Camouflaged Object Detection via Context-Aware Cross-Level Fusion

Camouflaged object detection (COD) aims to identify the objects that conceal themselves in natural scenes. Accurate COD suffers from a number of challenges associated with low boundary contrast and the large variation of object appearances, e.g., object size and shape. To address these challenges, w...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 10; pp. 6981 - 6993
Main Authors Chen, Geng, Liu, Si-Jie, Sun, Yu-Jia, Ji, Ge-Peng, Wu, Ya-Feng, Zhou, Tao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Camouflaged object detection (COD) aims to identify the objects that conceal themselves in natural scenes. Accurate COD suffers from a number of challenges associated with low boundary contrast and the large variation of object appearances, e.g., object size and shape. To address these challenges, we propose a novel Context-aware Cross-level Fusion Network (<inline-formula> <tex-math notation="LaTeX">\text{C}^{2}\text{F} </tex-math></inline-formula>-Net), which fuses context-aware cross-level features for accurately identifying camouflaged objects. Specifically, we compute informative attention coefficients from multi-level features with our Attention-induced Cross-level Fusion Module (ACFM), which further integrates the features under the guidance of attention coefficients. We then propose a Dual-branch Global Context Module (DGCM) to refine the fused features for informative feature representations by exploiting rich global context information. Multiple ACFMs and DGCMs are integrated in a cascaded manner for generating a coarse prediction from high-level features. The coarse prediction acts as an attention map to refine the low-level features before passing them to our Camouflage Inference Module (CIM) to generate the final prediction. We perform extensive experiments on three widely used benchmark datasets and compare <inline-formula> <tex-math notation="LaTeX">\text{C}^{2}\text{F} </tex-math></inline-formula>-Net with state-of-the-art (SOTA) models. The results show that <inline-formula> <tex-math notation="LaTeX">\text{C}^{2}\text{F} </tex-math></inline-formula>-Net is an effective COD model and outperforms SOTA models remarkably. Further, an evaluation on polyp segmentation datasets demonstrates the promising potentials of our <inline-formula> <tex-math notation="LaTeX">\text{C}^{2}\text{F} </tex-math></inline-formula>-Net in COD downstream applications. Our code is publicly available at: https://github.com/Ben57882/C2FNet-TSCVT
AbstractList Camouflaged object detection (COD) aims to identify the objects that conceal themselves in natural scenes. Accurate COD suffers from a number of challenges associated with low boundary contrast and the large variation of object appearances, e.g., object size and shape. To address these challenges, we propose a novel Context-aware Cross-level Fusion Network ([Formula Omitted]-Net), which fuses context-aware cross-level features for accurately identifying camouflaged objects. Specifically, we compute informative attention coefficients from multi-level features with our Attention-induced Cross-level Fusion Module (ACFM), which further integrates the features under the guidance of attention coefficients. We then propose a Dual-branch Global Context Module (DGCM) to refine the fused features for informative feature representations by exploiting rich global context information. Multiple ACFMs and DGCMs are integrated in a cascaded manner for generating a coarse prediction from high-level features. The coarse prediction acts as an attention map to refine the low-level features before passing them to our Camouflage Inference Module (CIM) to generate the final prediction. We perform extensive experiments on three widely used benchmark datasets and compare [Formula Omitted]-Net with state-of-the-art (SOTA) models. The results show that [Formula Omitted]-Net is an effective COD model and outperforms SOTA models remarkably. Further, an evaluation on polyp segmentation datasets demonstrates the promising potentials of our [Formula Omitted]-Net in COD downstream applications. Our code is publicly available at: https://github.com/Ben57882/C2FNet-TSCVT
Camouflaged object detection (COD) aims to identify the objects that conceal themselves in natural scenes. Accurate COD suffers from a number of challenges associated with low boundary contrast and the large variation of object appearances, e.g., object size and shape. To address these challenges, we propose a novel Context-aware Cross-level Fusion Network (<inline-formula> <tex-math notation="LaTeX">\text{C}^{2}\text{F} </tex-math></inline-formula>-Net), which fuses context-aware cross-level features for accurately identifying camouflaged objects. Specifically, we compute informative attention coefficients from multi-level features with our Attention-induced Cross-level Fusion Module (ACFM), which further integrates the features under the guidance of attention coefficients. We then propose a Dual-branch Global Context Module (DGCM) to refine the fused features for informative feature representations by exploiting rich global context information. Multiple ACFMs and DGCMs are integrated in a cascaded manner for generating a coarse prediction from high-level features. The coarse prediction acts as an attention map to refine the low-level features before passing them to our Camouflage Inference Module (CIM) to generate the final prediction. We perform extensive experiments on three widely used benchmark datasets and compare <inline-formula> <tex-math notation="LaTeX">\text{C}^{2}\text{F} </tex-math></inline-formula>-Net with state-of-the-art (SOTA) models. The results show that <inline-formula> <tex-math notation="LaTeX">\text{C}^{2}\text{F} </tex-math></inline-formula>-Net is an effective COD model and outperforms SOTA models remarkably. Further, an evaluation on polyp segmentation datasets demonstrates the promising potentials of our <inline-formula> <tex-math notation="LaTeX">\text{C}^{2}\text{F} </tex-math></inline-formula>-Net in COD downstream applications. Our code is publicly available at: https://github.com/Ben57882/C2FNet-TSCVT
Author Chen, Geng
Wu, Ya-Feng
Zhou, Tao
Ji, Ge-Peng
Liu, Si-Jie
Sun, Yu-Jia
Author_xml – sequence: 1
  givenname: Geng
  orcidid: 0000-0001-8350-6581
  surname: Chen
  fullname: Chen, Geng
  email: geng.chen.cs@gmail.com
  organization: Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Si-Jie
  surname: Liu
  fullname: Liu, Si-Jie
  email: sijieliu_123@sina.com
  organization: Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Yu-Jia
  orcidid: 0000-0002-0101-2789
  surname: Sun
  fullname: Sun, Yu-Jia
  email: thograce@163.com
  organization: School of Computer Science, Inner Mongolia University, Hohhot, ChinaChina
– sequence: 4
  givenname: Ge-Peng
  orcidid: 0000-0001-7092-2877
  surname: Ji
  fullname: Ji, Ge-Peng
  email: gepengai.ji@gmail.com
  organization: Artificial Intelligence Institute, School of Computer Science, Wuhan University, Wuhan, China
– sequence: 5
  givenname: Ya-Feng
  surname: Wu
  fullname: Wu, Ya-Feng
  email: yfwu@nwpu.edu.cn
  organization: Northwestern Polytechnical University, Xi'an, China
– sequence: 6
  givenname: Tao
  surname: Zhou
  fullname: Zhou, Tao
  email: taozhou.ai@gmail.com
  organization: Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
BookMark eNp9kDFPwzAQhS1UJErhD8ASiTnlbMeyPVaBAlKlDhRWy3EuKFWaFMct8O9xaMXAwPRueO_u3XdORm3XIiFXFKaUgr5d5c-vqykDxqacSkUlPyFjKoRKGQMxijMImipGxRk57_s1AM1UJsdklttNt6sa-4ZlsizW6EJyhyFK3bXJvrZJ3rUBP0M6-7Aek9x3fZ8ucI9NMt_10XRBTivb9Hh51Al5md-v8sd0sXx4ymeL1DEtQppZwUtbOsvLwlFeaQGMV4XE0gJYLbVVFQOnuQJdVBIxfsGRI9DY05WOT8jNYe_Wd-877INZdzvfxpOGSUYzpoBn0cUOLjcU9ViZra831n8ZCmZAZX5QmQGVOaKKIfUn5OpgBwLB27r5P3p9iNaI-HtLS8Wy2OYbY0V4vw
CODEN ITCTEM
CitedBy_id crossref_primary_10_3390_electronics14040779
crossref_primary_10_1007_s11042_023_17751_2
crossref_primary_10_1016_j_cviu_2024_103932
crossref_primary_10_1016_j_inffus_2024_102871
crossref_primary_10_1109_TCSVT_2023_3349007
crossref_primary_10_32604_cmc_2024_055327
crossref_primary_10_1007_s00371_024_03688_6
crossref_primary_10_1016_j_compbiomed_2024_108268
crossref_primary_10_1109_TCSVT_2024_3404005
crossref_primary_10_1109_TETCI_2024_3375022
crossref_primary_10_1109_TCSVT_2023_3241993
crossref_primary_10_1109_TMM_2023_3291823
crossref_primary_10_1109_TSMC_2025_3526234
crossref_primary_10_1007_s40747_024_01455_7
crossref_primary_10_1016_j_ecoinf_2024_102893
crossref_primary_10_1016_j_eswa_2024_124747
crossref_primary_10_1109_JSEN_2024_3401722
crossref_primary_10_1109_ACCESS_2024_3421296
crossref_primary_10_1016_j_patcog_2024_110813
crossref_primary_10_1109_LSP_2023_3348390
crossref_primary_10_3390_app131810295
crossref_primary_10_1007_s11263_025_02406_6
crossref_primary_10_3788_gzxb20245308_0810002
crossref_primary_10_1109_TMM_2024_3521761
crossref_primary_10_1016_j_neucom_2023_127050
crossref_primary_10_1109_TIP_2023_3308295
crossref_primary_10_1016_j_imavis_2025_105470
crossref_primary_10_1016_j_eswa_2024_125398
crossref_primary_10_1109_TCSVT_2023_3349209
crossref_primary_10_1007_s10489_024_05694_6
crossref_primary_10_1007_s11042_024_19891_5
crossref_primary_10_1109_TCYB_2024_3368154
crossref_primary_10_1007_s10489_023_04898_6
crossref_primary_10_1109_TCSVT_2022_3221755
crossref_primary_10_1109_TCSVT_2024_3437437
crossref_primary_10_1016_j_imavis_2025_105517
crossref_primary_10_1007_s00530_024_01475_w
crossref_primary_10_1016_j_imavis_2024_104924
crossref_primary_10_1016_j_engappai_2023_107303
crossref_primary_10_1016_j_engappai_2024_109703
crossref_primary_10_1016_j_jvcir_2024_104208
crossref_primary_10_1109_TII_2023_3327341
crossref_primary_10_1007_s44267_023_00019_6
crossref_primary_10_3390_app14062494
crossref_primary_10_3390_s24185903
crossref_primary_10_1109_LSP_2024_3356416
crossref_primary_10_1007_s00371_024_03786_5
crossref_primary_10_1016_j_cviu_2025_104321
crossref_primary_10_1007_s11227_024_06376_3
crossref_primary_10_1016_j_dt_2023_12_011
crossref_primary_10_1016_j_neucom_2024_129249
crossref_primary_10_1016_j_eswa_2025_126451
crossref_primary_10_1109_TCSVT_2023_3245883
crossref_primary_10_1016_j_imavis_2024_105382
crossref_primary_10_3390_s23135789
crossref_primary_10_1109_TCSVT_2024_3417000
crossref_primary_10_1109_TIM_2024_3497181
crossref_primary_10_1109_TMM_2024_3360710
crossref_primary_10_1109_TCSVT_2024_3370685
crossref_primary_10_1016_j_knosys_2025_113070
crossref_primary_10_1016_j_eswa_2024_123558
crossref_primary_10_1109_TCSVT_2024_3462465
crossref_primary_10_1145_3711869
crossref_primary_10_1109_TCSVT_2023_3255304
crossref_primary_10_3390_app15010173
crossref_primary_10_1016_j_knosys_2025_113158
crossref_primary_10_1145_3712598
crossref_primary_10_1007_s10489_025_06264_0
crossref_primary_10_1016_j_imavis_2024_105218
crossref_primary_10_1016_j_displa_2024_102957
crossref_primary_10_1016_j_jvcir_2024_104061
crossref_primary_10_1109_LSP_2023_3286787
crossref_primary_10_1109_TCSVT_2023_3264442
crossref_primary_10_1016_j_patcog_2023_109555
crossref_primary_10_1109_TCSVT_2023_3318672
crossref_primary_10_3390_app14178063
crossref_primary_10_1016_j_compbiomed_2024_108930
crossref_primary_10_1016_j_dsp_2025_105167
crossref_primary_10_1007_s10489_024_05369_2
crossref_primary_10_1109_TIP_2022_3217695
crossref_primary_10_26599_AIR_2024_9150044
crossref_primary_10_1007_s00138_024_01588_2
crossref_primary_10_1016_j_imavis_2024_105247
crossref_primary_10_1109_TIM_2025_3527621
crossref_primary_10_1109_TCSVT_2023_3234578
crossref_primary_10_1109_TII_2024_3426979
crossref_primary_10_1016_j_imavis_2024_104953
crossref_primary_10_1016_j_neucom_2025_129523
crossref_primary_10_1016_j_dsp_2025_105172
crossref_primary_10_1109_TMM_2023_3274933
crossref_primary_10_1007_s00371_025_03859_z
crossref_primary_10_1016_j_measurement_2024_115210
crossref_primary_10_1109_TCSVT_2024_3432882
crossref_primary_10_1109_TCSVT_2023_3308964
Cites_doi 10.1109/CVPR.2019.00657
10.1109/CVPR.2014.39
10.1609/aaai.v34i07.6916
10.1007/s11548-013-0926-3
10.1109/CVPR.2019.00511
10.1007/978-3-030-69532-3_30
10.1109/EMBC.2019.8857339
10.1109/TIP.2020.3028289
10.1016/j.compmedimag.2015.02.007
10.1109/TGRS.2021.3123984
10.1007/978-3-030-87193-2_14
10.1109/TMI.2020.2996645
10.1007/978-3-030-69525-5_42
10.1109/TMI.2019.2959609
10.1109/TCSVT.2016.2555719
10.1007/978-3-030-32239-7_34
10.1007/978-3-030-59725-2_26
10.1109/ICCV.2017.487
10.1109/TCYB.2017.2771488
10.1109/CVPR.2019.00326
10.1109/CVPR.2017.106
10.1007/s11633-022-1371-y
10.1109/ACCESS.2021.3064443
10.1109/ISM46123.2019.00049
10.1007/978-3-030-58610-2_17
10.1109/TCSVT.2022.3142771
10.1609/aaai.v34i07.6633
10.1109/ICCV.2017.322
10.24963/ijcai.2021/142
10.1109/CVPR46437.2021.00994
10.1117/12.2254361
10.1109/TPAMI.2021.3050918
10.1109/CVPR.2019.00403
10.1109/TPAMI.2019.2938758
10.1109/WACV48630.2021.00360
10.5402/2011/173176
10.1109/CVPR.2019.00404
10.1109/CVPR.2019.00766
10.1109/EMBC.2018.8512197
10.1109/ISBI.2015.7163821
10.1155/2017/4037190
10.1109/TPAMI.2021.3085766
10.1007/978-3-319-24574-4_28
10.1109/ICCV.2019.00069
10.1109/TPAMI.2021.3060412
10.1109/TMM.2021.3069297
10.1109/TIP.2021.3065822
10.24963/ijcai.2018/97
10.1109/CVPR.2018.00326
10.1360/SSI-2020-0370
10.1109/CVPR42600.2020.00285
10.1109/CVPR.2018.00187
10.1109/TCSVT.2021.3124952
10.1109/ICCV.2019.00887
10.1109/CVPR.2018.00813
10.1109/TIP.2019.2959253
10.1016/j.cviu.2019.04.006
10.1016/j.patcog.2022.108644
10.1109/CVPR.2017.660
10.1016/j.patcog.2021.108414
10.1109/CVPR46437.2021.00866
10.1109/TIP.2020.3042084
10.1109/TCSVT.2021.3126591
10.1109/TMI.2014.2314959
10.1142/S021946782050028X
10.1109/CVPR.2019.00320
10.1109/CVPR46437.2021.01142
10.1109/TPAMI.2017.2699184
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3178173
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 6993
ExternalDocumentID 10_1109_TCSVT_2022_3178173
9782434
Genre orig-research
GrantInformation_xml – fundername: Open Project of the Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai Jiao Tong University
  grantid: Scip202102
  funderid: 10.13039/501100004921
– fundername: Fundamental Research Funds for the Central Universities
  grantid: D5000220213
  funderid: 10.13039/501100012226
– fundername: National Science Fund of China
  grantid: 62172228
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-4a53dadca3dbc13f95023fb7eda00a979a8f20c93809bf7ee7813e3e01847cdc3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 04:05:58 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Tue Jul 01 00:41:17 EDT 2025
Wed Aug 27 02:14:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-4a53dadca3dbc13f95023fb7eda00a979a8f20c93809bf7ee7813e3e01847cdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8350-6581
0000-0002-0101-2789
0000-0001-7092-2877
PQID 2721428034
PQPubID 85433
PageCount 13
ParticipantIDs crossref_primary_10_1109_TCSVT_2022_3178173
ieee_primary_9782434
proquest_journals_2721428034
crossref_citationtrail_10_1109_TCSVT_2022_3178173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Li (ref36) 2020
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref26
  doi: 10.1109/CVPR.2019.00657
– ident: ref42
  doi: 10.1109/CVPR.2014.39
– ident: ref57
  doi: 10.1609/aaai.v34i07.6916
– ident: ref51
  doi: 10.1007/s11548-013-0926-3
– ident: ref5
  doi: 10.1109/CVPR.2019.00511
– ident: ref33
  doi: 10.1007/978-3-030-69532-3_30
– ident: ref45
  doi: 10.1109/EMBC.2019.8857339
– ident: ref7
  doi: 10.1109/TIP.2020.3028289
– ident: ref2
  doi: 10.1016/j.compmedimag.2015.02.007
– ident: ref10
  doi: 10.1109/TGRS.2021.3123984
– ident: ref29
  doi: 10.1007/978-3-030-87193-2_14
– ident: ref20
  doi: 10.1109/TMI.2020.2996645
– ident: ref54
  doi: 10.1007/978-3-030-69525-5_42
– ident: ref68
  doi: 10.1109/TMI.2019.2959609
– ident: ref64
  doi: 10.1109/TCSVT.2016.2555719
– ident: ref21
  doi: 10.1007/978-3-030-32239-7_34
– ident: ref17
  doi: 10.1007/978-3-030-59725-2_26
– ident: ref12
  doi: 10.1109/ICCV.2017.487
– ident: ref9
  doi: 10.1109/TCYB.2017.2771488
– ident: ref22
  doi: 10.1109/CVPR.2019.00326
– ident: ref37
  doi: 10.1109/CVPR.2017.106
– ident: ref30
  doi: 10.1007/s11633-022-1371-y
– ident: ref60
  doi: 10.1109/ACCESS.2021.3064443
– ident: ref28
  doi: 10.1109/ISM46123.2019.00049
– ident: ref19
  doi: 10.1007/978-3-030-58610-2_17
– ident: ref49
  doi: 10.1109/TCSVT.2022.3142771
– ident: ref8
  doi: 10.1609/aaai.v34i07.6633
– ident: ref24
  doi: 10.1109/ICCV.2017.322
– ident: ref52
  doi: 10.24963/ijcai.2021/142
– ident: ref35
  doi: 10.1109/CVPR46437.2021.00994
– ident: ref4
  doi: 10.1117/12.2254361
– ident: ref50
  doi: 10.1109/TPAMI.2021.3050918
– ident: ref59
  doi: 10.1109/CVPR.2019.00403
– ident: ref23
  doi: 10.1109/TPAMI.2019.2938758
– ident: ref11
  doi: 10.1109/WACV48630.2021.00360
– year: 2020
  ident: ref36
  article-title: AdaX: Adaptive gradient descent with exponential long term memory
  publication-title: arXiv:2004.09740
– ident: ref32
  doi: 10.5402/2011/173176
– ident: ref38
  doi: 10.1109/CVPR.2019.00404
– ident: ref46
  doi: 10.1109/CVPR.2019.00766
– ident: ref1
  doi: 10.1109/EMBC.2018.8512197
– ident: ref53
  doi: 10.1109/ISBI.2015.7163821
– ident: ref55
  doi: 10.1155/2017/4037190
– ident: ref16
  doi: 10.1109/TPAMI.2021.3085766
– ident: ref48
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref27
  doi: 10.1109/ICCV.2019.00069
– ident: ref18
  doi: 10.1109/TPAMI.2021.3060412
– ident: ref25
  doi: 10.1109/TMM.2021.3069297
– ident: ref58
  doi: 10.1109/TIP.2021.3065822
– ident: ref13
  doi: 10.24963/ijcai.2018/97
– ident: ref39
  doi: 10.1109/CVPR.2018.00326
– ident: ref14
  doi: 10.1360/SSI-2020-0370
– ident: ref15
  doi: 10.1109/CVPR42600.2020.00285
– ident: ref61
  doi: 10.1109/CVPR.2018.00187
– ident: ref3
  doi: 10.1109/TCSVT.2021.3124952
– ident: ref66
  doi: 10.1109/ICCV.2019.00887
– ident: ref56
  doi: 10.1109/CVPR.2018.00813
– ident: ref62
  doi: 10.1109/TIP.2019.2959253
– ident: ref34
  doi: 10.1016/j.cviu.2019.04.006
– ident: ref69
  doi: 10.1016/j.patcog.2022.108644
– ident: ref65
  doi: 10.1109/CVPR.2017.660
– ident: ref31
  doi: 10.1016/j.patcog.2021.108414
– ident: ref43
  doi: 10.1109/CVPR46437.2021.00866
– ident: ref63
  doi: 10.1109/TIP.2020.3042084
– ident: ref47
  doi: 10.1109/TCSVT.2021.3126591
– ident: ref41
  doi: 10.1109/TMI.2014.2314959
– ident: ref44
  doi: 10.1142/S021946782050028X
– ident: ref67
  doi: 10.1109/CVPR.2019.00320
– ident: ref40
  doi: 10.1109/CVPR46437.2021.01142
– ident: ref6
  doi: 10.1109/TPAMI.2017.2699184
SSID ssj0014847
Score 2.6897545
Snippet Camouflaged object detection (COD) aims to identify the objects that conceal themselves in natural scenes. Accurate COD suffers from a number of challenges...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6981
SubjectTerms Camouflaged object detection
Computational modeling
Context
context-aware deep learning
Datasets
Deep learning
Feature extraction
feature fusion
Image segmentation
Mathematical models
Modules
Object detection
Object recognition
polyp segmentation
Task analysis
Title Camouflaged Object Detection via Context-Aware Cross-Level Fusion
URI https://ieeexplore.ieee.org/document/9782434
https://www.proquest.com/docview/2721428034
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8QgEJ7onvTg27i6mh68aVdaWoHjZnVjjI-Dq_HWUBgS46ZrtKuJv16gj_iK8dbDQOgMMHzM8A3APnJlbWvsSsPYhC50FgouSZgSmlv_wMixcRHdy6vjs9vk_D69n4PD9i0MIvrkM-y7Tx_L11M1c1dljg02TmgyD_MWuFVvtdqIQcJ9MTF7XIhCbv1Y80CGiKPx8OZubKFgHFuEynjE6Bcn5Kuq_NiKvX8ZLcNlM7IqreSxPyvzvnr_Rtr436GvwFJ90AwG1cxYhTks1mDxE_3gOgyG0gJ_M7Fbig6uc3cjE5xg6ZOziuD1QQaeu8pC48GbfMZg6H4mvHBpRsFo5q7ZNuB2dDoenoV1SYVQxSItw0SmVEutJNW5iqgRqfXZJmeoJSFSMCG5iYkSlBORG4Zo1UWRIrFAkCmt6CZ0immBWxBozlSaIhImRRIrwXNuLNzVOkqcqnUXokbHmar5xl3Zi0nmcQcRmbdL5oSz2i5dOGjbPFVsG39KrztFt5K1jrvQa0yZ1QvyJYuZ55YjNNn-vdUOLLi-qzy9HnTK5xnu2vNGme_5ifYBJJrPwA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3BbtQwEB2VcgAOFCiIhQI-wAll8dpJbR84rLastnRbDmxRb8GxxxKi7KI2oYJv4Vf4t46d7KoFxK0StxxsR_FMPPNmxm8AnqN2JNtAfxqKkMXUWWa05VnBZUX2QfHtEDO6-wfbk8P87VFxtAY_V3dhEDEVn2E_PqZcvl-4JobKIhusyGXelVDu4fczAminr3d3SJovhBi_mY0mWddDIHPCFHWW20J6652VvnIDGUxBRipUCr3l3BplrA6COyM1N1VQiErHuCByQj7KeSdp3WtwnfyMQrS3w1Y5ilyn9mXkoAwyTZZzeSWHm1ez0fsPMwKfQhAmphWVvGT2Uh-XPw7_ZNHGG_BruRdtIcvnflNXfffjN5rI_3Wz7sDtzpVmw1b378Iazu_BrQsEi5swHNkviyYc06Hp2bsqxpzYDtap_GzOvn2yLLFzEfgfntkTZKO4edk0FlKxcRMDiffh8Eq-4QGszxdzfAjMa-WKApEra3LhjK50IEDv_SCPovU9GCxlWrqOUT029jguE7Lipkx6UMbBZacHPXi5mvO15RP55-jNKNjVyE6mPdhaqk7ZHTmnpVCJPY_L_NHfZz2DG5PZ_rSc7h7sPYab8T1tVeIWrNcnDT4h76quniYlZ_DxqhXlHGyHLzE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Camouflaged+Object+Detection+via+Context-Aware+Cross-Level+Fusion&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Chen%2C+Geng&rft.au=Liu%2C+Si-Jie&rft.au=Sun%2C+Yu-Jia&rft.au=Ji%2C+Ge-Peng&rft.date=2022-10-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=32&rft.issue=10&rft.spage=6981&rft.epage=6993&rft_id=info:doi/10.1109%2FTCSVT.2022.3178173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2022_3178173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon