Image Quality Score Distribution Prediction via Alpha Stable Model
Based on potentially subjective and diverse image quality scores given by a group of subjects, we propose to predict the distribution of image quality scores rather than the mean opinion score (MOS) of image quality. Therefore, in this paper, we use an alpha stable model to parameterize the image qu...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 33; no. 6; p. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Based on potentially subjective and diverse image quality scores given by a group of subjects, we propose to predict the distribution of image quality scores rather than the mean opinion score (MOS) of image quality. Therefore, in this paper, we use an alpha stable model to parameterize the image quality score distribution (IQSD), and propose an objective method to predict the alpha-stable-model-based IQSD. First, the LIVE database is re-recorded. Specifically, we invite a large group of subjects (187 valid subjects) to evaluate the quality of all 808 images in the LIVE database, with their scores forming reliable IQSDs. All images in the LIVE database and their collected subjective quality scores form a new image quality assessment database, named the SJTU IQSD database. We then propose a framework and algorithm to predict the alpha-stable-model-based IQSD, in which quality features are extracted from the structural and natural statistical information of each image, and support vector regressors are trained to predict the alpha stable model parameters. Experiments carried out on the SJTU IQSD database verify the feasibility of using the alpha stable model to describe the IQSD, and the experimental results show that the alpha-stable-model-based IQSD can reflect a large amount of subjective information on image quality. We also prove that the objective alpha-stable-model-based IQSD prediction method is effective. The code and the SJTU IQSD database can be downloaded at 'https://github.com/YixuanGao98/Image-Quality-Score-Distribution-Prediction-via-Alpha-Stable-Model.git'. |
---|---|
AbstractList | Based on potentially subjective and diverse image quality scores given by a group of subjects, we propose to predict the distribution of image quality scores rather than the mean opinion score (MOS) of image quality. Therefore, in this paper, we use an alpha stable model to parameterize the image quality score distribution (IQSD), and propose an objective method to predict the alpha-stable-model-based IQSD. First, the LIVE database is re-recorded. Specifically, we invite a large group of subjects (187 valid subjects) to evaluate the quality of all 808 images in the LIVE database, with their scores forming reliable IQSDs. All images in the LIVE database and their collected subjective quality scores form a new image quality assessment database, named the SJTU IQSD database. We then propose a framework and algorithm to predict the alpha-stable-model-based IQSD, in which quality features are extracted from the structural and natural statistical information of each image, and support vector regressors are trained to predict the alpha stable model parameters. Experiments carried out on the SJTU IQSD database verify the feasibility of using the alpha stable model to describe the IQSD, and the experimental results show that the alpha-stable-model-based IQSD can reflect a large amount of subjective information on image quality. We also prove that the objective alpha-stable-model-based IQSD prediction method is effective. The code and the SJTU IQSD database can be downloaded at ‘ https://github.com/YixuanGao98/Image-Quality-Score-Distribution-Prediction-via-Alpha-Stable-Model.git ’. |
Author | Min, Xiongkuo Gao, Yixuan Zhu, Wenhan Zhang, Xiao-Ping Zhai, Guangtao |
Author_xml | – sequence: 1 givenname: Yixuan orcidid: 0000-0002-6292-0529 surname: Gao fullname: Gao, Yixuan organization: Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, China – sequence: 2 givenname: Xiongkuo orcidid: 0000-0001-5693-0416 surname: Min fullname: Min, Xiongkuo organization: Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, China – sequence: 3 givenname: Wenhan orcidid: 0000-0001-8781-1110 surname: Zhu fullname: Zhu, Wenhan organization: Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, China – sequence: 4 givenname: Xiao-Ping orcidid: 0000-0001-5241-0069 surname: Zhang fullname: Zhang, Xiao-Ping organization: Tsinghua Berkeley Shenzhen Institute, China – sequence: 5 givenname: Guangtao orcidid: 0000-0001-8165-9322 surname: Zhai fullname: Zhai, Guangtao organization: Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, China |
BookMark | eNp9kM1OwzAQhC1UJNrCC8AlEucUex0n9rGUApWKALVwtZzEBldpUmwHqW9P-iMOHDjtaDXf7mgGqFc3tUbokuARIVjcLCeL9-UIMMCIAghOxQnqE8Z4DIBZr9OYkZgDYWdo4P0KY5LwJOuj29lafejotVWVDdtoUTROR3fWB2fzNtimjl6cLm2xl99WReNq86miRVB5paOnptTVOTo1qvL64jiH6O1-upw8xvPnh9lkPI8LECzEiVBpyVKT6i6xIYCN6jJkRbfJDUu5ooJwVQItmMmzkuQCOE_zTOOkZGCADtH14e7GNV-t9kGumtbV3UsJHCgRCcWsc_GDq3CN904bWdigdvGDU7aSBMtdY3LfmNw1Jo-NdSj8QTfOrpXb_g9dHSCrtf4FhOAiIYz-AFx-eFY |
CODEN | ITCTEM |
CitedBy_id | crossref_primary_10_1109_TCSVT_2023_3319020 crossref_primary_10_1016_j_entcom_2024_100899 crossref_primary_10_1016_j_sigpro_2024_109769 crossref_primary_10_1109_TCSVT_2024_3485684 crossref_primary_10_1109_TCSVT_2023_3295375 crossref_primary_10_1016_j_displa_2023_102625 crossref_primary_10_1016_j_displa_2024_102744 crossref_primary_10_1109_TMM_2023_3338412 crossref_primary_10_1016_j_displa_2023_102585 crossref_primary_10_1016_j_displa_2024_102652 crossref_primary_10_1145_3664198 crossref_primary_10_1109_TIP_2024_3461956 crossref_primary_10_1109_TMM_2023_3325719 crossref_primary_10_1016_j_displa_2024_102729 |
Cites_doi | 10.1109/ICCMS.2010.309 10.1145/3470970 10.1109/TIP.2011.2161092 10.1109/TCSVT.2017.2710419 10.1109/TIP.2012.2191563 10.1007/s11432-019-2757-1 10.1088/0954-898X/5/4/006 10.1016/j.displa.2021.102115 10.1109/TMM.2019.2902097 10.1109/TMM.2019.2904879 10.1109/LSP.2012.2227726 10.1016/j.spl.2014.03.008 10.1145/1961189.1961199 10.1109/TMM.2018.2807589 10.1145/3503161.3547872 10.1109/TCSVT.2018.2886771 10.1109/TCSVT.2011.2133770 10.1109/TIP.2006.881959 10.1016/j.displa.2021.102101 10.1109/CVPR.2016.90 10.1109/LSP.2010.2043888 10.1109/TCSVT.2016.2539658 10.1109/TIP.2011.2147325 10.1109/ICIP42928.2021.9506196 10.1109/AMUEM.2007.4362568 10.1145/3464393 10.1109/TCSVT.2016.2602764 10.1109/TMM.2017.2729020 10.1109/TMM.2017.2788206 10.1109/TIP.2020.2966081 10.1016/j.displa.2021.102045 10.1109/CVPRW56347.2022.00126 10.1109/TIP.2017.2735192 10.1109/TBC.2018.2816783 10.1112/blms/28.5.554 10.1109/QoMEX.2011.6065690 10.1016/j.sigpro.2017.10.025 10.1109/ICIP.2010.5651833 10.1109/TPAMI.2002.1017623 10.1016/j.image.2016.05.008 10.1016/j.csda.2013.07.028 10.1109/TCSVT.2019.2891159 10.1109/TIP.2012.2214050 10.1515/9783110935974 10.1109/CVPR.2016.308 10.1109/TIP.2011.2109730 10.1109/QoMEX.2015.7148142 10.1109/TCSVT.2019.2900472 10.1109/TVCG.2014.2325047 10.1109/TIP.2018.2831899 10.1109/CVPR.2014.224 10.1109/TIP.2003.819861 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2022.3229839 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TCSVT_2022_3229839 9989415 |
Genre | orig-research |
GrantInformation_xml | – fundername: Shanghai Pujiang Program grantid: 22PJ1407400 – fundername: Shanghai Municipal Science and Technology Major Project grantid: 2021SHZDZX0102 – fundername: National Natural Science Foundation of China grantid: 61831015; 62225112; 62271312 funderid: 10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2021YFE0206700 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 ICLAB IFJZH RIG VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-49a6d56f6e110f120fa1487c6f6bf568a3918ad23c5fb7d1b92886b7e04d52f23 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 08:34:01 EDT 2025 Thu Apr 24 23:12:04 EDT 2025 Tue Jul 01 00:41:19 EDT 2025 Wed Aug 27 02:29:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-49a6d56f6e110f120fa1487c6f6bf568a3918ad23c5fb7d1b92886b7e04d52f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8165-9322 0000-0001-5241-0069 0000-0002-6292-0529 0000-0001-5693-0416 0000-0001-8781-1110 |
PQID | 2823194305 |
PQPubID | 85433 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2823194305 crossref_citationtrail_10_1109_TCSVT_2022_3229839 crossref_primary_10_1109_TCSVT_2022_3229839 ieee_primary_9989415 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 ref15 ref59 ref14 ref58 feller (ref47) 1972; 135 ref52 ref11 ref10 ref54 chubarau (ref62) 2021 ref17 ref16 ref19 ref18 ref51 ref50 ref48 ref42 ref41 ref44 ref43 ye (ref53) 2012 ref49 howard (ref57) 2017 ref8 liu (ref2) 2011; 21 (ref46) 2002 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref1 ref39 zhang (ref37) 2016 ref24 ref23 ref25 ref20 ref22 simonyan (ref55) 2014 jin (ref38) 2020 liu (ref26) 2011; 21 ref21 ref28 ref27 ref29 sheikh (ref45) 2005 ref60 ref61 |
References_xml | – ident: ref43 doi: 10.1109/ICCMS.2010.309 – ident: ref6 doi: 10.1145/3470970 – ident: ref3 doi: 10.1109/TIP.2011.2161092 – ident: ref32 doi: 10.1109/TCSVT.2017.2710419 – year: 2021 ident: ref62 article-title: VTAMIQ: Transformers for attention modulated image quality assessment publication-title: arXiv 2110 01655 – volume: 135 start-page: 430 year: 1972 ident: ref47 article-title: An introduction to probability theory and its applications publication-title: J Royal Statistical Soc Statistics in Soc – volume: 21 start-page: 1500 year: 2011 ident: ref26 article-title: Image quality assessment based on gradient similarity publication-title: IEEE Trans Image Process – ident: ref21 doi: 10.1109/TIP.2012.2191563 – year: 2014 ident: ref55 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – ident: ref7 doi: 10.1007/s11432-019-2757-1 – ident: ref23 doi: 10.1088/0954-898X/5/4/006 – ident: ref5 doi: 10.1016/j.displa.2021.102115 – ident: ref10 doi: 10.1109/TMM.2019.2902097 – ident: ref59 doi: 10.1109/TMM.2019.2904879 – ident: ref24 doi: 10.1109/LSP.2012.2227726 – ident: ref42 doi: 10.1016/j.spl.2014.03.008 – ident: ref50 doi: 10.1145/1961189.1961199 – start-page: 1098 year: 2012 ident: ref53 article-title: Unsupervised feature learning framework for no-reference image quality assessment publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref30 doi: 10.1109/TMM.2018.2807589 – year: 2002 ident: ref46 publication-title: Methodology for the Subjective Assessment of the Quality of Television Pictures – ident: ref33 doi: 10.1145/3503161.3547872 – ident: ref60 doi: 10.1109/TCSVT.2018.2886771 – volume: 21 start-page: 971 year: 2011 ident: ref2 article-title: Visual attention in objective image quality assessment: Based on eye-tracking data publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2011.2133770 – ident: ref8 doi: 10.1109/TIP.2006.881959 – year: 2020 ident: ref38 article-title: A deep drift-diffusion model for image aesthetic score distribution prediction publication-title: arXiv 2010 07661 – ident: ref17 doi: 10.1016/j.displa.2021.102101 – ident: ref54 doi: 10.1109/CVPR.2016.90 – ident: ref52 doi: 10.1109/LSP.2010.2043888 – ident: ref15 doi: 10.1109/TCSVT.2016.2539658 – ident: ref19 doi: 10.1109/TIP.2011.2147325 – ident: ref1 doi: 10.1109/ICIP42928.2021.9506196 – ident: ref31 doi: 10.1109/AMUEM.2007.4362568 – ident: ref34 doi: 10.1145/3464393 – ident: ref13 doi: 10.1109/TCSVT.2016.2602764 – ident: ref12 doi: 10.1109/TMM.2017.2729020 – ident: ref51 doi: 10.1109/TMM.2017.2788206 – ident: ref11 doi: 10.1109/TIP.2020.2966081 – ident: ref4 doi: 10.1016/j.displa.2021.102045 – ident: ref61 doi: 10.1109/CVPRW56347.2022.00126 – start-page: 1467 year: 2016 ident: ref37 article-title: Photo aesthetic quality assessment via label distribution learning publication-title: Proc IEEE Int Conf Syst Man Cybern (SMC) – ident: ref18 doi: 10.1109/TIP.2017.2735192 – ident: ref29 doi: 10.1109/TBC.2018.2816783 – ident: ref48 doi: 10.1112/blms/28.5.554 – ident: ref35 doi: 10.1109/QoMEX.2011.6065690 – ident: ref14 doi: 10.1016/j.sigpro.2017.10.025 – year: 2017 ident: ref57 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv 1704 04861 – ident: ref39 doi: 10.1109/ICIP.2010.5651833 – ident: ref28 doi: 10.1109/TPAMI.2002.1017623 – ident: ref27 doi: 10.1016/j.image.2016.05.008 – ident: ref44 doi: 10.1016/j.csda.2013.07.028 – ident: ref16 doi: 10.1109/TCSVT.2019.2891159 – ident: ref20 doi: 10.1109/TIP.2012.2214050 – ident: ref49 doi: 10.1515/9783110935974 – ident: ref56 doi: 10.1109/CVPR.2016.308 – ident: ref9 doi: 10.1109/TIP.2011.2109730 – ident: ref36 doi: 10.1109/QoMEX.2015.7148142 – ident: ref22 doi: 10.1109/TCSVT.2019.2900472 – ident: ref40 doi: 10.1109/TVCG.2014.2325047 – ident: ref41 doi: 10.1109/TIP.2018.2831899 – year: 2005 ident: ref45 publication-title: LIVE image quality assessment database release 2 (2005) – ident: ref58 doi: 10.1109/CVPR.2014.224 – ident: ref25 doi: 10.1109/TIP.2003.819861 |
SSID | ssj0014847 |
Score | 2.4838758 |
Snippet | Based on potentially subjective and diverse image quality scores given by a group of subjects, we propose to predict the distribution of image quality scores... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms alpha stable model Data mining Distortion Feature extraction Histograms Image quality Image quality score distribution Predictive models Quality assessment quality features support vector regressors |
Title | Image Quality Score Distribution Prediction via Alpha Stable Model |
URI | https://ieeexplore.ieee.org/document/9989415 https://www.proquest.com/docview/2823194305 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61Jz34qmK1Sg7edNvd7CPJsVZLFSpCW-lt2WQTEGsrdSvorzeTfVBUxFtYEggzSWZmZ-b7EDoXIqGUaddhOlJOYGyII7gbOExEnMmAEl9Do_DwPhpMgrtpOK2hy6oXRilli89UG4Y2l58u5Ap-lXU4oIVDR_mGCdzyXq0qYxAwSyZm3AXPYcaOlQ0yLu-Me6PHsQkFCWmb48sZEIOvGSHLqvLjKbb2pb-DhuXO8rKS5_YqE235-Q208b9b30XbhaOJu_nJ2EM1Nd9HW2vwgw10dftiXhOcw2h84BEgWuJrQNItSLDwwxLyOHb4_pTgLjTmYuOfipnCwKI2O0CT_s24N3AKTgVHEh5mTsCTKA0joxgjGu0RVydGdFSaL0KHEUt87rEkJb4MtaCpJzhhLBJUuUEaEk38Q1SfL-bqCGFGUkE94XJpQjovpUIyyoJQcO1rKWTSRF4p5FgWgOPAezGLbeDh8tgqJgbFxIVimuiiWvOaw238ObsBkq5mFkJuolapy7i4kW8xgXwnYM2Hx7-vOkGbQCWfl4G1UD1brtSpcTgycWZP2hdTDdCT |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6KHtSDryrWZw7edOtudrNJjlqV-qgIreJt2WQTEGsVbQX99Way2yIq4i0sCYSZSWayM_N9ALtK5ZwLGwbCpiZInA8JlAyTQKhUCp1wGltsFO5cpe2b5PyO3dVgf9ILY4zxxWemiUOfyy-e9Ah_lR1IRAvHjvJp5_dZVHZrTXIGifB0Yi5giALhPNm4RSaUB71W97bnHoOUNp0BS4HU4F_ckOdV-XEZew9zugCd8d7KwpKH5miomvrjG2zjfze_CPNVqEkOS9tYgpoZLMPcFwDCOhydPbr7hJRAGu-ki5iW5BixdCsaLHL9gpkcP3y7z8khtuYSF6GqviHIo9ZfgZvTk16rHVSsCoGmkg2DROZpwVKnGicaG9HQ5k50XLsvyrJU5LGMRF7QWDOreBEpSYVIFTdhUjBqabwKU4OngVkDImiheKRCqd2jLiq40oKLhClpY6uVzhsQjYWc6QpyHJkv-pl_eoQy84rJUDFZpZgG7E3WPJeAG3_OrqOkJzMrITdgc6zLrDqTrxnFjCeizbP131ftwEy717nMLs-uLjZgFonly6KwTZgavozMlgs_hmrbW90nYSrT3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Quality+Score+Distribution+Prediction+via+Alpha+Stable+Model&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Gao%2C+Yixuan&rft.au=Min%2C+Xiongkuo&rft.au=Zhu%2C+Wenhan&rft.au=Zhang%2C+Xiao-Ping&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=1051-8215&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCSVT.2022.3229839&rft.externalDocID=9989415 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |