dLPIJAWRVZrhJZEsw5pnbr2HiMJKOsjGyGXYjWgs51Szrual885N75CFXulZM75eStcrrwZTPmsaHceLf3vpP2pmcr6C701vrM21P5lMeZEqmICI-P3x51Ah_c3E2AXw-2q581npLRUZVnfrc9Ayeh0UU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NUhQxEO4CPIAH_5ByEXUO3iTL_CSTxNsKbi3I7MXF4jY1k3Q4oLsUzFx4Ld_AJ7OTmd1SpChvc0gyqe4kX3fS_TXAe5lllUkSZAI1Ml5xzZSNYyYrVcvMZBkP5duKaT454yfn4nwN9le5MIgYgs9w6D_DW75dmNZflR3oXBOA5evwiHBfpF221urNgKtQTowMhoQpQrJlikysD2aHX7_NyBlMU_JROTlF8i8YCnVV_jmMA8KMn0KxnFsXWHI5bJt6aG7v0Db-7-SfwZPe1IxG3dp4Dms4fwGP_yAg3IbxqPj1c4rNx2hkqyt_8kVF6zNKWM-7esE-EczZKOTp_lhYGu-oaqpo3PpbtmjaBZG_hLPx59nhhPWVFZhJtWgYr4WhrS6RvAmuYuGcNcqicMphyq3kGjExRuRkrhnMkUujYqkJ7rNYuRSzHdiYL-b4CiLtdOK4zlRNQOe52p3n47GKzLI6cTkOIFkKujQ97bivfvG9DO5HrMugnNIrp-yVM4APqz5XHenGg623vbRXLXtBD2Bvqc-y35c3ZZprKWRCiLx7f693sDmZFafl6fH0y2vY8v_pwv32YKO5bvENmSBN_TasvN9Bh9SP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AM%C2%B3Net%3A+Adaptive+Mutual-Learning-Based+Multimodal+Data+Fusion+Network&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Wang%2C+Jinping&rft.au=Li%2C+Jun&rft.au=Shi%2C+Yanli&rft.au=Lai%2C+Jianhuang&rft.date=2022-08-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=8&rft.spage=5411&rft.epage=5426&rft_id=info:doi/10.1109%2FTCSVT.2022.3148257&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2022_3148257 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |