Image Quality Score Distribution Prediction via Alpha Stable Model

Based on potentially subjective and diverse image quality scores given by a group of subjects, we propose to predict the distribution of image quality scores rather than the mean opinion score (MOS) of image quality. Therefore, in this paper, we use an alpha stable model to parameterize the image qu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 33; no. 6; p. 1
Main Authors Gao, Yixuan, Min, Xiongkuo, Zhu, Wenhan, Zhang, Xiao-Ping, Zhai, Guangtao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Based on potentially subjective and diverse image quality scores given by a group of subjects, we propose to predict the distribution of image quality scores rather than the mean opinion score (MOS) of image quality. Therefore, in this paper, we use an alpha stable model to parameterize the image quality score distribution (IQSD), and propose an objective method to predict the alpha-stable-model-based IQSD. First, the LIVE database is re-recorded. Specifically, we invite a large group of subjects (187 valid subjects) to evaluate the quality of all 808 images in the LIVE database, with their scores forming reliable IQSDs. All images in the LIVE database and their collected subjective quality scores form a new image quality assessment database, named the SJTU IQSD database. We then propose a framework and algorithm to predict the alpha-stable-model-based IQSD, in which quality features are extracted from the structural and natural statistical information of each image, and support vector regressors are trained to predict the alpha stable model parameters. Experiments carried out on the SJTU IQSD database verify the feasibility of using the alpha stable model to describe the IQSD, and the experimental results show that the alpha-stable-model-based IQSD can reflect a large amount of subjective information on image quality. We also prove that the objective alpha-stable-model-based IQSD prediction method is effective. The code and the SJTU IQSD database can be downloaded at 'https://github.com/YixuanGao98/Image-Quality-Score-Distribution-Prediction-via-Alpha-Stable-Model.git'.
AbstractList Based on potentially subjective and diverse image quality scores given by a group of subjects, we propose to predict the distribution of image quality scores rather than the mean opinion score (MOS) of image quality. Therefore, in this paper, we use an alpha stable model to parameterize the image quality score distribution (IQSD), and propose an objective method to predict the alpha-stable-model-based IQSD. First, the LIVE database is re-recorded. Specifically, we invite a large group of subjects (187 valid subjects) to evaluate the quality of all 808 images in the LIVE database, with their scores forming reliable IQSDs. All images in the LIVE database and their collected subjective quality scores form a new image quality assessment database, named the SJTU IQSD database. We then propose a framework and algorithm to predict the alpha-stable-model-based IQSD, in which quality features are extracted from the structural and natural statistical information of each image, and support vector regressors are trained to predict the alpha stable model parameters. Experiments carried out on the SJTU IQSD database verify the feasibility of using the alpha stable model to describe the IQSD, and the experimental results show that the alpha-stable-model-based IQSD can reflect a large amount of subjective information on image quality. We also prove that the objective alpha-stable-model-based IQSD prediction method is effective. The code and the SJTU IQSD database can be downloaded at ‘ https://github.com/YixuanGao98/Image-Quality-Score-Distribution-Prediction-via-Alpha-Stable-Model.git ’.
Author Min, Xiongkuo
Gao, Yixuan
Zhu, Wenhan
Zhang, Xiao-Ping
Zhai, Guangtao
Author_xml – sequence: 1
  givenname: Yixuan
  orcidid: 0000-0002-6292-0529
  surname: Gao
  fullname: Gao, Yixuan
  organization: Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, China
– sequence: 2
  givenname: Xiongkuo
  orcidid: 0000-0001-5693-0416
  surname: Min
  fullname: Min, Xiongkuo
  organization: Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, China
– sequence: 3
  givenname: Wenhan
  orcidid: 0000-0001-8781-1110
  surname: Zhu
  fullname: Zhu, Wenhan
  organization: Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, China
– sequence: 4
  givenname: Xiao-Ping
  orcidid: 0000-0001-5241-0069
  surname: Zhang
  fullname: Zhang, Xiao-Ping
  organization: Tsinghua Berkeley Shenzhen Institute, China
– sequence: 5
  givenname: Guangtao
  orcidid: 0000-0001-8165-9322
  surname: Zhai
  fullname: Zhai, Guangtao
  organization: Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, China
BookMark eNp9kM1OwzAQhC1UJNrCC8AlEucUex0n9rGUApWKALVwtZzEBldpUmwHqW9P-iMOHDjtaDXf7mgGqFc3tUbokuARIVjcLCeL9-UIMMCIAghOxQnqE8Z4DIBZr9OYkZgDYWdo4P0KY5LwJOuj29lafejotVWVDdtoUTROR3fWB2fzNtimjl6cLm2xl99WReNq86miRVB5paOnptTVOTo1qvL64jiH6O1-upw8xvPnh9lkPI8LECzEiVBpyVKT6i6xIYCN6jJkRbfJDUu5ooJwVQItmMmzkuQCOE_zTOOkZGCADtH14e7GNV-t9kGumtbV3UsJHCgRCcWsc_GDq3CN904bWdigdvGDU7aSBMtdY3LfmNw1Jo-NdSj8QTfOrpXb_g9dHSCrtf4FhOAiIYz-AFx-eFY
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2023_3319020
crossref_primary_10_1016_j_entcom_2024_100899
crossref_primary_10_1016_j_sigpro_2024_109769
crossref_primary_10_1109_TCSVT_2024_3485684
crossref_primary_10_1109_TCSVT_2023_3295375
crossref_primary_10_1016_j_displa_2023_102625
crossref_primary_10_1016_j_displa_2024_102744
crossref_primary_10_1109_TMM_2023_3338412
crossref_primary_10_1016_j_displa_2023_102585
crossref_primary_10_1016_j_displa_2024_102652
crossref_primary_10_1145_3664198
crossref_primary_10_1109_TIP_2024_3461956
crossref_primary_10_1109_TMM_2023_3325719
crossref_primary_10_1016_j_displa_2024_102729
Cites_doi 10.1109/ICCMS.2010.309
10.1145/3470970
10.1109/TIP.2011.2161092
10.1109/TCSVT.2017.2710419
10.1109/TIP.2012.2191563
10.1007/s11432-019-2757-1
10.1088/0954-898X/5/4/006
10.1016/j.displa.2021.102115
10.1109/TMM.2019.2902097
10.1109/TMM.2019.2904879
10.1109/LSP.2012.2227726
10.1016/j.spl.2014.03.008
10.1145/1961189.1961199
10.1109/TMM.2018.2807589
10.1145/3503161.3547872
10.1109/TCSVT.2018.2886771
10.1109/TCSVT.2011.2133770
10.1109/TIP.2006.881959
10.1016/j.displa.2021.102101
10.1109/CVPR.2016.90
10.1109/LSP.2010.2043888
10.1109/TCSVT.2016.2539658
10.1109/TIP.2011.2147325
10.1109/ICIP42928.2021.9506196
10.1109/AMUEM.2007.4362568
10.1145/3464393
10.1109/TCSVT.2016.2602764
10.1109/TMM.2017.2729020
10.1109/TMM.2017.2788206
10.1109/TIP.2020.2966081
10.1016/j.displa.2021.102045
10.1109/CVPRW56347.2022.00126
10.1109/TIP.2017.2735192
10.1109/TBC.2018.2816783
10.1112/blms/28.5.554
10.1109/QoMEX.2011.6065690
10.1016/j.sigpro.2017.10.025
10.1109/ICIP.2010.5651833
10.1109/TPAMI.2002.1017623
10.1016/j.image.2016.05.008
10.1016/j.csda.2013.07.028
10.1109/TCSVT.2019.2891159
10.1109/TIP.2012.2214050
10.1515/9783110935974
10.1109/CVPR.2016.308
10.1109/TIP.2011.2109730
10.1109/QoMEX.2015.7148142
10.1109/TCSVT.2019.2900472
10.1109/TVCG.2014.2325047
10.1109/TIP.2018.2831899
10.1109/CVPR.2014.224
10.1109/TIP.2003.819861
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2022.3229839
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1
ExternalDocumentID 10_1109_TCSVT_2022_3229839
9989415
Genre orig-research
GrantInformation_xml – fundername: Shanghai Pujiang Program
  grantid: 22PJ1407400
– fundername: Shanghai Municipal Science and Technology Major Project
  grantid: 2021SHZDZX0102
– fundername: National Natural Science Foundation of China
  grantid: 61831015; 62225112; 62271312
  funderid: 10.13039/501100001809
– fundername: National Key R&D Program of China
  grantid: 2021YFE0206700
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
RIG
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-49a6d56f6e110f120fa1487c6f6bf568a3918ad23c5fb7d1b92886b7e04d52f23
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 08:34:01 EDT 2025
Thu Apr 24 23:12:04 EDT 2025
Tue Jul 01 00:41:19 EDT 2025
Wed Aug 27 02:29:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-49a6d56f6e110f120fa1487c6f6bf568a3918ad23c5fb7d1b92886b7e04d52f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8165-9322
0000-0001-5241-0069
0000-0002-6292-0529
0000-0001-5693-0416
0000-0001-8781-1110
PQID 2823194305
PQPubID 85433
PageCount 1
ParticipantIDs proquest_journals_2823194305
crossref_citationtrail_10_1109_TCSVT_2022_3229839
crossref_primary_10_1109_TCSVT_2022_3229839
ieee_primary_9989415
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref58
feller (ref47) 1972; 135
ref52
ref11
ref10
ref54
chubarau (ref62) 2021
ref17
ref16
ref19
ref18
ref51
ref50
ref48
ref42
ref41
ref44
ref43
ye (ref53) 2012
ref49
howard (ref57) 2017
ref8
liu (ref2) 2011; 21
(ref46) 2002
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref1
ref39
zhang (ref37) 2016
ref24
ref23
ref25
ref20
ref22
simonyan (ref55) 2014
jin (ref38) 2020
liu (ref26) 2011; 21
ref21
ref28
ref27
ref29
sheikh (ref45) 2005
ref60
ref61
References_xml – ident: ref43
  doi: 10.1109/ICCMS.2010.309
– ident: ref6
  doi: 10.1145/3470970
– ident: ref3
  doi: 10.1109/TIP.2011.2161092
– ident: ref32
  doi: 10.1109/TCSVT.2017.2710419
– year: 2021
  ident: ref62
  article-title: VTAMIQ: Transformers for attention modulated image quality assessment
  publication-title: arXiv 2110 01655
– volume: 135
  start-page: 430
  year: 1972
  ident: ref47
  article-title: An introduction to probability theory and its applications
  publication-title: J Royal Statistical Soc Statistics in Soc
– volume: 21
  start-page: 1500
  year: 2011
  ident: ref26
  article-title: Image quality assessment based on gradient similarity
  publication-title: IEEE Trans Image Process
– ident: ref21
  doi: 10.1109/TIP.2012.2191563
– year: 2014
  ident: ref55
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref7
  doi: 10.1007/s11432-019-2757-1
– ident: ref23
  doi: 10.1088/0954-898X/5/4/006
– ident: ref5
  doi: 10.1016/j.displa.2021.102115
– ident: ref10
  doi: 10.1109/TMM.2019.2902097
– ident: ref59
  doi: 10.1109/TMM.2019.2904879
– ident: ref24
  doi: 10.1109/LSP.2012.2227726
– ident: ref42
  doi: 10.1016/j.spl.2014.03.008
– ident: ref50
  doi: 10.1145/1961189.1961199
– start-page: 1098
  year: 2012
  ident: ref53
  article-title: Unsupervised feature learning framework for no-reference image quality assessment
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref30
  doi: 10.1109/TMM.2018.2807589
– year: 2002
  ident: ref46
  publication-title: Methodology for the Subjective Assessment of the Quality of Television Pictures
– ident: ref33
  doi: 10.1145/3503161.3547872
– ident: ref60
  doi: 10.1109/TCSVT.2018.2886771
– volume: 21
  start-page: 971
  year: 2011
  ident: ref2
  article-title: Visual attention in objective image quality assessment: Based on eye-tracking data
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2011.2133770
– ident: ref8
  doi: 10.1109/TIP.2006.881959
– year: 2020
  ident: ref38
  article-title: A deep drift-diffusion model for image aesthetic score distribution prediction
  publication-title: arXiv 2010 07661
– ident: ref17
  doi: 10.1016/j.displa.2021.102101
– ident: ref54
  doi: 10.1109/CVPR.2016.90
– ident: ref52
  doi: 10.1109/LSP.2010.2043888
– ident: ref15
  doi: 10.1109/TCSVT.2016.2539658
– ident: ref19
  doi: 10.1109/TIP.2011.2147325
– ident: ref1
  doi: 10.1109/ICIP42928.2021.9506196
– ident: ref31
  doi: 10.1109/AMUEM.2007.4362568
– ident: ref34
  doi: 10.1145/3464393
– ident: ref13
  doi: 10.1109/TCSVT.2016.2602764
– ident: ref12
  doi: 10.1109/TMM.2017.2729020
– ident: ref51
  doi: 10.1109/TMM.2017.2788206
– ident: ref11
  doi: 10.1109/TIP.2020.2966081
– ident: ref4
  doi: 10.1016/j.displa.2021.102045
– ident: ref61
  doi: 10.1109/CVPRW56347.2022.00126
– start-page: 1467
  year: 2016
  ident: ref37
  article-title: Photo aesthetic quality assessment via label distribution learning
  publication-title: Proc IEEE Int Conf Syst Man Cybern (SMC)
– ident: ref18
  doi: 10.1109/TIP.2017.2735192
– ident: ref29
  doi: 10.1109/TBC.2018.2816783
– ident: ref48
  doi: 10.1112/blms/28.5.554
– ident: ref35
  doi: 10.1109/QoMEX.2011.6065690
– ident: ref14
  doi: 10.1016/j.sigpro.2017.10.025
– year: 2017
  ident: ref57
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv 1704 04861
– ident: ref39
  doi: 10.1109/ICIP.2010.5651833
– ident: ref28
  doi: 10.1109/TPAMI.2002.1017623
– ident: ref27
  doi: 10.1016/j.image.2016.05.008
– ident: ref44
  doi: 10.1016/j.csda.2013.07.028
– ident: ref16
  doi: 10.1109/TCSVT.2019.2891159
– ident: ref20
  doi: 10.1109/TIP.2012.2214050
– ident: ref49
  doi: 10.1515/9783110935974
– ident: ref56
  doi: 10.1109/CVPR.2016.308
– ident: ref9
  doi: 10.1109/TIP.2011.2109730
– ident: ref36
  doi: 10.1109/QoMEX.2015.7148142
– ident: ref22
  doi: 10.1109/TCSVT.2019.2900472
– ident: ref40
  doi: 10.1109/TVCG.2014.2325047
– ident: ref41
  doi: 10.1109/TIP.2018.2831899
– year: 2005
  ident: ref45
  publication-title: LIVE image quality assessment database release 2 (2005)
– ident: ref58
  doi: 10.1109/CVPR.2014.224
– ident: ref25
  doi: 10.1109/TIP.2003.819861
SSID ssj0014847
Score 2.4838758
Snippet Based on potentially subjective and diverse image quality scores given by a group of subjects, we propose to predict the distribution of image quality scores...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
alpha stable model
Data mining
Distortion
Feature extraction
Histograms
Image quality
Image quality score distribution
Predictive models
Quality assessment
quality features
support vector regressors
Title Image Quality Score Distribution Prediction via Alpha Stable Model
URI https://ieeexplore.ieee.org/document/9989415
https://www.proquest.com/docview/2823194305
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61Jz34qmK1Sg7edNvd7CPJsVZLFSpCW-lt2WQTEGsrdSvorzeTfVBUxFtYEggzSWZmZ-b7EDoXIqGUaddhOlJOYGyII7gbOExEnMmAEl9Do_DwPhpMgrtpOK2hy6oXRilli89UG4Y2l58u5Ap-lXU4oIVDR_mGCdzyXq0qYxAwSyZm3AXPYcaOlQ0yLu-Me6PHsQkFCWmb48sZEIOvGSHLqvLjKbb2pb-DhuXO8rKS5_YqE235-Q208b9b30XbhaOJu_nJ2EM1Nd9HW2vwgw10dftiXhOcw2h84BEgWuJrQNItSLDwwxLyOHb4_pTgLjTmYuOfipnCwKI2O0CT_s24N3AKTgVHEh5mTsCTKA0joxgjGu0RVydGdFSaL0KHEUt87rEkJb4MtaCpJzhhLBJUuUEaEk38Q1SfL-bqCGFGUkE94XJpQjovpUIyyoJQcO1rKWTSRF4p5FgWgOPAezGLbeDh8tgqJgbFxIVimuiiWvOaw238ObsBkq5mFkJuolapy7i4kW8xgXwnYM2Hx7-vOkGbQCWfl4G1UD1brtSpcTgycWZP2hdTDdCT
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6KHtSDryrWZw7edOtudrNJjlqV-qgIreJt2WQTEGsVbQX99Way2yIq4i0sCYSZSWayM_N9ALtK5ZwLGwbCpiZInA8JlAyTQKhUCp1wGltsFO5cpe2b5PyO3dVgf9ILY4zxxWemiUOfyy-e9Ah_lR1IRAvHjvJp5_dZVHZrTXIGifB0Yi5giALhPNm4RSaUB71W97bnHoOUNp0BS4HU4F_ckOdV-XEZew9zugCd8d7KwpKH5miomvrjG2zjfze_CPNVqEkOS9tYgpoZLMPcFwDCOhydPbr7hJRAGu-ki5iW5BixdCsaLHL9gpkcP3y7z8khtuYSF6GqviHIo9ZfgZvTk16rHVSsCoGmkg2DROZpwVKnGicaG9HQ5k50XLsvyrJU5LGMRF7QWDOreBEpSYVIFTdhUjBqabwKU4OngVkDImiheKRCqd2jLiq40oKLhClpY6uVzhsQjYWc6QpyHJkv-pl_eoQy84rJUDFZpZgG7E3WPJeAG3_OrqOkJzMrITdgc6zLrDqTrxnFjCeizbP131ftwEy717nMLs-uLjZgFonly6KwTZgavozMlgs_hmrbW90nYSrT3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Quality+Score+Distribution+Prediction+via+Alpha+Stable+Model&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Gao%2C+Yixuan&rft.au=Min%2C+Xiongkuo&rft.au=Zhu%2C+Wenhan&rft.au=Zhang%2C+Xiao-Ping&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=1051-8215&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCSVT.2022.3229839&rft.externalDocID=9989415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon